Exact recovery in graphical models

Piyush Srivastava

Tata Institute of Fundamental Research Mumbai

ICTS, January 2018

Philippe Rigollet

• Exact recovery in the Ising blockmodel Q. Berthet, P. Rigollet, and P. S.

Motivation

- Finding communities in populations, based on similar behavior and influence.
- One of the justifications for stochastic blockmodels
- What if we observe the behavior, not the graph?

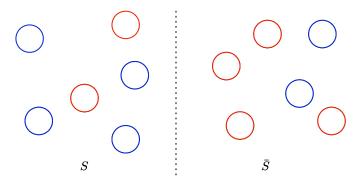
Motivation: Learning the model

- Population of interacting agents are often modeled as graphs
- Setting: The population has an (unknown) community structure
 - ► This is what the graph represents
- But one observes only behavior of the nodes, not the graph!

```
Behaviour \equiv "Sample from the 'model'"
Community structure \equiv "the underlying 'model'"
```

- Common framework in economics, biology (protein-protein interactions) ...
 - ▶ But one needs to be wary of application specific caveats

Motivation: the abstraction



Model with p individuals, $\sigma \in \{-1,1\}^p$ and balanced communities (S,\bar{S}) .

$$\mathbf{P}_{S}(\sigma) = \underbrace{\hspace{1cm}}_{2}$$

Problem: Find S from observations of σ

Prior beliefs

• To solve the problem, one needs to fix a search space of models

• Specifically, there needs to be some reasonably concrete model of the inter-community and intra-community interactions

Prior beliefs

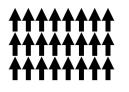
• To solve the problem, one needs to fix a search space of models

 Specifically, there needs to be some reasonably concrete model of the inter-community and intra-community interactions

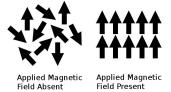
 We choose to model them in a fashion inspired by model inspired from statistical mechanics

Magnets: the Ising model

Some magnetic materials lose their magnetism just above a critical temperature (Curie temperature)



 $T < T_c$

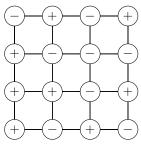


 $T > T_c$

Perhaps the first phase transition to be abstracted: Ising model (1925)

Image credits: User ACGrain at English Wikipedia, ⊚⊕⊙

Ising model



Gibbs distribution

$$\mu(\sigma) \propto \exp\left(\beta \sum_{u \sim v} \sigma_u \sigma_v\right)$$

- ullet Nodes "represent" magnetic domains, eta represents inverse temperature 1/T
- ullet Mean magentization: Average of $\sum_v \sigma_v$ according to μ

$$M(\beta) = \mathop{E}_{\sigma \sim \mu} \left[\sum_{v} \sigma_{v} \right]$$

Ising model: Beyond magnets

The Ising model* makes an appearance in a rather wide variety of areas:

• Individual choice theory, as the logit response

e.g. [McKelvey & Palfrey, Games and Econ. Behaviour, 1995]

• Spread of opinions in social networks

e.g. [Montanari & Saberi, PNAS, 2010]

Computer vision

e.g. [Geman & Graffigne, Proc. of the ICM, 1986]

* and other related models

Prior beliefs

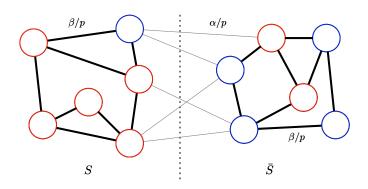
• To solve the problem, one needs to fix a search space of models

• Specifically, there needs to be some reasonably concrete model of the inter-community and intra-community interactions

We choose to model them in a fashion inspired by the Ising model

Recall the earlier cited applications to networks e.g. [Montanari & Saberi, *PNAS*, 2010]

The Ising blockmodel



Model with p individuals, $\sigma \in \{-1,1\}^p$ and balanced communities (S,\bar{S}) .

