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(“Efficiently decoding Reed-Muller codes from random errors”)
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A linear code, with
Block Length: 2™ :=n
Distance: 2”77 (lightest codeword: x,x,---x,)
Oimensin: (7)+(7) -+ () (2)
Rate: dimension/block length = (Z;)/Zm
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Reed-Muller Codes: RM(m, 1)

Generator Matrix: evaluation matrix of deg < 7 monomials:

M---A----- > M(v) = E(m,7r)

(Every codeword is spanned by the rows.)

Also called the inclusion matrix
(M(v)=1ifand only if “M Cv").
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Decoding RM (m, 1)

Worst Case Errors: Uptod /2 (d =27 is minimal distance).

(algorithm by [Reed54])

List Decoding: max radius with constant # of words

d [Gopalan-Klivans-Zuckerman08,

Bhowmick-Lovett15]
List decoding radius = d.

x
|
|
|
1
]




Two schools of study

Hamming Model a.k.a worst-case errors

» Generally the model of interest for complexity theorists,

» Reed-Muller codes are not the best for these (far from optimal
rate-distance tradeoffs).
Shannon Model a.k.a random errors

» The standard model for coding theorists,

> Recent breakthroughs (e.g. Arikan’s polar codes),




Two schools of study

Hamming Model a.k.a worst-case errors

» Generally the model of interest for complexity theorists,

» Reed-Muller codes are not the best for these (far from optimal
rate-distance tradeoffs).

Shannon Model a.k.a random errors

» The standard model for coding theorists,
> Recent breakthroughs (e.g. Arikan’s polar codes),

» An ongoing research endeavor:
How do Reed-Muller codes perform in the Shannon model?
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Models for random corruptions

(channels)
Binary Erasure Channel — BEC(p)

Each bit independently replaced by ?’ with probability p

Oj?2 |01 |2?2]1|2]0

Binary Symmetric Channel — BSC(p)
Each bit independently flipped with probability p

oj1jo0j1}j1(1,0]0

(almost) equiv: fixed number ¢ & pn of random errors
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Channel Capacity

Question: Given a channel, what is the best rate we can hope for?

Binary Symmetric Channel — BSC(p)
Each bit independently flipped with probability p

If X™ is transmitted to the channel and received as Y, how many bits of
information about X” do we get from Y*?

Intuitively, (1—H(p))n. (as (p”n) ~ ZH(P>-n)




Channel Capacity

Question: Given a channel, what is the best rate we can hope for?

[Shannon48] Maximum rate that enables decoding (w.h.p.) is:

1—p for BEC(p),
1—H(p) for BSC(p).

Codes achieving this bound called capacity achieving.




Category:Capacity-achieving =~ @ ter
codes

From Wikipedia, the free encyclopedia

Pages in category "Capacity-achieving codes"

This category contains only the following page. This list may not reflect
recent changes (learn more).

P

¢ Polar code (coding theory)

Categories: Error detection and correction
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Motivating questions for this talk

How well does Reed-Muller codes perform in the Shannon Model?
In BEC(p)?
In BSC(p)?

Are they as good as polar codes?
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Dual of a code

Any linear space can be specified by a generating basis, or a solution to a
system of constraints.

6+ = {u:(vu)=0foreveryve %)}

Parity Check Matrix
(A basis for 6 stacked as rows)

PCM v = 0 <<= ve?
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Linear codes and erasures

Question: When can we decode from a pattern of erasures?

Observation: A pattern of erasures are decodeable if and only if the
corresponding columns of the Parity Check Matrix are linearly
independent.

In order for a code to be good for BEC(p), the Parity Check
Matrix of the code must be “robustly high-rank”.
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v
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Question: LetR = (!;,). Suppose you pick (0.99)R columns at
random. Avre they linearly independent with high probability?

0 m/2 m
r': f=———=-OPEN——4——OPEN———

o(v/m/logm) O(vm) o(m)

[ASW-15] [KMSU-+KP-16] [ASW-15]




From erasures to errors

Theorem: [ASW] Any pattern correctable from erasures in
RM(m,m —r —1)is correctable from errors in RM (m,m —2r —2).




From erasures to errors

Remark: If 7 falls in the green zone, then RM(m,m — r — 1) can correct & (<my> random erasures.

0 m/2 m
| | |
o(y/m/logm) O(ym) o(m)

Theorem: [ASW] Any pattern correctable from erasures in
RM(m,m —r —1)is correctable from errors in RM (m,m —2r —2).




From erasures to errors

Remark: If 7 falls in the green zone, then RM(m,m — r — 1) can correct & (<my> random erasures.

0 m/2 m
| | |
o(y/m/logm) O(ym) o(m)

Theorem: [ASW] Any pattern correctable from erasures in
RM(m,m —r —1)is correctable from errors in RM (m,m —2r —2).

Corollary #1: (high-rate) Decodeable from (1 — 0(1))(9) random
errors in RM(m,m —2r)if r = o(y/m/logm)

(min distance of RM (m,m —2r)is 2°7) .




From erasures to errors

Remark: If 7 falls in the green zone, then RM(m,m — r — 1) can correct & (<my> random erasures.

0 m/2 m
| | |
o(y/m/logm) O(ym) o(m)

Theorem: [ASW] Any pattern correctable from erasures in
RM(m,m —r —1)is correctable from errors in RM (m,m —2r —2).




From erasures to errors

Remark: If 7 falls in the green zone, then RM(m,m — r — 1) can correct & (:’T) random erasures.

