

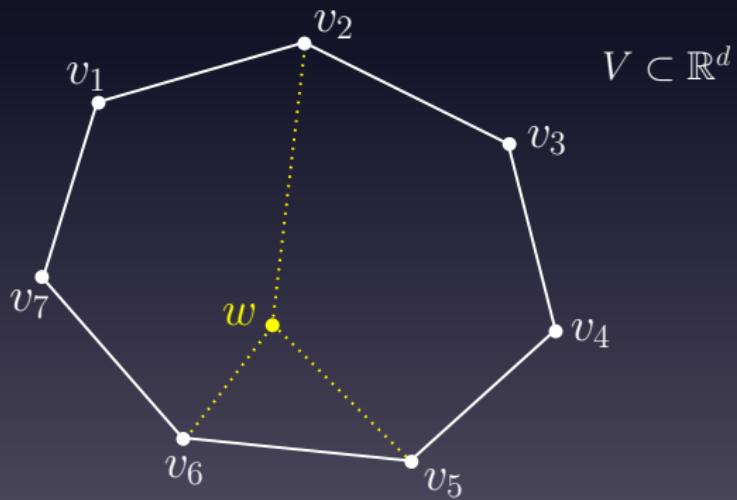
Algorithmic Applications of An Approximate Version of Carathéodory's Theorem

