1. Abhijit Champanerkar (City University of New York, USA)
  2. Hitoshi Murakami (Tohoku University, Japan)
  3. Jozef H. Przytycki (The George Washington University, USA)
  4. Louis H. Kauffman (University of Illinois at Chicago, USA)
  5. Piotr Sulkowski (University of Warsaw, Poland)
  6. Seiichi Kamada (Osaka University, Japan)
  7. Valeriy Bardakov (Sobolev Institute of Mathematics, Russia)

WORKSHOP RESOURCES:

1. Readings in hyperbolic knot theory
(https://www.math.csi.cuny.edu/abhijit/hypknots-reading.html)

2. Introduction to Knots, Knotoids and Virtual Knots: Louis H. Kauffman

3. ​J. H.Przytycki, Knots and distributive homology: from arc colorings to Yang-Baxter homology,  Chapter in: New Ideas in Low Dimensional Topology, World Scientific, Vol. 56, March-April 2015, 413-488; e-print: arXiv:1409.7044.

[1] Murakami, Hitoshi; Yokota, Yoshiyuki, Volume conjecture for knots. SpringerBriefs in Mathematical Physics 30. Singapore: Springer (ISBN978-981-13-1149-9/pbk; 978-981-13-1150-5/ebook). ix, 120 p. (2018).

[2] Murakami, Hitoshi, Current status of the volume conjecture. Sugaku Expo. 26, No. 2, 181-203 (2013); translation from Sugaku 62, No. 4, 502-523 (2010).

[3] Murakami, Hitoshi, An introduction to the volume conjecture. Champagnerkar, Abhijit (ed.) et al., Interactions between hyperbolic geometry, quantum topology and number theory. Proceedings of a workshop,
June 3?13, 2009 and a conference, June 15?19, 2009, Columbia University, New York, NY, USA. Providence, RI: American Mathematical Society (AMS) (ISBN 978-0-8218-4960-6/pbk). Contemporary Mathematics 541, 1-40 (2011).

[4] Murakami, Hitoshi, Various generalizations of the volume conjecture. Burenkov, V. I. (ed.) et al., The interaction of analysis and geometry. International school-conference on analysis and geometry, Novosibirsk,
Russia, August 23?September 3, 2004. Providence, RI: American Mathematical Society (AMS) (ISBN 978-0-8218-4060-3/pbk). Contemporary Mathematics 424, 165-186 (2007).

[5] Murakami, Hitoshi, A quantum introduction to knot theory.  Kohno, Toshitake (ed.) et al., Primes and knots. Proceedings of an AMS special session, Baltimore, MD, USA, January 15?16, 2003 and the 15th JAMI (Japan-US Mathematics Institute) conference, Baltimore, MD, USA, March 7?16, 2003. Providence, RI: American Mathematical Society (AMS) (ISBN 0-8218-3456-8/pbk). Contemporary Mathematics 416, 137-165 (2006).

[6] Murakami, Hitoshi; Murakami, Jun The colored Jones polynomials and the simplicial volume of a knot. Acta Math. 186, No. 1, 85-104 (2001)

4. Reading material by Scott Carter:

Link 1
Link 2 
Link 3
Link 4
Link 5
Link 6
Link 7
 

5. Details of Josef Przytycki's second Lecture on the Kauffman bracket polynomial and its categorification by Khovanov can be found in his book 
Chapter X at http://arxiv.org/abs/math.GT/0512630.