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Carathéodory’s Theorem

Any vector in the convex hull of a set V in R? can be expressed as
a convex combination of at most d + 1 vectors of V.
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Approx. Carathéodory’s Theorem

Given set V' in the p-unit ball with norm p > 2, for every vector in

the convex hull of V' there exists an e-close (under p-norm distance)

40 vectors of V.

vector that is a convex combination of at most
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Given set V' in the p-unit ball with norm p > 2, for every vector in

the convex hull of V' there exists an e-close (under p-norm distance)

40 vectors of V.

vector that is a convex combination of at most

Proof: Instantiating Maurey's Lemma.
Alternatively, via Khintchine inequality.



Application I: Approximating Nash Equilibria
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Nash equilibrium in two-player games is PPAD-hard [GP06,
DGP06, CD06, CDT09)].




Payoffs Nash Equilibrium

Prob.

2 7 0 1\ (8 1 - 4 Algorithm

8 2 - 8 15 - 9 ’
S N o e —_— Player 1
o & : B Hard even in Prob.
two-player
games
[DGPO6, ‘
cDTO9] Player 2




Payoffs Approx. Nash Eq.

Prob.

2 7 0 1\ (8 1 - 4 Algorithm
8 2 ... 8 15 - 9
: M o e —_— Player 1
o 8 g B Hard even in Prob.
two-player
games
[DGPOG,
cDTO9] Player 2

Focus: Two-Player Games
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Focus: Two-Player Games

model settings in which two self-interested
entities simultaneously select actions to maximize their own payoffs.



Payoff matrices A and B of size n x n
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Payoff matrices A and B of size n x n

Probability vectors over [n]: x and y




Payoff matrices A and B of size n x n

Probability vectors over [n]: x and y

Nash equilibrium (z,y): No player can benefit by unilateral
deviation

efAy<aTAy  Vie[n] and
t"Be; <2'By  Vj € [n]




Payoff matrices A and B of size n x n

Probability vectors over [n]: x and y

(z,y): No player can benefit by unilateral
deviation

el Ay <z Ay Vi € [n] and
2T Be; < zT By Vj € [n]

(z,y): No player can benefit
more than e by unilateral deviation

el Ay <azTAy+e Vi € [n] and
2T Be; < xTBy +¢ Vj € [n]



Computation of Eq. in Two-Player Games

Nash Equilibria

General Games: Exp. time
[Lemke & Howson 1964]

Zero-Sum Games: Poly. time
[von Neumann 1928, Dantzig
1951]




Computation of Eq. in Two-Player Games

Nash Equilibria Approximate Nash Equilibria
Exp. time nO(logn/e?)
[Lemke & Howson 1964] [Lipton et al. 2003]
Poly. time (1/e)rank
[von Neumann 1928, Dantzig [Alon et al. 2013]

1951]



Computation of Eq. in Two-Player Games

Nash Equilibria Approximate Nash Equilibria
Exp. time nO(logn/e?)
[Lemke & Howson 1964] [Lipton et al. 2003]
Poly. time (1/e)rank
[von Neumann 1928, Dantzig [Alon et al. 2013]
1951]

This Talk: Sparsity



Definition (Sparsity of a Game)

The sparsity of a game (A, B) is defined to be the maximum
number of non-zero entries in any column of A + B.




Definition (Sparsity of a Game)

The sparsity of a game (A, B) is defined to be the maximum
number of non-zero entries in any column of A + B.

e Sparsity =0 in
e In general, sparsity is at most n



Definition (Sparsity of a Game)

The sparsity of a game (A, B) is defined to be the maximum
number of non-zero entries in any column of A + B.

Theorem

In a two-player s-sparse game an e-Nash equilibrium can be

computed in time nOlogs/e?)

Payoff matrices normalized A, B € [—1, 1]™*".



Definition (Sparsity of a Game)

The sparsity of a game (A, B) is defined to be the maximum
number of non-zero entries in any column of A + B.

