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Using servers hosted on the Internet to 

store, manage, and process data.

Mobility







Basic Problem

Resources: VM (virtual machine) configurations

Each customer wants to run a set of jobs to finish 

within a budget. Wants to finish ASAP.

Goal: Set prices of resources over time and

allocate

Covering constraints

Objective



Agent 𝑖:
• Has money 𝑚𝑖. 

• Covering constraints over goods.

Agent demands bundle s.t.

1. Objective: Min cost

• Good 𝑗 costs 𝑑𝑖𝑗 per unit

2. Within budget & satisfies constraints

Equilibrium: Market clears

𝑝1

𝑝𝑛

⋮

Generalization



More Applications: Network Flow

𝑠𝑖
𝑡𝑖

𝑑𝑒
𝑐𝑎𝑝𝑒



Equilibrium Existence

Not Always! 

Strong Feasibility: Every minimally feasible allocation

for a subset of agents extends to all the agents.

Theorem. Equilibrium exists if the market satisfies 

strong feasibility.



Equilibrium Computation

PPAD-hard! [Rubinstein’17]

Extensibility: Every mincost allocation for a subset 

of agents can be extended to a mincost allocation to all. 

Theorem. Equilibrium can be computed in polynomial-

time if the market satisfies extensibility. 

Includes cloud markets with arrivals and 

varying capacity of resources, network 

flow with series-parallel network, etc.



Algorithm: Cloud (scheduling) market



⋮

Agent 𝑖:
Has money 𝑚𝑖

Wants 𝑟𝑖𝑗 units of machine 𝑗

Price: 𝑝𝑗𝑡

Agent demands bundle s.t.

1. Min delay-cost (flow-time)

• Delay-cost of slot 𝑡 is 𝑡
2. Within budget & finishes jobs

Time t1 2

slots



Price: 𝑝𝑗𝑡 of good 𝑗 in time slot 𝑡

Agent 𝑖 demands 𝑓𝑖𝑗𝑡 s.t.

1. Covering const.    : σ𝑡 𝑓𝑖𝑗𝑡 ≥ 𝑟𝑖𝑗 , ∀𝑗

2. Within budget      :  σ𝑗,𝑡 𝑝𝑗𝑡𝑓𝑖𝑗𝑡 ≤ 𝑚𝑖

3. Min delay-cost     :  min: σ𝑗,𝑡 𝑡𝑓𝑖𝑗𝑡

Equilibrium: Market clears

∀ 𝑗, 𝑡 , Aggregate demand  ≤ 1.

If less than 1, then 𝑝𝑗𝑡 = 0

Optimal bundle LP

⋮

𝑚1

𝑚2

𝑟1𝑗 s

𝑟2𝑗s



𝑝𝑗𝑡: Price of good 𝑗 in slot 𝑡

𝑓𝑖𝑗𝑡: Agent 𝑖′𝑠 demand 

min: σ𝑗,𝑡 𝑡𝑓𝑖𝑗𝑡

Equilibrium Characterization

1. Price is decreasing over time
• If 𝑝𝑗𝑡 < 𝑝𝑗 𝑡+1 then no one buys good j in slot (t+1)

2. Difference in price is decreasing

For each good j



𝑝𝑗𝑡: Price of good 𝑗 in slot 𝑡

𝑓𝑖𝑗𝑡: Agent 𝑖′𝑠 demand 

min: σ𝑗,𝑡 𝑡𝑓𝑖𝑗𝑡

Equilibrium Characterization

1. Price is decreasing over time
• If 𝑝𝑗𝑡 < 𝑝𝑗 𝑡+1 then no one buys good j in slot (t+1)

2. Difference in price is decreasing

For each good j

𝑝1 𝑝2 𝑝3
6 4 0

2

1

Cost: 2

1 3

2 4<$4



𝑝1 𝑝2 𝑝3
6 4 0

𝑝𝑗𝑡: Price of good 𝑗 in slot 𝑡

𝑓𝑖𝑗𝑡: Agent 𝑖′𝑠 demand 

min: σ𝑗,𝑡 𝑡𝑓𝑖𝑗𝑡

Equilibrium Characterization

1. Price is decreasing over time
• If 𝑝𝑗𝑡 < 𝑝𝑗 𝑡+1 then no one buys good j in (t+1)

2. Difference in price is decreasing

For each good j

2/3 1/3

Cost: 
2

3
+1 < 2

1 2 3

4<2$4



Equilibrium Characterization

1. Price is decreasing over time

2. Difference in price is decreasing

For each good j
𝑝𝑗𝑡: Price of good 𝑗 in slot 𝑡

𝑓𝑖𝑗𝑡: Agent 𝑖′𝑠 demand 

min: σ𝑗,𝑡 𝑡𝑓𝑖𝑗𝑡

t

𝑝𝑗

𝑝𝑗1

𝑝𝑗2

Piecewise-Linear Convex



Equilibrium Characterization

For each agent 𝑖: (1) delay cost, (2) monetary cost.