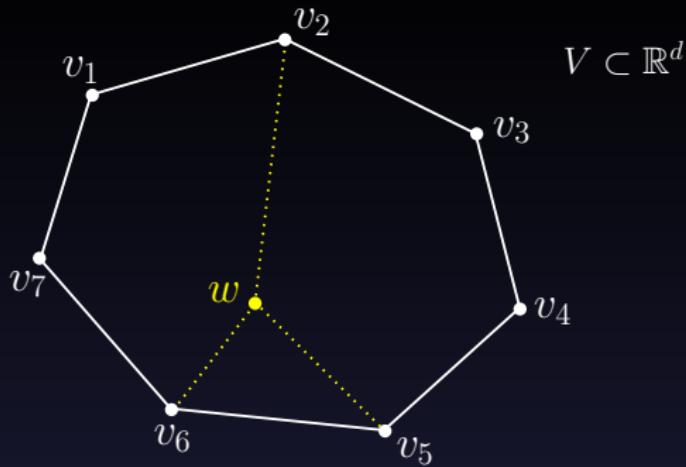
Siddharth Barman

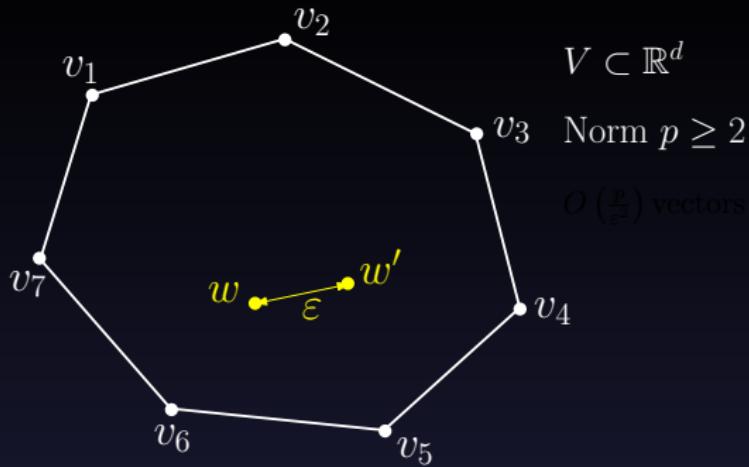
Indian Institute of Science

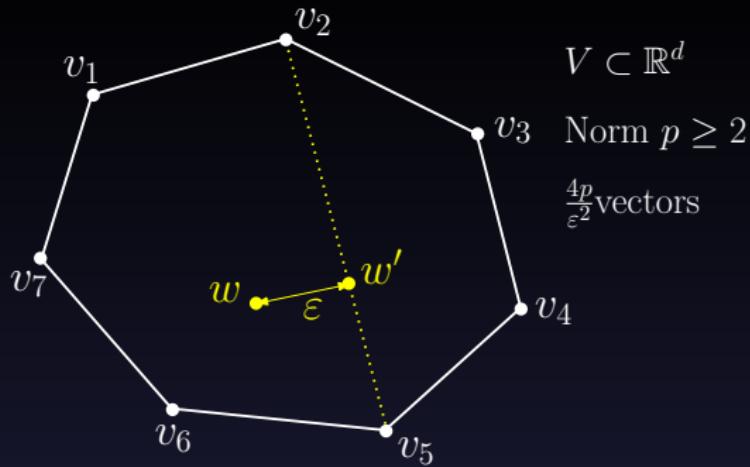
Carathéodory's Theorem

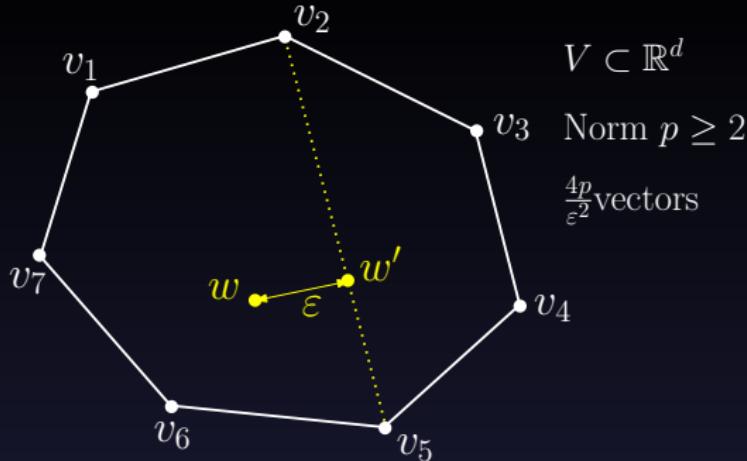
Any vector in the convex hull of a set V in \mathbb{R}^d can be expressed as a convex combination of at most $d + 1$ vectors of V .





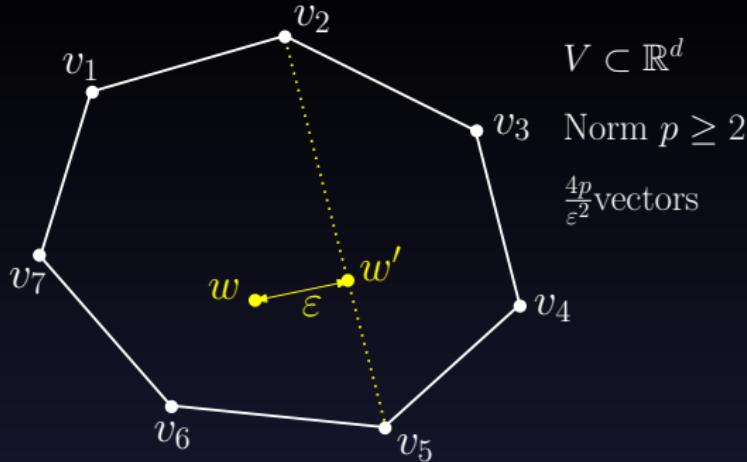






Approx. Carathéodory's Theorem

Given set V in the p -unit ball with norm $p \geq 2$, for every vector in the convex hull of V there exists an ε -close (under p -norm distance) vector that is a convex combination of at most $\frac{4p}{\varepsilon^2}$ vectors of V .



Approx. Carathéodory's Theorem

Given set V in the p -unit ball with norm $p \geq 2$, for every vector in the convex hull of V there exists an ε -close (under p -norm distance) vector that is a convex combination of at most $\frac{4p}{\varepsilon^2}$ vectors of V .

Proof: Instantiating Maurey's Lemma.

Alternatively, via Khintchine inequality.

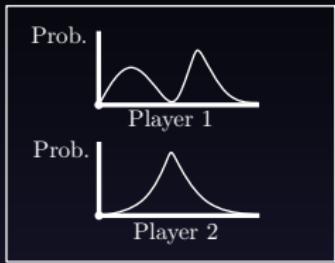
Application I: Approximating Nash Equilibria

Payoffs

$$\begin{pmatrix} 2 & 7 & \cdots & 1 \\ 8 & 2 & \cdots & 8 \\ \vdots & \vdots & \ddots & \vdots \\ 18 & 28 & \cdots & 4 \end{pmatrix}, \begin{pmatrix} 3 & 1 & \cdots & 4 \\ 1 & 5 & \cdots & 9 \\ \vdots & \vdots & \ddots & \vdots \\ 26 & 5 & \cdots & 35 \end{pmatrix}$$