$$\mathbf{P}_{S}(\sigma) = \frac{1}{Z_{\alpha,\beta}} \exp \left[\frac{\beta}{2p} \sum_{i \sim j} \sigma_{i} \sigma_{j} + \frac{\alpha}{2p} \sum_{i \nsim j} \sigma_{i} \sigma_{j} \right].$$

[Berthet, Rigollet, S., Ann. Stat., to appear]

Problem description

Ising blockmodel:

$$\mathbf{P}_{S}(\sigma) = \frac{1}{Z_{\alpha,\beta}} \exp\left[\frac{\beta}{2p} \sum_{i \sim j} \sigma_{i} \sigma_{j} + \frac{\alpha}{2p} \sum_{i \sim j} \sigma_{i} \sigma_{j}\right], \qquad \sigma \in \{-1, 1\}^{p}$$

- Balance: $|S| = |\bar{S}| = p/2$
- Homophily: $\beta > 0$
- Assortativity: $\beta > \alpha$

Problem description

Ising blockmodel:

$$\mathbf{P}_{S}(\sigma) = \frac{1}{Z_{\alpha,\beta}} \exp\left[\frac{\beta}{2p} \sum_{i \sim j} \sigma_{i} \sigma_{j} + \frac{\alpha}{2p} \sum_{i \nsim j} \sigma_{i} \sigma_{j}\right], \qquad \sigma \in \{-1, 1\}^{p}$$

- Balance: $|S| = |\bar{S}| = p/2$
- Homophily: $\beta > 0$
- Assortativity: $\beta > \alpha$

Observations

$$\sigma^{(1)}, \dots, \sigma^{(n)} \in \{-1,1\}^p$$
 i.i.d. from \mathbf{P}_S

Objective: recover the *balanced* partition (S, \bar{S}) from observations

Problem overview

ullet Structure of the problem visible in the **covariance matrix** Σ

$$\Sigma = \mathbf{E}[\sigma \sigma^{\top}] = \left(\begin{array}{c|c} \Delta & \Omega \\ \hline \Omega & \Delta \end{array}\right) + (1 - \Delta)I_p.$$

Problem overview

ullet Structure of the problem visible in the covariance matrix Σ

$$\Sigma = \mathbf{E}[\sigma \sigma^{\top}] = \left(\begin{array}{c|c} \Delta & \Omega \\ \hline \Omega & \Delta \end{array}\right) + (1 - \Delta)I_p.$$

Main object of study

Scaling of $\Delta - \Omega$ with p?

Problem overview

ullet Structure of the problem visible in the covariance matrix Σ

$$\Sigma = \mathbf{E}[\sigma \sigma^{\top}] = \left(\begin{array}{c|c} \Delta & \Omega \\ \hline \Omega & \Delta \end{array}\right) + (1 - \Delta)I_p.$$

Main object of study

Scaling of $\Delta - \Omega$ with p? Is it clear that $\Delta - \Omega$ is positive?

- ullet Consider patterns S and T that differ on exactly one pair of nodes
 - lackbox Let ${f P}_S$ and ${f P}_T$ be the induced distributions on samples

- ullet Consider patterns S and T that differ on exactly one pair of nodes
 - lackbox Let ${f P}_S$ and ${f P}_T$ be the induced distributions on samples

For an algorithm to be able to distinguish between \mathbf{P}_S and \mathbf{P}_T , they should be "far" in a statistical sense

- ullet Consider patterns S and T that differ on exactly one pair of nodes
 - lackbox Let ${f P}_S$ and ${f P}_T$ be the induced distributions on samples

Lemma

Relative entropy
$$D_{KL}(\mathbf{P}_T || \mathbf{P}_S) = \frac{(\beta - \alpha)(p-2)}{p} \cdot (\Delta - \Omega)$$