Theorem

In a two-player s-sparse game an e-Nash equilibrium can be

computed in time nOlogs/e?)

Implications:
e When s is a fixed constant we get a polynomial-time algorithm

e For general games (s < n) the running time matches the
best-known upper bound: nO(ogn/c*) [LMM'03].



Nash eq: el Ay < 2T Ay Vi and
xTBej < 2T By Vi

Bilinear Program for Nash Eq. [MS'64]

maximize z(A+ B)y —m —m
subject to 2B < 7wy and Ay <m
x,y €A™ and mp,m € [—1,1]




Nash eq: el Ay < 2T Ay Vi and
xTBej < 2T By Vi

Bilinear Program for Nash Eq. [MS'64]

maximize zlCy—m —
subject to 2B < 7wy and Ay <m
x,y €A™ and 71, m € [—1,1]




Bilinear Program for Nash Eq. [MS'64]

maximize xTC’y — T — Ty
subject to 2B < 7wy and Ay <m
x,y €A™ and mp,m € [—1,1]




Bilinear Program for Nash Eq. [MS'64]

maximize xTC’y — T — Ty
subject to 2B < 7wy and Ay <m
x,y €A™ and mp,m € [—1,1]

Say (z*,y*) is a Nash eq. Given u* = Cy* we get an LP.

maximize x!u* —m —my

subject to z'B<m and Ay<m

n




Bilinear Program for Nash Eq. [MS'64]

maximize xTC’y — T — Ty
subject to 2'B < m and Ay <m
x,y € A" and m,m € [—1,1]

Say (z*,y*) is a Nash eq. Given u* = C'y* we get an LP.
maximize xlu* — m — o
subject to 2T'B <m and Ay < m
z,y € A" and m,me € [-1,1]
Cy=u"

A vector close to C'y* is sufficient to find an approx. Nash eq.
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Bilinear Program for Nash Eq. [MS'64]

maximize xTC’y — T — Ty
subject to 2'B < m and Ay <m
x,y € A" and m,m € [—1,1]
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Theorem

In a two-player s-sparse game an e-Nash equilibrium can be

computed in time nOlogs



Bilinear Program for Nash Eq. [MS'64]

maximize xTC’y — T — Ty
subject to 2'B < m and Ay <m
x,y € A" and m,m € [—1,1]
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General Result

We can efficiently approximate any sparse bilinear or
quadratic form over the simplex.



Application II: Approximation Algorithm for Densest Subgraph




Normalized Densest Subgraph Problem

Given: Graph G and size parameter k




Normalized Densest Subgraph Problem

Given: Graph G and size parameter k

Objective: Find vertex subset S of size k such that
density(.S) is maximized.




Normalized Densest Subgraph Problem

Given: Graph G and size parameter k
Objective: Find vertex subset S of size k such that
density(.S) is maximized.

density(S) := %&;sms

S| =&




Normalized Densest Subgraph Problem

Graph G and size parameter k

Find vertex subset S of size k such that
density(.S) is maximized.

does i
density(95) := W

Theorem

In a degree d graph, an ¢ additive approximation for the
densest bipartite subgraph problem can be computed in time

- (')(S’ 2 log(d/k) ) )




v’ Application I: Approximating Nash Equilibria

V" Application II: Approximating Dense Subgraphs

General Result

We can efficiently approximate any sparse bilinear or
quadratic form over the simplex.




Extensions

e Convex hull of matrices with entrywise norm and Schatten
p-norm

o Shapley-Folkman Lemma

o Colorful Carathéodory Theorem




Khintchine Inequality

Let r1,79,...,7, be a sequence of i.i.d. random variables
with Pr(r; = £1) = 3

In addition, let uqy,us2,..., Uy, € R be a deterministic se-
quence of vectors. Then, for 2 < p < o

m

m
|5 r) <vp (31
i=1

i=1 .




