Derandomizing the Isolation Lemma and Parallel Algorithms

Rohit Gurjar
California Institute of Technology

Based on Joint works with Stephen Fenner, Thomas Thierauf and, Nisheeth Vishnoi

January 16, 2018

Introduction

- Randomness is a powerful tool for designing efficient algorithms.
- Power/Limits of randomization?
- Can we derandomize all efficient algorithms?
- P=BPP?
- Connections to circuit lower bounds.

Derandomization Questions

- Some examples of successful derandomization -
 - Primality testing [AKS02]
 - s-t connectivity [Rei05]
- Interesting open questions:
 - Generating primes, Approximating the Permanent
 - Parallel algorithms for matching
 - Polynomial Identity Testing (PIT)
 (circuit lower bounds)

(circuit lower bounds)
$$(a_a^2 + \mu b_b^2)^2 (a_c^2 + \mu b_d^2)^2 + 4a_a^2 a_b^2 + \mu b_b^2)^2 + 4a_b^2 a_b^2 a_b^2 + 4a_b^2 a_b^2 a_$$

Isolation Lemma [MV87]

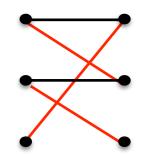
• For $w: E \to \mathbb{Z}$ and $S \subseteq E$, define

$$w(S) = \sum_{e \in S} w(e)$$

- Let $\mathcal{B} \subseteq 2^E$ be a family of subsets of E.
- For each $e \in E$, assign a weight randomly and independently from $\{1, 2, \dots, 2|E|\}$.
- Then there is a unique minimum weight set in \mathcal{B} with probability at least 1/2.

Isolation Lemma: Applications

Perfect Matching in RNC [MVV87]



- Polynomial Identity
 - poly(n) processors polylog(n) time
- Clique to Unique-clique
- Reachability in UL/poly [RA00]
- Disjoint paths $(s_1 \sim t_1, s_2 \sim t_2)$ in RP [BH14]

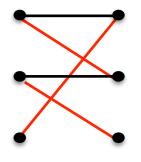
Derandomization

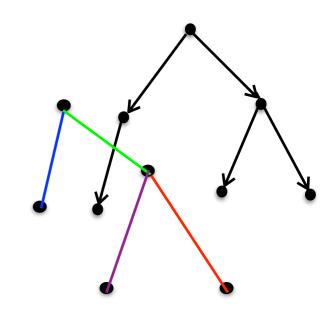
- construct an isolating weight assignment deterministically (poly-bounded weights).
- The family is not given explicitly.
- Known for only very specific families -
 - Families with polynomially many sets
 - perfect matchings in a bipartite planar graph
- We give a geometric approach: derandomize the Isolation Lemma for a large class of families.

```
(quasi-polynomially bounded weights n^{O(\log n)} )
```

Our Results

- Perfect Matchings in a Bipartite Graph
 - Bipartite perfect matching in quasi-NC
 - Max-flow, depth-first search tree, subtree isomorphism
- Linear Matroid Intersection in quasi-NC
 - two edge-disjoint spanning trees
 - r-arborescence
 - rainbow spanning tree





More Applications

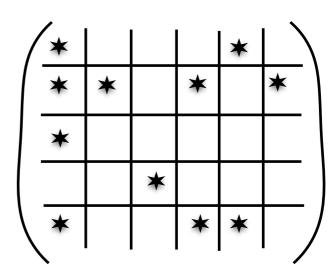
- Polynomial Identity Testing
 - Hitting-set: every nonzero polynomial has a nonzero evaluation for at least one of the points.
 - quasi-polynomial size hitting sets for

$$\det(A_1x_1+\cdots+A_mx_m)$$

where A_1, \ldots, A_m are rank 1 matrices.

- Edmonds' Problem: max rank matrix in $span(A_1, \ldots, A_m)$
- Maximum rank matrix completion $\begin{array}{c|c}
 x_1 & x_2 & x_3 \\
 0 & 0 & \cdots & x_3 \\
 x_1 & -x_2 & 0
 \end{array}$

$$\begin{array}{cccc} 0 & 0 & \cdots & x_3 \\ x_1 & -x_2 & 0 \end{array}$$



Further Generalization

- For $S \subseteq E$, let $x^S \in \{0,1\}^E$ be its indicator vector.
- For a family $\mathcal{B} \subseteq 2^E$, define a polytope

$$P(\mathcal{B}) = \text{conv-hull}\{x^S \mid S \in \mathcal{B}\} \subseteq \mathbb{R}^E$$

 $A_f x = b$

• Sufficient: when every face f of $P(\mathcal{B})$ is defined by a totally unimodular matrix.