Theorem

Sample complexity
$$n \gtrsim \frac{\log p}{\Delta - \Omega}$$

- ullet Consider patterns S and T that differ on exactly one pair of nodes
 - lackbox Let ${f P}_S$ and ${f P}_T$ be the induced distributions on samples

Lemma

Relative entropy
$$D_{KL}(\mathbf{P}_T || \mathbf{P}_S) = \frac{(\beta - \alpha)(p-2)}{p} \cdot (\Delta - \Omega)$$

Theorem

Sample complexity
$$n \gtrsim \frac{\log p}{\Delta - \Omega}$$

ullet Note that the lemma implies that $\Delta-\Omega\geq 0$

Empirical covariance matrix

$$\hat{\Sigma} = \frac{1}{n} \sum_{t=1}^{n} \sigma^{(t)} (\sigma^{(t)})^{\top} = \Sigma \pm O\left(\sqrt{\frac{\log p}{n}}\right) \quad \text{entrywise}$$

Empirical covariance matrix

$$\hat{\Sigma} = \frac{1}{n} \sum_{t=1}^{n} \sigma^{(t)} (\sigma^{(t)})^{\top} = \Sigma \pm O\left(\sqrt{\frac{\log p}{n}}\right) \quad \text{entrywise}$$

Log likelihood

$$\mathcal{L}_{\sigma^{(1)},\sigma^{(2)},\dots,\sigma^{(n)}}(S) := \log \mathbf{P}_S(\sigma^{(1)},\sigma^{(2)},\dots,\sigma^{(n)}) = \operatorname{const} + \frac{n(\beta-\alpha)}{2p} \mathbf{Tr} \left[\hat{\Sigma} v_S v_S^\top \right]$$

$$v_S := (\mathbb{1}_S - \mathbb{1}_{\overline{S}})$$

Empirical covariance matrix

$$\hat{\Sigma} = \frac{1}{n} \sum_{t=1}^{n} \sigma^{(t)}(\sigma^{(t)})^{\top} = \Sigma \pm O\left(\sqrt{\frac{\log p}{n}}\right) \quad \text{entrywise}$$

Log likelihood

$$\mathcal{L}_{\sigma^{(1)},\sigma^{(2)},\ldots,\sigma^{(n)}}(S) := \log \mathbf{P}_{S}(\sigma^{(1)},\sigma^{(2)},\ldots,\sigma^{(n)}) = \operatorname{const} + \frac{n(\beta - \alpha)}{2p} \mathbf{Tr} \left[\hat{\Sigma} v_{S} v_{S}^{\top} \right]$$

$$v_S := (\mathbb{I}_S - \mathbb{I}_{\overline{S}})$$

Maximum likelihood estimator

$$\hat{V} = \operatorname*{argmax}_{V \in \mathcal{P}} \mathbf{Tr}[\hat{\Sigma}V] \,,$$
 where $\mathcal{P} = \{vv^\top: v \in \{-1,1\}^p, v^\top \mathbf{1}_{[p]} = 0\}$

Empirical covariance matrix

$$\hat{\Sigma} = \frac{1}{n} \sum_{t=1}^{n} \sigma^{(t)} (\sigma^{(t)})^{\top} = \Sigma \pm O\left(\sqrt{\frac{\log p}{n}}\right) \quad \text{entrywise}$$

Log likelihood

$$\mathcal{L}_{\sigma^{(1)},\sigma^{(2)},\ldots,\sigma^{(n)}}(S) := \log \mathbf{P}_S(\sigma^{(1)},\sigma^{(2)},\ldots,\sigma^{(n)}) = \operatorname{const} + \frac{n(\beta-\alpha)}{2p} \mathbf{Tr} \left[\hat{\Sigma} v_S v_S^\top \right]$$

$$v_S := (\mathbb{I}_S - \mathbb{I}_{\overline{S}})$$

Maximum likelihood estimator

$$\hat{V} = \operatorname*{argmax}_{V \in \mathcal{P}} \mathbf{Tr}[\hat{\Sigma}V] \,,$$
 where $\mathcal{P} = \{vv^\top : v \in \{-1,1\}^p, v^\top \mathbf{1}_{[p]} = 0\}$