Algorithm

Nash Equilibrium

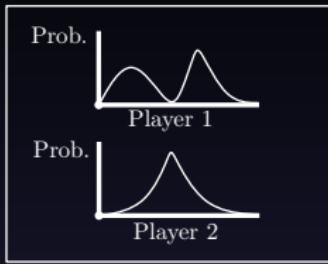


Payoffs

$$\begin{pmatrix} 2 & 7 & \cdots & 1 \\ 8 & 2 & \cdots & 8 \\ \vdots & \vdots & \ddots & \vdots \\ 18 & 28 & \cdots & 4 \end{pmatrix}, \begin{pmatrix} 3 & 1 & \cdots & 4 \\ 1 & 5 & \cdots & 9 \\ \vdots & \vdots & \ddots & \vdots \\ 26 & 5 & \cdots & 35 \end{pmatrix}$$

Algorithm

Nash Equilibrium



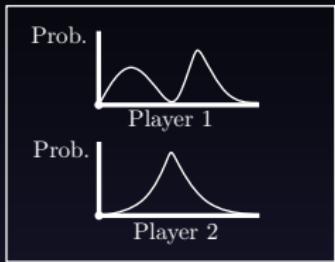
Nash equilibrium in **two-player games** is PPAD-hard [GP06, DGP06, CD06, CDT09].

Payoffs

$$\begin{pmatrix} 2 & 7 & \cdots & 1 \\ 8 & 2 & \cdots & 8 \\ \vdots & \vdots & \ddots & \vdots \\ 18 & 28 & \cdots & 4 \end{pmatrix}, \begin{pmatrix} 3 & 1 & \cdots & 4 \\ 1 & 5 & \cdots & 9 \\ \vdots & \vdots & \ddots & \vdots \\ 26 & 5 & \cdots & 35 \end{pmatrix}$$

Algorithm
Hard even in
two-player
games
[DGP06,
CDT09]

Nash Equilibrium

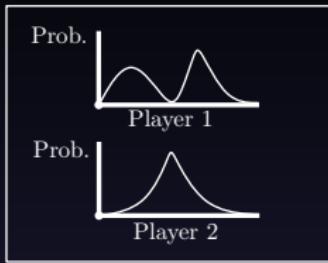


Payoffs

$$\begin{pmatrix} 2 & 7 & \cdots & 1 \\ 8 & 2 & \cdots & 8 \\ \vdots & \vdots & \ddots & \vdots \\ 18 & 28 & \cdots & 4 \end{pmatrix} \times \begin{pmatrix} 3 & 1 & \cdots & 4 \\ 1 & 5 & \cdots & 9 \\ \vdots & \vdots & \ddots & \vdots \\ 26 & 5 & \cdots & 35 \end{pmatrix}$$

Algorithm
Hard even in
two-player
games
[DGP06,
CDT09]

Approx. Nash Eq.



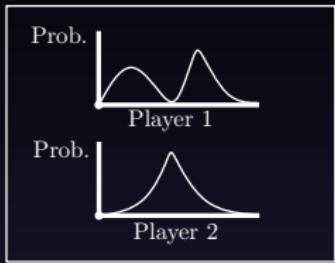
Focus: Two-Player Games

Payoffs

$$\begin{pmatrix} 2 & 7 & \cdots & 1 \\ 8 & 2 & \cdots & 8 \\ \vdots & \vdots & \ddots & \vdots \\ 18 & 28 & \cdots & 4 \end{pmatrix} \times \begin{pmatrix} 3 & 1 & \cdots & 4 \\ 1 & 5 & \cdots & 9 \\ \vdots & \vdots & \ddots & \vdots \\ 26 & 5 & \cdots & 35 \end{pmatrix}$$

Algorithm
Hard even in
two-player
games
[DGP06,
CDT09]

Approx. Nash Eq.



Focus: Two-Player Games

Two-Player Games model settings in which two self-interested entities *simultaneously* select actions to maximize their own payoffs.