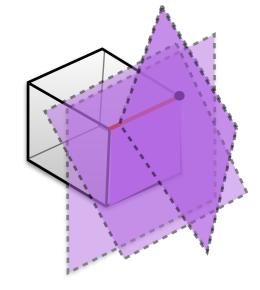
• every sub-determinant in A_f is $0, \pm 1$

Polytopes with TU faces

- Simplest examples: Polytopes with TU constraints
 - Perfect Matching, Independent sets, Vertex covers, Edge covers in bipartite graphs
- Matroid Intersection, Polymatroid Intersection Polytope,
- Directed Cut Cover Polytope,
- Submodular base polytope
- Submodular flow polyhedron,
- Many other polytopes defined via submodular/supermodular set functions [Schrijver '03]

Approach

- For $w \in \mathbb{R}^E$, consider the function $w \cdot x$ over $P(\mathcal{B})$
- For a set $S \subseteq E$, $w \cdot x^S = w(S)$
- Goal: Design $w \in \mathbb{Z}^E$ ($\log n$ bits), s.t. $w \cdot x$ has a unique minimum over $P(\mathcal{B})$
- Construction of w in many rounds.



Construction

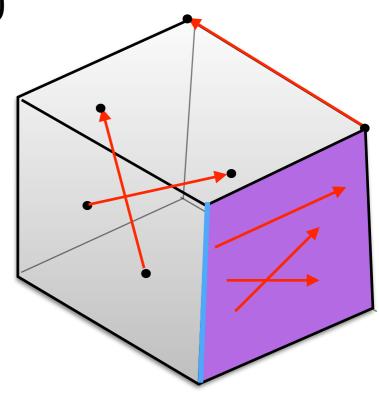
Take two points a and b in the polytope and ensure

$$w \cdot a \neq w \cdot b$$
$$w \cdot (a - b) \neq 0$$

Take many such vectors

$$w \cdot v_1 \neq 0$$
, $w \cdot v_2 \neq 0, \cdots, w \cdot v_k \neq 0$

- Minimizing face is not parallel to v_1, v_2, \ldots, v_k
- Polynomially many vectors at once (with poly-bounded integer coordinates)



Construction

 $w_0: w_0 \cdot v \neq 0 \text{ for all } v \in \mathbb{Z}^E \text{ of length} \leq 2 \text{ (poly(n) many)}$

 F_0 : face minimizing $w_0 \cdot x$

Each integral vector parallel to F_0 has length > 2

 $w_1: w_1 \cdot v \neq 0 \quad \forall v \in$

 F_1 : Each integral vect

 F_0 and of length ≤ 4 has length > 4

 F_{i-1} : Each integral vector i_{i-1} has length $> 2^i$

 $\mathbf{w_i}: w_i \cdot v \neq 0 \quad \forall v \in \mathbb{Z}^E \text{ paramel to } F_{i-1} \text{ and of length} \leq 2^{i+1}$

<n

 $F_{\log n}: \text{Each integral v} \bigcirc \text{Only poly(n) many?}] \text{length} > n$

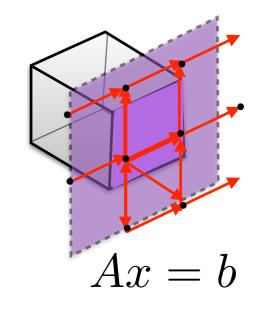
The face $F_{\log n}$ is a unique point

Sufficient Condition

- For a face F, let $L_F = \text{set of integral vectors parallel to } F$
- For each face F, if every vector in L_F has length > r then # vectors in L_F of length $\le 2r$ is poly-bounded.

$$L_F = \{ v \in \mathbb{Z}^E \mid Av = 0 \}$$

• #near-shortest vectors in L_F is poly(n)



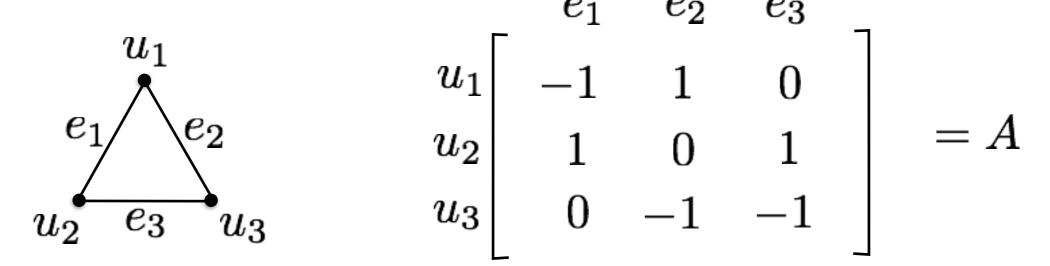
#Near-shortest Vectors

$$L = \{ v \in \mathbb{Z}^n \mid Av = 0 \}$$

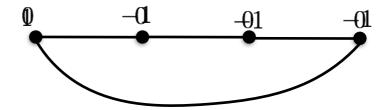
- Theorem: When *A* is totally unimodular then number of near-shortest vectors in the lattice *L* is poly(n).
- We get Isolation for every polytope with TU faces.