Optimal bundle LP
KKT 𝑡𝜆𝑖 + 𝑝𝑗𝑡 perceived cost

For each good: Buy only where perceived cost is minimum.

Note: 𝜆𝑖 common 

across goods.
𝜆𝑖

t

𝑓𝑖𝑗𝑡

Lemma:



Equilibrium Characterization

each good 𝑗:

t

𝜆𝑖

𝑓𝑖𝑗𝑡

(𝑘+1)

Money of 𝑆 = σ𝑗 Price of first 𝑙𝑗 slots
𝑝𝑗

𝑘 = σ𝑖∈𝐴 𝑟𝑖𝑗

𝑙𝑗

𝐴: Set of agents

Optimal bundle

Market clearing ⇒

= σ𝑖∈𝑆 𝑟𝑖𝑗

0



Non-Convex Equilibria

𝑢

𝑢2 𝑢3

𝑢1

𝑢3

𝑢1

𝑢2

𝑢3
2 𝑢2

3
𝑢23

𝑢1
23

𝑢123

𝑢1
3

𝑢3
1

𝑢2
1

𝑢1
2

𝑢12

𝑢3
12 𝑢2

13

𝑢13

Market with 6 agents

and 1 good



Algorithm: Single good case

𝑟𝑖=1 for each agent 𝑖



Algorithm

(𝑛+1)

𝑝

𝑛 = |𝐴|



Algorithm

(𝑛+1)

𝑝

𝜆
𝑆

|𝑆|



Algorithm

(𝑛+1)

𝑝

𝜆

𝑆

|𝑆|



Algorithm

(𝑛+1)

𝑝

…

𝜆

𝑆

|𝑆|



Algorithm: Last segment

(𝑛+1)

𝑝

𝜆∗

|𝑆∗|

…
𝜆∗

2𝜆∗

𝑆∗ 𝜆∗

σ𝑖∈𝑆∗𝑚𝑖 = 1𝜆∗ + 2𝜆∗ +⋯+ 𝑆∗ 𝜆∗

0



Algorithm: Last segment

(𝑛+1)

𝑝

𝜆∗

…
𝜆∗

2𝜆∗

𝑆∗ 𝜆∗

σ𝑖∈𝑆∗𝑚𝑖 = 1 + 2 +⋯+ 𝑆∗ 𝜆∗

𝜆∗ =
σ𝑖∈𝑆∗ 𝑚𝑖

𝜎 𝑆∗

= 𝜎 𝑆∗ 𝜆∗

0
|𝑆∗|



Last segment: Find 𝜆∗, 𝑆∗

𝑆∗ = argmin
𝑆⊆𝐴

𝜆𝑆

Exponentially many sets!

𝜆𝑆∗ = 𝜆∗

𝜆𝑆 ≝
σ𝑖∈𝑆𝑚𝑖

𝜎(𝑆)

𝜆∗ =
σ𝑖∈𝑆∗ 𝑚𝑖

𝜎 𝑆∗

Want:  ∀𝑆, 𝜆𝑆∗≤ 𝜆𝑆



Last segment: Find 𝜆∗, 𝑆∗

∀𝑆, σ𝑖∈S𝑚𝑖 − 𝜆∗𝜎(𝑆) ≥ 0
= 0 if 𝑆 = 𝑆∗

𝑆∗ = argmin𝑆⊆𝐴 σ𝑖∈S𝑚𝑖 − 𝜆∗𝜎(𝑆)

Sub-modular function
How to find 𝜆∗?

Binary search!

Polytime!

Given 𝜆∗

∀𝑆, 𝜆𝑆 =
σ𝑖∈𝑆𝑚𝑖

𝜎 𝑆
≥ 𝜆∗ = 𝜆𝑆∗



Last segment: Find 𝜆∗, 𝑆∗

S∗ = argmin𝑆⊆𝐴 σ𝑖∈S𝑚𝑖 − 𝜆∗𝜎 𝑆 ≝ 𝑔 𝜆∗

How to find 𝜆∗?

Binary search!

∀𝑆, σ𝑖∈S𝑚𝑖 − 𝜆∗𝜎(𝑆) ≥ 0
= 0 if 𝑆 = 𝑆∗

∀𝑆, 𝜆𝑆 =
σ𝑖∈𝑆𝑚𝑖

𝜎 𝑆
≥ 𝜆∗ = 𝜆𝑆∗



Last segment: Find 𝜆∗, 𝑆∗

How to find 𝜆∗?