Payoff matrices A and B of size $n \times n$

$$\begin{matrix} 1 & 2 & \cdots & n \\ 1 & \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ n & A_{n1} & A_{n2} & \cdots & A_{nn} \end{pmatrix} \end{matrix}$$

$$\begin{matrix} 1 & 2 & \cdots & n \\ 2 & \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1n} \\ B_{21} & B_{22} & \cdots & B_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ n & B_{n1} & B_{n2} & \cdots & B_{nn} \end{pmatrix} \end{matrix}$$

Payoff matrices A and B of size $n \times n$

Probability vectors over $[n]$: x and y

Payoff matrices A and B of size $n \times n$

Probability vectors over $[n]$: x and y

Nash equilibrium (x, y) : No player can benefit by unilateral deviation

$$e_i^T A y \leq x^T A y \quad \forall i \in [n] \quad \text{and}$$

$$x^T B e_j \leq x^T B y \quad \forall j \in [n]$$

Payoff matrices A and B of size $n \times n$

Probability vectors over $[n]$: x and y

Nash equilibrium (x, y) : No player can benefit by unilateral deviation

$$e_i^T A y \leq x^T A y \quad \forall i \in [n] \text{ and}$$

$$x^T B e_j \leq x^T B y \quad \forall j \in [n]$$

Approximate Nash equilibrium (x, y) : No player can benefit more than ε by unilateral deviation

$$e_i^T A y \leq x^T A y + \varepsilon \quad \forall i \in [n] \text{ and}$$

$$x^T B e_j \leq x^T B y + \varepsilon \quad \forall j \in [n]$$

Computation of Eq. in Two-Player Games

Nash Equilibria

General Games: Exp. time
[Lemke & Howson 1964]

Zero-Sum Games: Poly. time
[von Neumann 1928, Dantzig
1951]

Computation of Eq. in Two-Player Games

Nash Equilibria

General Games: Exp. time
[Lemke & Howson 1964]

Zero-Sum Games: Poly. time
[von Neumann 1928, Dantzig
1951]

Approximate Nash Equilibria

General Games: $n^{O(\log n/\varepsilon^2)}$
[Lipton et al. 2003]

Low-Rank Games: $(1/\varepsilon)^{\text{rank}}$
[Alon et al. 2013]

Computation of Eq. in Two-Player Games

Nash Equilibria

General Games: Exp. time
[Lemke & Howson 1964]

Zero-Sum Games: Poly. time
[von Neumann 1928, Dantzig
1951]

Approximate Nash Equilibria

General Games: $n^{O(\log n/\varepsilon^2)}$
[Lipton et al. 2003]

Low-Rank Games: $(1/\varepsilon)^{\text{rank}}$
[Alon et al. 2013]

This Talk: **Sparsity**

Definition (Sparsity of a Game)

The sparsity of a game (A, B) is defined to be the maximum number of non-zero entries in any column of $A + B$.

Definition (Sparsity of a Game)

The sparsity of a game (A, B) is defined to be the maximum number of non-zero entries in any column of $A + B$.

- Sparsity = 0 in zero-sum games
- In general, sparsity is at most n

Definition (Sparsity of a Game)

The sparsity of a game (A, B) is defined to be the maximum number of non-zero entries in any column of $A + B$.

Theorem

In a two-player s -sparse game an ε -Nash equilibrium can be computed in time $n^{O(\log s/\varepsilon^2)}$.

Payoff matrices normalized $A, B \in [-1, 1]^{n \times n}$.

Definition (Sparsity of a Game)

The sparsity of a game (A, B) is defined to be the maximum number of non-zero entries in any column of $A + B$.

Theorem

In a two-player s -sparse game an ε -Nash equilibrium can be computed in time $n^{O(\log s/\varepsilon^2)}$.

Implications:

- When s is a fixed constant we get a polynomial-time algorithm
- For general games ($s \leq n$) the running time matches the best-known upper bound: $n^{O(\log n/\varepsilon^2)}$ [LMM'03].

Nash eq: $e_i^T A y \leq x^T A y \quad \forall i \text{ and}$
 $x^T B e_j \leq x^T B y \quad \forall j$

Bilinear Program for Nash Eq. [MS'64]

$$\begin{aligned} & \text{maximize} && x^T(A + B)y - \pi_1 - \pi_2 \\ & \text{subject to} && x^T B \leq \pi_2 \quad \text{and} \quad A y \leq \pi_1 \\ & && x, y \in \Delta^n \quad \text{and} \quad \pi_1, \pi_2 \in [-1, 1] \end{aligned}$$

Nash eq: $e_i^T A y \leq x^T A y \quad \forall i \text{ and}$
 $x^T B e_j \leq x^T B y \quad \forall j$