A Simple TU Matrix

• For a graph G, consider its signed incidence matrix



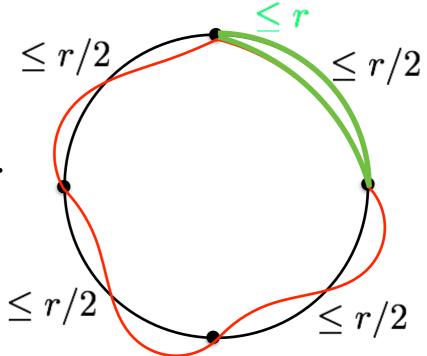
• Solutions for Av = 0?



• Vectors in $\{v \in \mathbb{Z}^E \mid Av = 0\}$ come exactly from cycles (and their integral combinations)

Near-shortest Cycles

- #near-shortest vectors = #near-shortest cycles in G
- [Sub95] #near-shortest cycles in G is poly(n).
- Let the shortest cycle length = r+1.
- To bound #cycles of length $\leq 2r$.
- Claim: A tuple defines a unique cycle.

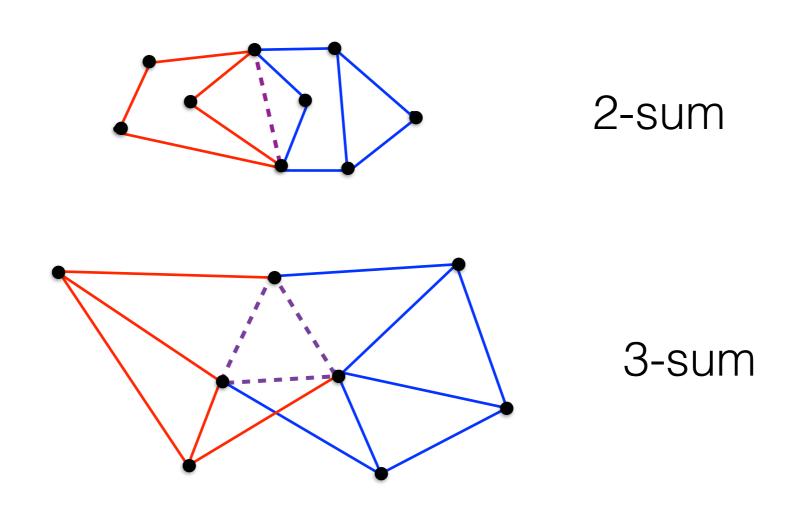


•

Near-shortest Vectors in TU Lattices

- **Graphic Lattice**: #near-shortest cycles in G is poly(n) [Sub95]
- Cographic Lattice: #near-minimum cuts in G is poly(n) [Karger 93]
- **General TU lattices**: we use matroid theory to bound #near-shortest vectors
- Seymour's Decomposition Theorem for regular matroids: Each TU matrix can be built from gluing together three kinds of matrices — graphic, cographic and, R₁₀ (via k-sums)

Seymour's Decomposition



Future Directions

- Generalizing the Isolation approach
 - Which lattices $\{v \in \mathbb{Z}^n \mid Av = 0\}$ have small no. of near-shortest vectors?
 - #shortest vectors vs. #near-shortest vectors
- Quasi-polynomial to polynomial?
 - NC algorithms for matching and linear matroid intersection
 - Reachability in Unambiguous Log-space (UL)
 - Poly-time solutions for some PIT and matrix completion problems.

Future Directions

- Parallel algorithms for more optimization problems
 - Linear Programming with Totally Unimodular constraints
 - Linear Matroid Matching
 - Matroid Intersection (under rank oracle)
- Polynomial Identity Testing
 - $det(A_1x_1 + \cdots + A_mx_m)$ for rank-2 matrices A_1, \ldots, A_m
 - Non-commutative rank of $A_1x_1 + \cdots + A_mx_m$ (black-box)
 - Approximate rank of $A_1x_1 + \cdots + A_mx_m$ (black-box)

Thank You

Backup

