Coding Theory

  1. Day 1 [28 April]  Introduction 

    • Hour 1 - Definitions -  codes, rate, distance, basic bounds, local decoding, local testing, RS codes

    • Hour 2 - Berlekamp-Welch Decoder, RM codes, RM codes are locally decodable + setup for RM codes are locally testable

  2. Day 2 [29 April]: Expander codes and LTCs

    • Hour 1 - Expander based codes - Tanner/Sipser-Spielman, linear time decoding

    • Hour 2 - RM codes are locally testable

  3. Day 3 [30 April] LTCs and decoding

    • Hour 1 - BHR - random LDPC codes are not locally testable, intro to the c^3 LTCs

    • Hour 2 - Decoding beyond half the min distance - Johnson bound, Sudan’s algorithm for list decoding RS codes, sketch of Guruswami-Sudan’s algorithm

  4. Day 4 [1 May]  Expander-based codes

    • Hour 1 - more expander techniques, AEL + applications

    • Hour 2 - Univariate multiplicity codes and list decoding up to capacity, possibly the new list size bounds

High-dimensional Expanders

  1. Day 1 [28 April] (Lectures 1/2): Expanders

    • Spectral and edge expansion

    • Expander-mixing or Cheeger (easy direction)

    • Constructions (without proof)

    • Random-walks/mixing-time + handling weighted graphs.

  2. Day 2 [29 April] (Lectures 3/4): Spectral HDX

    • Spectral HDX definitions (simplicial/poset view + distributional view)

    • dense examples + failure of random complexes,

    • (Partite?) Trickling-down theorem

    • Intro to down-up operators + high order random walks,

    • State Alev-Lau Thm & preliminaries for proof.

  3. Day 3 [30 April] (Lectures 5/6): Spectral HDX (Continued)

    • Proof of Alev-Lau (Alev-Rao/Liu version via chain rule for variance)

    • Sampler graphs (Spectral + Chernoff bounds (state only))

    • Boolean Analysis on HDX (Swap walks + Approximate Efron-Stein Decompositions)

  4. Day 5 [2 May] (Lectures 7/8): HDX and CSPs

    • Algorithms for k-CSPs on HDX (+ connections to codes?)

    • Integrality gaps from Co-boundary expansion
       

 

Chain Complexes and Codes

  1. Day 4 [1 May]

    • Lecture 1: Classical LDPC Codes
      ■ Graph lifts
      ■ Group algebras
      ■ Zémor codes  

    • Lecture 2: Quantum LDPC Codes
      ■ Chain complexes
      ■ Toric codes
      ■ Tensor product codes
      ■ Hypergraph product codes

  2. Day 5 [2 May]

    • Lecture 3: Lifted Product (LP) Codes
      ■ Bounds on the parameters
      ■ Generalized bicycle codes
      ■ High-dimensional LP codes
      ■ Cubical complexes 

    • Lecture 4: HDX-based Codes
      ■ Locally Testable Codes (LTCs)
      ■ Coboundary expansion
      ■ Product expansion
      ■ Expander LP codes