MINIMUM-BISECTION: NP-hard

The role of the covariance matrix: Upper bound SDP relaxation

Maximum likelihood estimator

$$\begin{split} \hat{V} &= \operatorname*{argmax}_{V \in \mathcal{P}} \mathbf{Tr}[\hat{\Sigma}V] \,, \end{split}$$
 where $\mathcal{P} = \{vv^\top : v \in \{-1,1\}^p, v^\top \mathbf{1}_{[p]} = 0\}$

Maximum likelihood estimator

$$\hat{V} = \operatorname*{argmax}_{V \in \mathcal{P}} \mathbf{Tr}[\hat{\Sigma}V] \,,$$
 where $\mathcal{P} = \{vv^\top: v \in \{-1,1\}^p, v^\top \mathbf{1}_{[p]} = 0\}$

• Easier to work with projections on space \perp to 1:

$$\Gamma = P\Sigma P \qquad \hat{\Gamma} = P\hat{\Sigma}P,$$

where

$$P = I - \frac{1}{p} \mathbf{1} \mathbf{1}^{\top}$$

•
$$\mathbf{Tr}[\hat{\Gamma}V] = \mathbf{Tr}[\hat{\Sigma}V]$$
 for $V \in \mathcal{P}$

Maximum likelihood estimator

$$\hat{V} = \operatorname*{argmax}_{V \in \mathcal{P}} \mathbf{Tr}[\hat{\Gamma}V] \,,$$
 where $\mathcal{P} = \{vv^\top : v \in \{-1,1\}^p, v^\top \mathbf{1}_{[p]} = 0\}$

• Easier to work with projections on space \perp to 1:

$$\Gamma = P\Sigma P \qquad \hat{\Gamma} = P\hat{\Sigma}P,$$

where

$$P = I - \frac{1}{p} \mathbf{1} \mathbf{1}^{\top}$$

• $\mathbf{Tr}[\hat{\Gamma}V] = \mathbf{Tr}[\hat{\Sigma}V]$ for $V \in \mathcal{P}$

Maximum likelihood estimator

$$\hat{V} = \operatorname*{argmax}_{V \in \mathcal{P}} \mathbf{Tr}[\hat{\Gamma}V] \,,$$
 where $\mathcal{P} = \{vv^\top : v \in \{-1,1\}^p, v^\top \mathbf{1}_{[p]} = 0\}$

SDP relaxation

$$\hat{V} = \operatorname*{argmax}_{V \in \mathcal{E}} \mathbf{Tr}[\hat{\Gamma}V] \,,$$
 where $\mathcal{E} = \{V : \mathrm{diag}(\mathsf{V}) = \mathbf{1}, V \succeq 0\}$

Maximum likelihood estimator

$$\hat{V} = \operatorname*{argmax}_{V \in \mathcal{P}} \mathbf{Tr}[\hat{\Gamma}V] \,,$$
 where $\mathcal{P} = \{vv^\top: v \in \{-1,1\}^p, v^\top \mathbf{1}_{[p]} = 0\}$

SDP relaxation

$$\begin{split} \hat{V} &= \operatorname*{argmax}_{V \in \mathcal{E}} \mathbf{Tr}[\hat{\Gamma}V] \,, \end{split}$$
 where $\mathcal{E} = \{V : \mathrm{diag}(\mathsf{V}) = \mathbf{1}, V \succeq 0\}$

Lemma: Condition for zero integrality gap (from SDP duality)

$$\hat{V} = v_S v_S^{\top} \iff L_S(\hat{\Gamma}) := \mathbf{diag}(\hat{\Gamma} v_S v_S^{\top}) - \hat{\Gamma} \succeq 0$$