Bilinear Program for Nash Eq. [MS'64]

$$\begin{aligned} & \text{maximize} && x^T C y - \pi_1 - \pi_2 \\ & \text{subject to} && x^T B \leq \pi_2 \quad \text{and} \quad A y \leq \pi_1 \\ & && x, y \in \Delta^n \quad \text{and} \quad \pi_1, \pi_2 \in [-1, 1] \end{aligned}$$

Bilinear Program for Nash Eq. [MS'64]

$$\begin{aligned} & \text{maximize} && x^T C y - \pi_1 - \pi_2 \\ & \text{subject to} && x^T B \leq \pi_2 \quad \text{and} \quad A y \leq \pi_1 \\ & && x, y \in \Delta^n \quad \text{and} \quad \pi_1, \pi_2 \in [-1, 1] \end{aligned}$$

Bilinear Program for Nash Eq. [MS'64]

$$\begin{aligned} & \text{maximize} && x^T C y - \pi_1 - \pi_2 \\ & \text{subject to} && x^T B \leq \pi_2 \quad \text{and} \quad A y \leq \pi_1 \\ & && x, y \in \Delta^n \quad \text{and} \quad \pi_1, \pi_2 \in [-1, 1] \end{aligned}$$

Say (x^*, y^*) is a Nash eq. Given $u^* = Cy^*$ we get an LP.

$$\begin{aligned} & \text{maximize} && x^T \mathbf{u}^* - \pi_1 - \pi_2 \\ & \text{subject to} && x^T B \leq \pi_2 \quad \text{and} \quad A y \leq \pi_1 \\ & && x, y \in \Delta^n \quad \text{and} \quad \pi_1, \pi_2 \in [-1, 1] \\ & && Cy = u^* \end{aligned}$$

Bilinear Program for Nash Eq. [MS'64]

$$\begin{aligned} & \text{maximize} && x^T C y - \pi_1 - \pi_2 \\ & \text{subject to} && x^T B \leq \pi_2 \quad \text{and} \quad A y \leq \pi_1 \\ & && x, y \in \Delta^n \quad \text{and} \quad \pi_1, \pi_2 \in [-1, 1] \end{aligned}$$

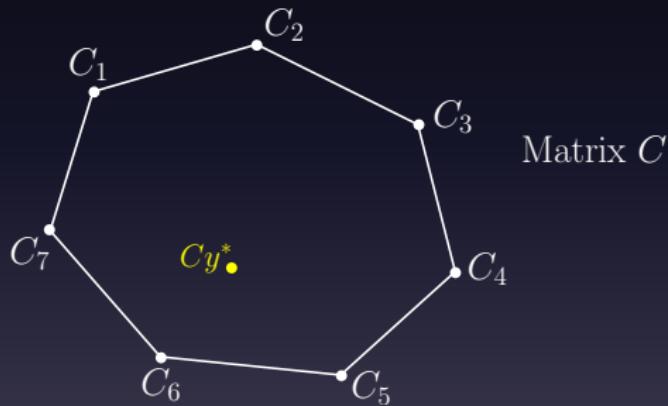
Say (x^*, y^*) is a Nash eq. Given $u^* = Cy^*$ we get an LP.

$$\begin{aligned} & \text{maximize} && x^T u^* - \pi_1 - \pi_2 \\ & \text{subject to} && x^T B \leq \pi_2 \quad \text{and} \quad A y \leq \pi_1 \\ & && x, y \in \Delta^n \quad \text{and} \quad \pi_1, \pi_2 \in [-1, 1] \\ & && Cy = u^* \end{aligned}$$

A vector *close* to Cy^* is sufficient to find an approx. Nash eq.

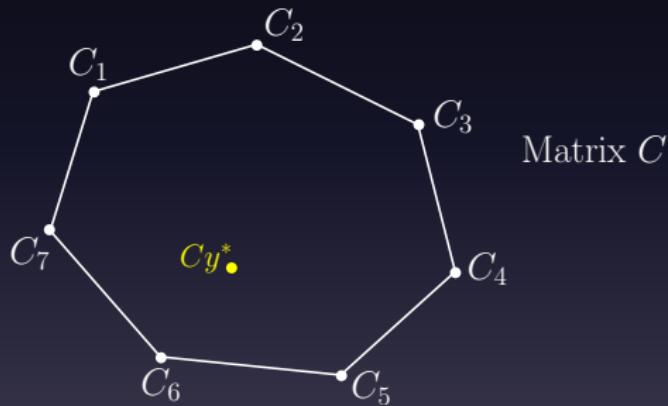
Bilinear Program for Nash Eq. [MS'64]

$$\begin{aligned} & \text{maximize} && x^T C y - \pi_1 - \pi_2 \\ & \text{subject to} && x^T B \leq \pi_2 \quad \text{and} \quad A y \leq \pi_1 \\ & && x, y \in \Delta^n \quad \text{and} \quad \pi_1, \pi_2 \in [-1, 1] \end{aligned}$$



