
Introduction to General Relativity (Reading)
Instructor: Bala Iyer
Venue: Amal Raychaudhuri Meeting room, ICTS Campus, Bangalore
Class Timings: Monday 1:453:15 pm, Friday 1:453:15 pm
First Class: Monday, 12 August 2019
Text Books:
 Introducing Einstein’s Relativity: Ray D’Inverno
 A first course in general relativity: B. Schutz
Structure of the course:
The reading course has three components: Weekly Presentation and Participation
 Problemsolving
 Final Oral Exam/Seminar
Presentations will be Twice a week (1.5 hrs each) where all students take turns in reading the assigned text and presenting them. I will start off the course with an Overview Lecture on GR and Information on Standard Texts they can consult. Problems on various modules will be evaluated by a TA. There will be an endsemester Oral Exam (which may be replaced by a Seminar)
Final Grades will be based on:
 Class presentation/participation: 30%
 Problems: 30%
 End term Oral Exam (or Seminar): 40%

String Theory I (Reading)
Instructor: R.Loganayagam
Venue: Feynman Lecture Hall, ICTS Campus, Bangalore
Class Timings: Wednesday and Friday, 11:0012:30 AM(Tentative)
First Class: Wednesday (10:00 am), 7th August 2019
Structure of the course: The reading course has three components: Presentation/Class participation, assignments and exams.
Presentations will be twice a week (1.52hrs each) where all students take turns in reading the assigned text and presenting them. I will start off the course with a set of 6 to 8 lectures (i.e, 3 − 4 weeks) giving a brief survey at the level of basic textbooks mentioned below.
Assignments will be a set of problems on various modules which need to be handed over by those who are crediting the course. Since I do not really have a TA for this course, I want the students who credit this course to grade each others’ assignments.
There will be a midsemester and an endsemester exam (the latter can be replaced by a term paper, see below for details).The grading policy will be based on the following weightage :
– Class presentation/participation: 20% – Assignments: 40%
– Midterm Exam: 20%
– End term Exam (or) Term paper: 20%For more details, see the PDF

Classical Mechanics (Core)
Instructor: Manas Kulkarni
Class Timings: Wednesdays  3:30 to 5:00 pm and Fridays – 4 pm to 5:30 pm
Venue: Chern lecture hall, ICTS Campus, Bangalore
First Class: Wednesday (4:00 pm), 7th August 2019
Topics:
 Recap:
Recap of Newton's laws and their consequences
System of point masses, Rigid Bodies
Classical drivendissipative systems
 Lagrangian Formulation:
Principle of least action
Noether's Theorem, Symmetries
Small Oscillations, Applications
 Rigid body motion:
Euler Angles
Tops
 Hamiltonian formulation:
Liouville's Theorem
ActionAngle variables
HamiltonJacobi Equations
 Classical Integrable Models and Field Theory:
Lax Pairs
Toda Model
Calogero Family of Models
Integrable Field Theories
Integrable Partial Differential Equations and applications in physics.
 Landau Lifshitz course on theoretical physics: Vol 1: Classical Mechanics
 Classical Mechanics by Herbert Goldstein, Charles P. Poole, John L. Safko
 Analytical Mechanics by Louis N. Hand, Janet D. Finch
 classical integrable finitedimensional systems related to Lie algebras, M.A. Olshanetsky, A.M.Perelomov, Physics Reports, Volume 71, Issue 5, May 1981, Pages 313400
 Recap:

Physics of Living Matter (Elective)
Instructor: Vijay Kumar Krishnamurthy
Prerequisites: The first course on statistical physics
Outline: Basic phenomenology of living systems. Bionumbers. Statistical physics in biology (active particles, chemical kinetics, feeding by diffusion, membrane potentials). Molecular machines (molecular motors, polymerases, synthases, enzymes, ionpumps, mitochondria). Macromolecular assemblies (polymers, membranes). Sensing and signalling (receptorligand interactions, MWC model, biochemical pathways, physical limits to sensing). Hydrodynamics (NavierStokes, low Reynolds number flows, swimming, generalized hydrodynamics, active matter, physics of the actomyosin cytoskeleton). Pattern formation (morphogen gradients, Turing patterns, mechanochemical patterns)
Time: Tuesdays and Thursdays 10:00 am  11:30 am
First Meeting: Thursday, 8th August 2019
Venue: Feynman Lecture Hall, ICTS, Bangalore
Webpage: https://biophysics.icts.res.in/teaching/physicsoflivingmatter/
Sign up: https://forms.gle/n5KDAzauZZBtXDbk8

Statistical Physics of Turbulent Flows (Elective)
Instructor: Samriddhi Sankar Ray
Venue: Feynman Lecture Hall, ICTS Campus, Bangalore
Meeting Time: Wednesdays and Thursdays: 2.00 pm  3:30 pm
First Meeting: Wednesday, 7th August 2019
Course Outline:
 Basics of Fluid Dynamics
 Fourier Analysis
 Isotropic Turbulence: Phenomenology of ThreeDimensional Turbulence
 Analytical Theories (closures, etc) and Stochastic Models
 TwoDimensional Turbulence

Advanced Quantum Mechanics (Core)
Instructor: Suvrat Raju
Venue and Timings: 2:30 to 4:00 pm Feynman Lecture hall, Thursdays: 2:30 to 4:00 pm Chern Lecture hall
Course Outline
 Mathematical preliminaries of quantum mechanics: Linear Algebra; Hilbert spaces (states and operators)
 Heisenberg and Schrodinger pictures
 Symmetries: Role of symmetries and types (spacetime and internal, discrete and continuous); Symmetries and quantum numbers; Simple examples of symmetry (Translation, parity, timereversal); Rotations and representation theory of Angular momentum; Creation and annihilation operator formalism for a simple harmonic oscillator.
 Perturbation Theory
 Scattering
We will also study some additional topics, including some elements of quantum information theory.
Textbook:
Modern Quantum Mechanics by Sakurai. 
Lab Course (Core)
Instructors: Abhishek Dhar, Vishal Vasan
Timings for first meet: 2 pm Monday, 19th August 2019
Venue: J C Bose Lab
Course structure:
Students will rotate amongst 4 experiments, devoting two weeks to each experimental setup. Students are expected to devote 8 − 10 hours per week to each experiment. At the end of the allotted two week period for each experiment, students will give a short presentation to the instructors and rest of the class. Students will submit a report detailing the theory for their experiment, the experimental procedure, their data and analysis as well as their conclusions regarding the challenges, what remains to be investigated and their advice to the next team.List of experiments:
 Exploring drag force on an object moving in a fluid
 Observing Brownian motion and estimating Avogadro’s number
 Surface gravity waves and dispersion relations
 Resonance of acoustic waves in cavities
Evaluation:
 (60%) Written report and presentation for each experiment
 (20%) Participation in discussions
 (10%) Ability to achieve openended goals of the experiment
 (10%) Final quiz: at the end of the final experiment each student will be individually quizzed on all experiments, for their understanding of the various concepts/ideas discussed throughout the term.