Maximum likelihood estimator

$$\begin{split} \hat{V} &= \operatorname*{argmax}_{V \in \mathcal{P}} \mathbf{Tr}[\hat{\Gamma}V] \,, \end{split}$$
 where $\mathcal{P} = \{vv^\top : v \in \{-1,1\}^p, v^\top \mathbf{1}_{[p]} = 0\}$

SDP relaxation

$$\begin{split} \hat{V} &= \operatorname*{argmax}_{V \in \mathcal{E}} \mathbf{Tr}[\hat{\Gamma}V] \,, \end{split}$$
 where $\mathcal{E} = \{V : \mathrm{diag}(\mathsf{V}) = \mathbf{1}, V \succeq 0\}$

Lemma: Condition for zero integrality gap (from SDP duality)

$$\hat{V} = v_S v_S^\top \iff L_S(\hat{\Gamma}) := \mathbf{diag}(\hat{\Gamma} v_S v_S^\top) - \hat{\Gamma} \succeq 0$$

Satisfied when $\hat{\Gamma} = \Gamma$ ("infinitely many samples")

SDP relaxation: Finitely many samples

Lemma: Condition for zero integrality gap (from SDP duality)

$$\hat{V} = v_S v_S^{\top} \iff L_S(\hat{\Gamma}) := \mathbf{diag}(\hat{\Gamma} v_S v_S^{\top}) - \hat{\Gamma} \succeq 0$$

Satisfied when $\hat{\Gamma} = \Gamma$ ("infinitely many samples")

SDP relaxation: Finitely many samples

Lemma: Condition for zero integrality gap (from SDP duality)

$$\hat{V} = v_S v_S^\top \iff L_S(\hat{\Gamma}) := \mathbf{diag}(\hat{\Gamma} v_S v_S^\top) - \hat{\Gamma} \succeq 0$$

Satisfied when $\hat{\Gamma} = \Gamma$ ("infinitely many samples")

Spectrum of $L_S(\Gamma)$ ("infinite samples")

$$L_S(\Gamma) = \left(1 - \Delta + p \frac{\Delta - \Omega}{2}\right) \frac{\mathbf{1}_{[p]}}{\sqrt{p}} \frac{\mathbf{1}_{[p]}^{\top}}{\sqrt{p}} + p \frac{\Delta - \Omega}{2} \cdot \tilde{I}_{\perp(\mathbf{1}, v_S)} + 0 \cdot v_S v_S^{\top}$$

SDP relaxation: Finitely many samples

Lemma: Condition for zero integrality gap (from SDP duality)

$$\hat{V} = v_S v_S^\top \iff L_S(\hat{\Gamma}) := \mathbf{diag}(\hat{\Gamma} v_S v_S^\top) - \hat{\Gamma} \succeq 0$$

Satisfied when $\hat{\Gamma} = \Gamma$ ("infinitely many samples")

Spectrum of $L_S(\Gamma)$ ("infinite samples")

$$L_S(\Gamma) = \left(1 - \Delta + p \frac{\Delta - \Omega}{2}\right) \frac{\mathbf{1}_{[p]}}{\sqrt{p}} \frac{\mathbf{1}_{[p]}}{\sqrt{p}} + p \frac{\Delta - \Omega}{2} \cdot \tilde{I}_{\perp(\mathbf{1}, v_S)} + 0 \cdot v_S v_S^{\top}$$

Thus, the relaxation is exact in the finite sample case if

$$\|L_S(\Gamma) - L_S(\hat{\Gamma})\|_{\sf op} \le p \, \frac{\Delta - \Omega}{2} \implies L_S(\hat{\Gamma}) \succeq 0 \implies \hat{V} = V_S$$

The role of the correlation matrix: Tight bounds

Upper and lower bounds

- The SDP relaxation is exact if $\|L_S(\Gamma) L_S(\hat{\Gamma})\|_{\mathrm{op}} \leq p(\Delta \Sigma)/2$.
- From matrix concentration, this holds if

$$n \gtrsim \frac{\log p}{\Delta - \Omega}$$

ullet Previously, we saw $n\gtrsim rac{\log p}{\Delta-\Omega}$ is required. Combining, we have:

