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Reed-Muller Codes: RM (m, r )

Message: A degree polynomial f ∈ F2[x1, · · · , xm] of degree at most r .
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Reed-Muller Codes: RM (m, r )

Generator Matrix: evaluation matrix of deg≤ r monomials:

v ∈ Fm
2

M


 := E(m, r )M (v)

(Every codeword is spanned by the rows.)

Also called the inclusion matrix
(M (v) = 1 if and only if “M ⊂ v”).
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Two schools of study

▶ Hamming Model a.k.a worst-case errors

▶ Generally the model of interest for complexity theorists,

▶ Reed-Muller codes are not the best for these (far from optimal
rate-distance tradeoffs).

▶ Shannon Model a.k.a random errors

▶ The standard model for coding theorists,

▶ Recent breakthroughs (e.g. Arıkan’s polar codes),

▶ An ongoing research endeavor:
How do Reed-Muller codes perform in the Shannon model?
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Each bit independently replaced by ‘?’ with probability p

0 0 1 1 0? ? ?

Binary Symmetric Channel — BSC(p)

Each bit independently flipped with probability p

0 0 1 1 01 1 0

(almost) equiv: fixed number t ≈ pn of random errors
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Channel Capacity

Question: Given a channel, what is the best rate we can hope for?

Binary Symmetric Channel — BSC(p)
Each bit independently flipped with probability p

0 0 1 1 00 1 1

∗ ∗ ∗∗

If X n is transmitted to the channel and received as Y n , how many bits of
information about X n do we get from Y n?

Intuitively, (1−H (p))n. (as
� n

pn

�≈ 2H (p)·n)



Channel Capacity

Question: Given a channel, what is the best rate we can hope for?

[Shannon48] Maximum rate that enables decoding (w.h.p.) is:

1− p for BEC(p),
1−H (p) for BSC(p).

Codes achieving this bound called capacity achieving.
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Reed-Muller codes under erasures
Cool Fact
The dual of RM (m, r ) is RM (m, r ′) where r ′ = m− r − 1.

Hence, the Parity Check Matrix of RM (m, r ) is the generator matrix of
RM (m, r ′).

�[m]
≤r ′
�

{0,1}m

v

M

M (v)

Question: Let R=
� m
≤r ′
�
. Suppose you pick (0.99)R columns at

random. Are they linearly independent with high probability?

r ′ :
m/20 m

o(
p

m/ log m)
[ASW-15]

o(m)
[ASW-15]

O(
p

m)
[KMSU+KP-16]
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Remark: If r falls in the green zone, then RM (m, m− r − 1) can correct≈ � m≤r

�
random erasures.
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p
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Theorem: [ASW] Any pattern correctable from erasures in
RM (m, m− r − 1) is correctable from errors in RM (m, m− 2r − 2).
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[S-Shpilka-Volk]: Efficient decoding from errors.



What we want to prove

Theorem [S-Shpilka-Volk]
There exists an efficient algorithm with the following guarantee:

Given a corrupted codeword w= v+ errS of
RM (m, m− 2r − 1),

if S happens to be a correctable erasure pattern in
RM (m, m− r − 1),

then the algorithm correctly decodes v from w.
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Erasure Correctable Patterns

A pattern of erasures is correctable if and only if the corresponding
columns in the parity check matrix are linearly independent.

The parity check matrix for RM (m, m− r − 1) is the generator matrix
for RM (m, r ).

Corollary
A set of patterns S = {u1, . . . , ut } is erasure-correctable in
RM (m, m− r − 1) if and only if

�
u r

1 , . . . , u r
t
	
are linearly independent.

u r
i is just the vector of degree r monomials evaluated at ui
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TheDecoding Algorithm

Input: Received word w (= v+ errS)

Lemma
Assume that S is a pattern of erasures correctable in RM (m, m− r − 1).
For any arbitrary u ∈ {0,1}m , we have u ∈ S if and only if there exists a
polynomial g with deg(g )≤ r such that∑

i∈S

( f · g )(ui ) = f (u) for every f with deg( f )≤ r + 1.

Can be checked by solving a system of linear equations.
Algorithm is straightforward.
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Claim 1
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are linearly independent.

Then, for each i ∈ [t ], there is a polynomial hi such that:
▶ deg(hi )≤ r ,
▶ hi (u j ) = 1 if and only if i = j , and 0 otherwise.
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▶ Input: Received word w (= v+ errS )

▶ Compute E(m, 2r + 1)w to get the value of
∑

ui∈S f (ui ) for every
polynomial f with deg( f )≤ 2r + 1.

▶ For each u ∈ {0,1}m , solve for a polynomial g with deg(g )≤ r
satisfying∑
ui∈S

( f · g )(ui ) = f (u) , for every f satisfying deg( f )≤ r + 1.

If there is a solution, then add u toCorruptions.
▶ Flip the coordinates inCorruptions and interpolate.
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Question: Let R=
� m
≤r

�
. Suppose you pick (0.99)R columns at random.

Are they linearly independent with high probability?
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There are degree r polynomials that has only 2m−r non-zero evaluations
(like x1 · · · xr ). Suppose I tell you that f has only 2m−r+t , what do such
f look like?

[Kaufman-Lovett-Porat]: Such functions morally look like ℓ1 · · ·ℓt · g .
Lets you count how many such functions there are — weight distribution.
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There are ways to pick 2m−t columns but have rank
�m−t
≤r

�
.

For example, a sub-cube: {∗ · · · ∗ 000 . . . 0}

Question: If a large set of columns have very small rank, is it the case that
it morally looks like a sub-cube?
Hopefully this helps us count the number of sets of columns that yield a rank-deficiency.
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