Binary search!

𝑔 𝜆∗ = 0

Sub-modular minimization

∀𝑆, σ𝑖∈S𝑚𝑖 − 𝜆∗𝜎(𝑆) ≥ 0

∀𝑆, 𝜆𝑆 =
σ𝑖∈𝑆𝑚𝑖

𝜎 𝑆
≥ 𝜆∗ = 𝜆𝑆∗



Last segment: Find 𝜆∗, 𝑆∗

How to find 𝜆∗?

Binary search!

for 𝜆 < 𝜆∗

𝑔 𝜆∗ = 0

𝑔 𝜆 > 0

Sub-modular minimization

∀𝑆, σ𝑖∈S𝑚𝑖 − 𝜆𝜎 𝑆 > 0

∀𝑆, 𝜆𝑆 =
σ𝑖∈𝑆𝑚𝑖

𝜎 𝑆
≥ 𝜆∗ = 𝜆𝑆∗ > 𝜆



Last segment: Find 𝜆∗, 𝑆∗

How to find 𝜆∗?

Binary search!

σ𝑖∈S∗𝑚𝑖 − 𝜆𝜎 𝑆∗ < 0 for 𝜆 > 𝜆∗

for 𝜆 < 𝜆∗

𝑔 𝜆∗ = 0

𝑔 𝜆 > 0

𝑔 𝜆 < 0

for 𝜆 > 𝜆∗ 𝑔 𝜆 < 0

Sub-modular minimization

∀𝑆, 𝜆𝑆 =
σ𝑖∈𝑆𝑚𝑖

𝜎 𝑆
≥ 𝜆∗ = 𝜆𝑆∗

=
σ𝑖∈𝑆∗𝑚𝑖

𝜎 𝑆∗



Last segment: Find 𝜆∗, 𝑆∗

𝑔 𝜆∗ = 0
𝜆

𝑔

𝜆∗

σ𝑖𝑚𝑖
0

Binary search!

for 𝜆 < 𝜆∗ 𝑔 𝜆 > 0

for 𝜆 > 𝜆∗ 𝑔 𝜆 < 0

∀𝑆, 𝜆𝑆 =
σ𝑖∈𝑆𝑚𝑖

𝜎 𝑆
≥ 𝜆∗ = 𝜆𝑆∗



Algorithm: Second last segment

(n−|S∗|+1)

𝑝

𝑆∗ 𝜆∗

𝐴 = 𝐴 ∖ 𝑆∗



Algorithm: Second last segment

𝑝

𝜆′

|𝑆′|

…
𝑝𝑙 + 𝜆′

𝑝𝑙 + 2𝜆′

𝑝𝑙

⋮

Repeat the procedure.

σ𝑖∈𝑆′𝑚𝑖 = 𝑆′ 𝑝𝑙 + 𝜎 𝑆′ 𝜆′

(n−|S∗|+1)

𝐴 = 𝐴 ∖ 𝑆∗



Algorithm

𝑝𝑙 = 0, 𝐴′ = 𝐴
While 𝐴′ ≠ ∅

𝑆, 𝜆 =Find-Last-Segment(𝑝𝑙 , 𝐴′)
Store (𝑆, 𝜆)
𝑝𝑙 = 𝑝𝑙 + 𝑆 𝜆; 𝐴′ = 𝐴′ ∖ 𝑆

General markets: Parameterized LP with 𝜆1, … , 𝜆𝑛
as parameters + submodular optimization

Major Challenges: Monotonic prices, hold payments of allocated 

agents, existence of final allocation. 



Extensions (Scheduling market)

 Multiple goods and arbitrary requirements

 Arbitrary monotonic delay cost

 Arbitrary arrivals of agents

 Arbitrary capacity of resources across time

 Etc.



Fairness Properties

 Pareto-optimal allocation.

 Envy-free

 Every buyer gets at least her “fair share”

The allocation Pareto dominates 
𝑚𝑖

σ𝑘𝑚𝑘
-share 

allocation.



Algorithm: A Mechanism (scheduling)

Our Algorithm

𝑚𝑖
𝑟𝑖𝑗s

Allocation 𝑓𝑖𝑗𝑡s

Truthful



Quasi-Linear: delay-cost + 𝜂𝑖payment

Theorem: There is no truthful, Pareto optimal, 

and anonymous auction, for the case of a single 

good and two agents.

Uses Dobzinski, Lavi, Nisan (2012) 

construction. 



Open Problems.

 Efficient algorithm for other sub-classes 

 Online setting

 Discrete goods

 …



Thank You
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