The role of the correlation matrix: Tight bounds

Upper and lower bounds

- The SDP relaxation is exact if $\|L_S(\Gamma) L_S(\hat{\Gamma})\|_{\mathrm{op}} \leq p(\Delta \Sigma)/2$.
- From matrix concentration, this holds if

$$n \gtrsim \frac{\log p}{\Delta - \Omega}$$

• Previously, we saw $n \gtrsim \frac{\log p}{\Delta - \Omega}$ is required. Combining, we have:

Theorem: Sample complexity and the correlation matrix

The sample complexity for exactly recovering the partition (S,\overline{S}) in the Ising blockmodel satisfies

$$n \simeq \frac{\log p}{\Delta - \Omega}$$

The role of the correlation matrix: Tight bounds

Upper and lower bounds

- The SDP relaxation is exact if $\|L_S(\Gamma) L_S(\hat{\Gamma})\|_{\text{op}} \leq p(\Delta \Sigma)/2$.
- From matrix concentration, this holds if

$$n \gtrsim \frac{\log p}{\Delta - \Omega}$$

• Previously, we saw $n \gtrsim \frac{\log p}{\Delta - \Omega}$ is required. Combining, we have:

Theorem: Sample complexity and the correlation matrix

The sample complexity for exactly recovering the partition (S,\overline{S}) in the Ising blockmodel satisfies

$$n \simeq \frac{\log p}{\Delta - \Omega}$$

Question

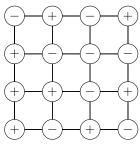
How does $\Delta - \Omega$ behave?

Analyzing $\Delta - \Omega$ Phase diagram of the Ising blockmodel

Ising blockmodel

$$\mathbf{P}_{S}(\sigma) = \frac{1}{Z_{\alpha,\beta}} \exp\left[\frac{\beta}{2p} \sum_{i \sim j} \sigma_{i} \sigma_{j} + \frac{\alpha}{2p} \sum_{i \sim j} \sigma_{i} \sigma_{j}\right],$$
$$\sigma \in \{-1, 1\}^{p}$$

Ising model

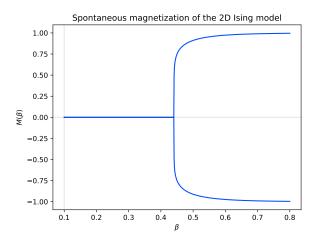


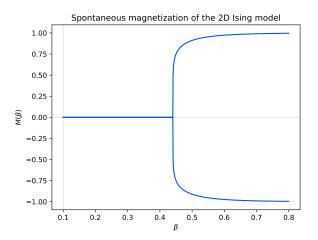
Gibbs distribution

$$\mu(\sigma) \propto \exp\left(\beta \sum_{u \sim v} \sigma_u \sigma_v\right)$$

- ullet Nodes "represent" magnetic domains, eta represents inverse temperature 1/T
- ullet Mean magentization: Average of $\sum_v \sigma_v$ according to μ

$$M(\beta) = \mathop{E}_{\sigma \sim \mu} \left[\sum_{v} \sigma_{v} \right]$$





• Need to take an infinite volume limit to actually see this

Phase transition in the Ising model: finite volume

• But one can see a "phase transition" in some finite settings as well

Phase transition in the Ising model: finite volume

- But one can see a "phase transition" in some finite settings as well
- \bullet As the size of the "lattice" increases, the bimodal nature of μ becomes more pronounced

The Curie-Weiss model ($\alpha = \beta$)

"Mean field" Ising

 \bullet Mean magnetization: $\mu = \frac{\mathbf{1}^{\top} \sigma}{p} \in [-1,1].$