Bilinear Program for Nash Eq. [MS'64]

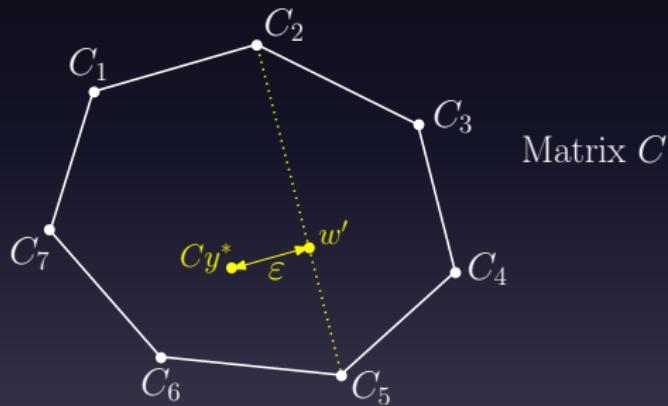
$$\begin{aligned} & \text{maximize} && x^T C y - \pi_1 - \pi_2 \\ & \text{subject to} && x^T B \leq \pi_2 \quad \text{and} \quad A y \leq \pi_1 \\ & && x, y \in \Delta^n \quad \text{and} \quad \pi_1, \pi_2 \in [-1, 1] \end{aligned}$$



Note: If C_i is s -sparse then $\|C_i\|_{\log s} \leq 2$

Bilinear Program for Nash Eq. [MS'64]

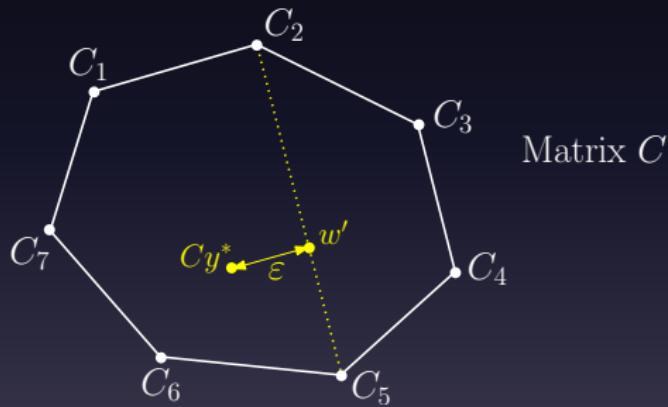
$$\begin{aligned} & \text{maximize} && x^T C y - \pi_1 - \pi_2 \\ & \text{subject to} && x^T B \leq \pi_2 \quad \text{and} \quad A y \leq \pi_1 \\ & && x, y \in \Delta^n \quad \text{and} \quad \pi_1, \pi_2 \in [-1, 1] \end{aligned}$$



Note: If C_i is s -sparse then $\|C_i\|_{\log s} \leq 2$

Bilinear Program for Nash Eq. [MS'64]

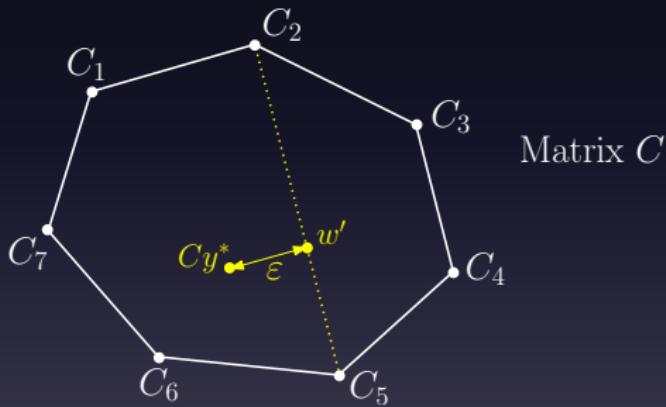
$$\begin{aligned} & \text{maximize} && x^T C y - \pi_1 - \pi_2 \\ & \text{subject to} && x^T B \leq \pi_2 \quad \text{and} \quad A y \leq \pi_1 \\ & && x, y \in \Delta^n \quad \text{and} \quad \pi_1, \pi_2 \in [-1, 1] \end{aligned}$$



