Error message

Notice: Undefined offset: 0 in include() (line 35 of /home/it/www/www-icts/sites/all/themes/riley/templates/views/views-view-fields--related-file-field-collection-view.tpl.php).
Colloquium
Speaker
Gadadhar Misra (Department of Mathematics, Indian Institute of Science, Bangalore)
Date & Time
Mon, 22 April 2019, 15:00 to 16:00
Venue
Emmy Noether Seminar Room, ICTS Campus, Bangalore
Resources
Abstract

If | \sum_{i,j=1}^n a_{i  j} s_i  t_j | is  less or equal to 1 for all  vectors s, t  with |s_i|, |t_i| less or equal to 1, then | \sum_{i,j}^n a_{i j} <x_i , y_j  > | less  or equal to K(n) for any choice of unit vectors x_1,..., ,x_n;  y_1,...,y_n in a Hilbert space H, 

The limit of  K(n)  remains  finite as  n  →  ∞  and is  the universal constant K  of Grothendieck. I will discuss this inequality along with many of its surprising consequences.