The Curie-Weiss model ($\alpha = \beta$)

"Mean field" Ising

- Mean magnetization: $\mu = \frac{\mathbf{1}^{\top} \sigma}{p} \in [-1, 1].$
- Free energy:

$$\mathbf{P}_{\beta}(\mu) \approx \frac{1}{Z_{\beta}} \exp\left(-\frac{p}{4} \ g_{\beta}^{\mathsf{CW}}(\mu)\right), \quad g_{\beta}^{\mathsf{CW}}(\mu) = -2\beta \mu^2 + 4h\Big(\frac{1+\mu}{2}\Big)$$

The Curie-Weiss model ($\alpha = \beta$)

"Mean field" Ising

• Mean magnetization: $\mu = \frac{\mathbf{1}^{\top} \sigma}{p} \in [-1, 1].$

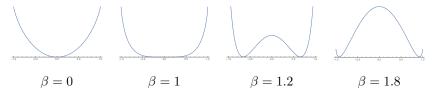
• Free energy:

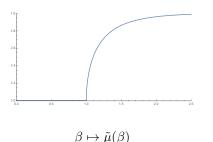
$$\mathbf{P}_{\beta}(\mu) \approx \frac{1}{Z_{\beta}} \exp \left(-\frac{p}{4} \; g_{\beta}^{\mathsf{CW}}(\mu) \right), \quad g_{\beta}^{\mathsf{CW}}(\mu) = -2\beta \mu^2 + 4h \Big(\frac{1+\mu}{2} \Big)$$

 \bullet Ground states: Minimizers $G\subset [-1,1]$ of $g_{\beta}^{\rm CW}(\mu).$

Free energy of the Curie-Weiss model

Ground states $\mathcal{G} = \{\tilde{\mu}(\beta), -\tilde{\mu}(\beta)\}, \tilde{\mu}(\beta) \geq 0$:





$$\Delta \approx \frac{1}{|G|} \sum_{\mathbf{s} \in G} \mathbf{s}^2 = \tilde{\mu}(\beta)^2$$

Free energy of the Ising blockmodel

• Energy is determined by mean magnetizations: $(\mu_S, \mu_{\bar{S}}) = \frac{2}{p} (\mathbf{1}_S^{\top} \sigma, \mathbf{1}_{\bar{S}}^{\top} \sigma)$

$$\mathbf{P}_{S}(\sigma) = \frac{1}{Z_{\alpha,\beta}} \exp\left(-\frac{p}{8}\left(-\beta\mu_{S}^{2} - \beta\mu_{\bar{S}}^{2} - 2\alpha\,\mu_{S}\,\mu_{\bar{S}}\right)\right)$$

• Marginal: number of configurations with magnetizations μ is $\binom{(p/2)}{\frac{1+\mu}{2}(p/2)}$

$$\mathbf{P}_{S}(\mu_{S}, \mu_{\bar{S}}) \approx \frac{1}{Z_{\alpha,\beta}} \exp\left(-\frac{p}{8} g_{\alpha,\beta}(\mu_{S}, \mu_{\bar{S}})\right)$$

where $g_{lpha,eta}$ is the free energy defined by

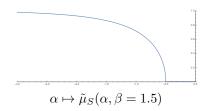
$$g_{\alpha,\beta}(\mu_S,\mu_{\bar{S}}) = -\beta\mu_S^2 - \beta\mu_{\bar{S}}^2 - 2\alpha\,\mu_S\,\mu_{\bar{S}} + 4h\left(\frac{1+\mu_S}{2}\right) + 4h\left(\frac{1+\mu_{\bar{S}}}{2}\right).$$

Ground states for the Ising blockmodel

$$g_{\alpha,\beta}(\mu_S, \mu_{\bar{S}}) = -\beta \mu_S^2 - \beta \mu_{\bar{S}}^2 - 2\alpha \mu_S \mu_{\bar{S}} + 4h\left(\frac{1+\mu_S}{2}\right) + 4h\left(\frac{1+\mu_{\bar{S}}}{2}\right)$$