Idea: Exhaustively search for w'

Bilinear Program for Nash Eq. [MS'64]

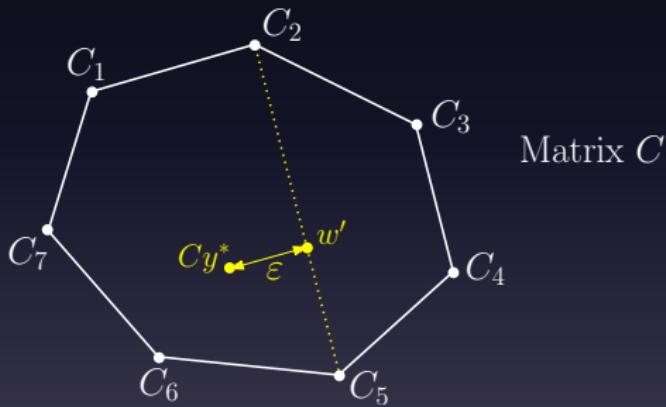
$$\begin{aligned} & \text{maximize} && x^T C y - \pi_1 - \pi_2 \\ & \text{subject to} && x^T B \leq \pi_2 \quad \text{and} \quad A y \leq \pi_1 \\ & && x, y \in \Delta^n \quad \text{and} \quad \pi_1, \pi_2 \in [-1, 1] \end{aligned}$$



Idea: Exhaustively search for w' ,
by enumerating subsets of columns of C .

Bilinear Program for Nash Eq. [MS'64]

$$\begin{aligned} & \text{maximize} && x^T C y - \pi_1 - \pi_2 \\ & \text{subject to} && x^T B \leq \pi_2 \quad \text{and} \quad A y \leq \pi_1 \\ & && x, y \in \Delta^n \quad \text{and} \quad \pi_1, \pi_2 \in [-1, 1] \end{aligned}$$

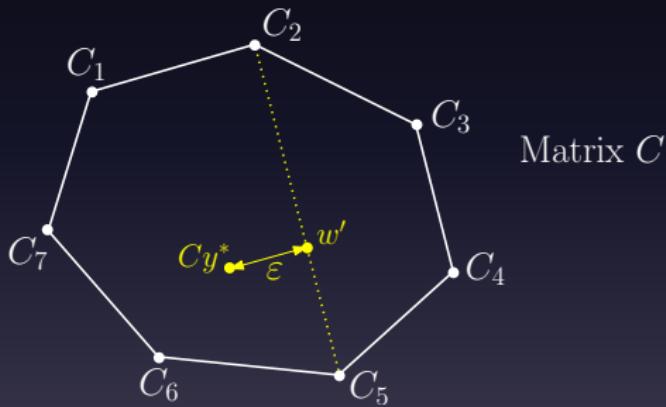


Theorem

In a two-player s -sparse game an ε -Nash equilibrium can be computed in time $n^{O(\log s/\varepsilon^2)}$

Bilinear Program for Nash Eq. [MS'64]

$$\begin{aligned} & \text{maximize} && x^T C y - \pi_1 - \pi_2 \\ & \text{subject to} && x^T B \leq \pi_2 \quad \text{and} \quad A y \leq \pi_1 \\ & && x, y \in \Delta^n \quad \text{and} \quad \pi_1, \pi_2 \in [-1, 1] \end{aligned}$$



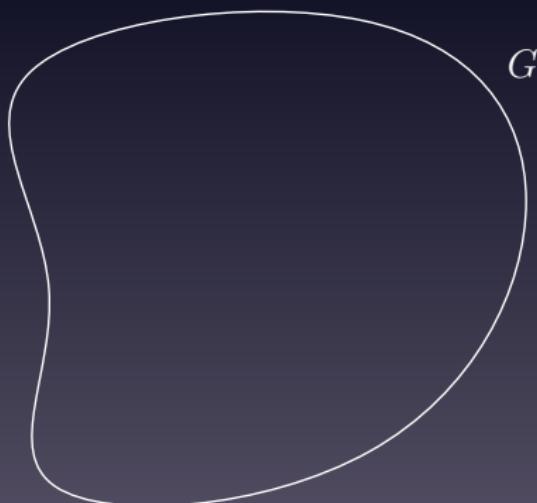
General Result

We can efficiently approximate any sparse bilinear or quadratic form over the simplex.