0 m/2 m
| | |
o(y/m/logm) O(ym) o(m)

Theorem: [ASW] Any pattern correctable from erasures in
RM(m,m —r —1)is correctable from errors in RM (m,m —2r —2).

(fr =3 —o(y/m), then m —2r —2 = 0(y/m))

Corollary #2: (low-rate) Decodeable from (% —o0(1))2™ random errors

in RM(m,o(y/m)) (min distance of RM (m, /m) is 2=y |




From erasures to errors

Remark: If 7 falls in the green zone, then RM(m,m — r — 1) can correct & (:’T) random erasures.
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Theorem: [ASW] Any pattern correctable from erasures in
RM(m,m —r —1)is correctable from errors in RM (m,m —2r —2).

(fr =3 —o(y/m), then m —2r —2 = 0(y/m))

Corollary #2: (low-rate) Decodeable from (% —o0(1))2™ random errors

in RM(m,o(y/m)) (min distance of RM (m, /m) is 2=y |

[S-Shpilka-Volk]: Efficient decoding from errors.




What we want to prove

Theorem [S-Shpilka-Volk]

There exists an efficient algorithm with the following guarantee:

Given a corrupted codeword w = v + err of
RM(m,m—2r—1),

if S happens to be a correctable erasure pattern in

RM(m,m—r—1),

then the algorithm correctly decodes v from w.
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Erasure Correctable Patterns

A pattern of erasures is correctable if and only if the corresponding
columns in the parity check matrix are linearly independent.

The parity check matrix for RM (m, m — r — 1) is the generator matrix
for RM(m, 7).

Corollary

A set of patterns S = {u,,...,u,} is erasure-correctable in
RM(m,m—r —1)ifand only if {1417, . 14[} are linearly independent.

u] is just the vector of degree 7 monomials evaluated at #;
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The Decoding Algorithm

Input: Receivedwordw (= v +errg)

Lemma
Assume that S is a pattern of erasures correctable in RM(m,m —r —1).

For any arbitrary u € {0,1}", we have u € S if and only if there exists a
polynomial g with deg(g) < r such that

Z(f-g)(ui) = f(u) forevery f withdeg(f)<r+1.

€8

Can be checked by solving a system of linear equations.
Algorithm is straightforward.
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Then, for each i € [¢], there is a polynomial /; such that:
deg(hy) < .
hi(uj) = lifand only if = 7, and O otherwise.
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Claim 1
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Then, for each i €[], there is a polynomial 4; such that:

deg(h;) <7,

lylv(ulv) =1lifand onlyif : = j, and O otherwise.
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Claim 1

Let uq,..., u, €{0,1}" such that {141’ ,,,,, I/t:} are linearly independent.
Then, for each i €[], there is a polynomial 4; such that:

deg(h;) <7,

171'(”/) =1lifand onlyif : = j, and O otherwise.

Claim 2

Ifud{ug,..., #, }, then there is a polynomial f such that deg(f) < r + 1 and

fu)y=1 , butf(u;)=0foralli=1,..., t.

Therefore, if {141’, . 14:} are linearly independent, then there exists a
polynomial g with deg(g) < r satisfying

Z(fg)(ul) = f(u), for every polynomial / with deg(f) < r +1,

u;€S

if and only if # = u; for some . [
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Decoding Algorithm

Input: Receivedwordw (= v +errg)

Compute E(m,27 4 1)w to get the value of >, _¢ f(#;) for every
polynomial f with deg(f) <2r +1.

For each # € {0,1}", solve for a polynomial g with deg(g) < r
satisfying
Z(fg)(ul) = f(u), forevery f satisfying deg(f) < r + 1.

;€S

If there is a solution, then add # to Corruptions.

Flip the coordinates in Corruptions and interpolate.
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Remark: If 7 falls in the green zone, then RM(m,m — r — 1) can correct & (<my) random erasures.

0 m/2 m
| | |
o(y/m[logm) O(y/m) o(m)

Theorem: [S-Shpilka-Volk] Any pattern that is erasure-correctable in
RM(m,m —r —1)is efficiently error-correctable in RM(m,m —2r —2).

Corollary #1: (high-rate) Efficiently decodeable from (1— 0(1))( ” ) random

<r
errorsin RM(m,m —27r)if r = o(y/ m/logm).

(min distance of RM (m, m —2r)is 2°7)

Corollary #2: (low-rate) Efficiently decodeable from (% —o0(1))2” random
errors in RM(m, 0(y/m)). (min distance of RM (m, y/m) is 27—V
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There are degree r polynomials that has only 2”7~" non-zero evaluations
(like x; -~ x,). Suppose | tell you that / has only 27" what do such
f look like?

[Kaufman-Lovett-Porat]: Such functions morally look like ¢ |-+, - g.

Lets you count how many such functions there are — weight distribution.
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Robustness of evaluation matrix

(&)
- \/ )

{o, 13"

There are ways to pick 277" columns but have rank (”Zt>

For example, a sub-cube: ~ {x---%000...0}

Question: If a large set of columns have very small rank, is it the case that
it morally looks like a sub-cube?

Hopefully this helps us count the number of sets of columns that yield a rank-deficiency.
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Question: LetR = (<mr> Suppose you pick (0.99)R columns at random.
Are they linearly independent with high probability?

ﬁOPEN—O—OPENﬁ
o(y/m/logm) o
[ASWA5] [KMSU+KP-16] [ASW-15]

\end{document}