Application II: Approximation Algorithm for Densest Subgraph

Normalized Densest Subgraph Problem

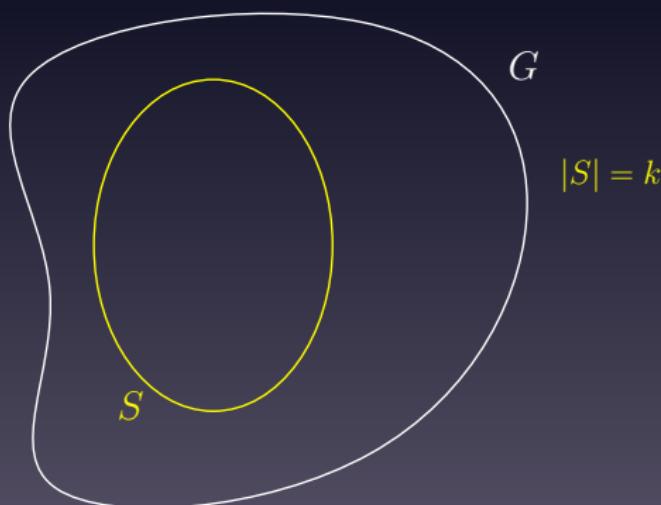
Given: Graph G and size parameter k



Normalized Densest Subgraph Problem

Given: Graph G and size parameter k

Objective: Find vertex subset S of size k such that $\text{density}(S)$ is maximized.

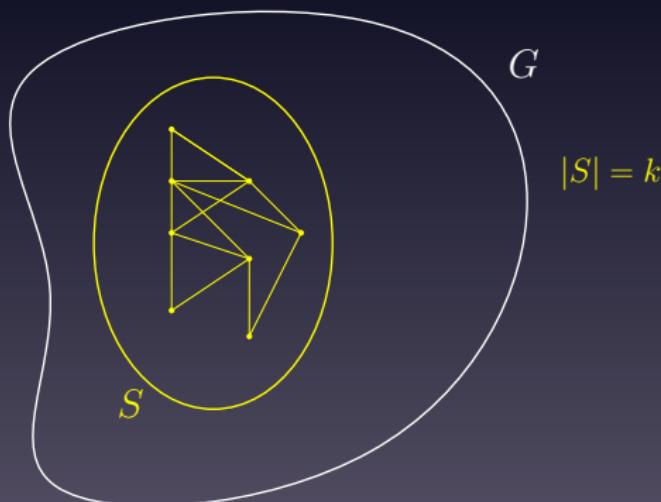


Normalized Densest Subgraph Problem

Given: Graph G and size parameter k

Objective: Find vertex subset S of size k such that $\text{density}(S)$ is maximized.

$$\text{density}(S) := \frac{\# \text{ edges in } S}{k^2}$$



Normalized Densest Subgraph Problem

Given: Graph G and size parameter k

Objective: Find vertex subset S of size k such that $\text{density}(S)$ is maximized.

$$\text{density}(S) := \frac{\# \text{ edges in } S}{k^2}$$

Theorem

In a degree d graph, an ε additive approximation for the densest bipartite subgraph problem can be computed in time

$$n^{O(\varepsilon^{-2} \log(d/k))}.$$

- ✓ Application I: Approximating Nash Equilibria
- ✓ Application II: Approximating Dense Subgraphs

General Result

We can efficiently approximate any sparse bilinear or quadratic form over the simplex.

Extensions

- Convex hull of **matrices** with entrywise norm and Schatten p -norm
- Shapley-Folkman Lemma
- Colorful Carathéodory Theorem

Thank You!

Khintchine Inequality

Let r_1, r_2, \dots, r_m be a sequence of i.i.d. random variables with $\Pr(r_i = \pm 1) = \frac{1}{2}$

In addition, let $u_1, u_2, \dots, u_m \in \mathbb{R}^d$ be a deterministic sequence of vectors. Then, for $2 \leq p < \infty$

$$\mathbb{E} \left\| \sum_{i=1}^m r_i u_i \right\|_p \leq \sqrt{p} \left(\sum_{i=1}^m \|u_i\|_p^2 \right)^{\frac{1}{2}}$$