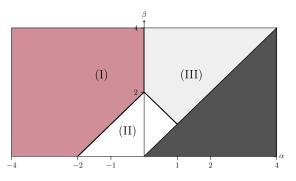
$$\alpha = -6 \qquad \alpha = -2.5 \qquad \alpha = -0.5 \qquad \alpha = 0$$

Ground states on the skew-diagonal $(\tilde{\mu}_S=-\tilde{\mu}_{\bar{S}})$ for $\alpha\leq 0$ and fixed $\beta=1.5<2$



Phase diagram

Full understanding of the position of the ground states for $\beta > 0$, $\alpha < \beta$



Theorem

- Phase diagram for all the parameter regions
 - Region (I): Two ground states $(\tilde{\mu}_S, \tilde{\mu}_{\bar{S}}) = \pm (\tilde{x}, -\tilde{x})$
 - Region (II): One ground state at (0,0)
 - Region (III): Two ground states $(\tilde{\mu}_S, \tilde{\mu}_{\bar{S}}) = \pm (\tilde{x}, \tilde{x})$

Concentration

Quantities of interest as expectations

$$\Delta pprox rac{1}{2} \mathbf{E}[\mu_S^2 + \mu_{ar{S}}^2]$$
 and $\Omega pprox \mathbf{E}[\mu_S \mu_{ar{S}}]$.

Theorem: Gaussian approximation of the Gibbs distribution

For "nice" $\varphi:[-1,1]^2\to\mathbb{R}^+$,

$$\mathbf{E}_{\alpha,\beta}[\varphi(\mu)] \simeq_p \frac{1}{|G|} \sum_{\tilde{s} \in G} \mathbf{E}_{Z \sim \mathcal{N}(0,I)} \left[\varphi(\tilde{s} + 2\sqrt{\frac{2}{p}} H^{-1/2} Z) \right]$$

Concentration

• Quantities of interest as expectations

$$\Delta \approx \frac{1}{2} \mathbf{E}[\mu_S^2 + \mu_{\bar{S}}^2]$$
 and $\Omega \approx \mathbf{E}[\mu_S \mu_{\bar{S}}]$.

Theorem: Gaussian approximation of the Gibbs distribution

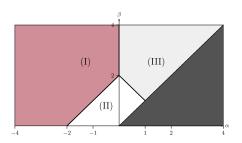
For "nice" $\varphi:[-1,1]^2\to\mathbb{R}^+$,

$$\mathbf{E}_{\alpha,\beta}[\varphi(\mu)] \simeq_p \frac{1}{|G|} \sum_{\tilde{s} \in G} \mathbf{E}_{Z \sim \mathcal{N}(0,I)} \left[\varphi(\tilde{s} + 2\sqrt{\frac{2}{p}} H^{-1/2} Z) \right]$$

• Applied to $\Delta - \Omega$:

$$\Delta - \Omega \simeq_p \left\{ \begin{array}{ll} 2\tilde{x}^2 (= \Theta(1)) & \text{in region (I)} \\ \\ \frac{C_{\alpha,\beta}}{p} & \text{in region (II)} \\ \\ \frac{C'_{\alpha,\beta}}{p} & \text{in region (III)} \end{array} \right.$$

Exact recovery



Recall that

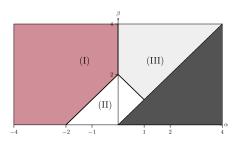
Theorem: Sample complexity and the correlation matrix

The sample complexity for exactly recovering the partition (S,\overline{S}) in the Ising blockmodel satisfies

$$n \simeq \frac{\log p}{\Delta - \Omega}$$

Combining the above estimates, we get...

Exact recovery



Main result: Optimal sample size for exact recovery

 $(\mathrm{I}):\, n^* \approx \log(p) \qquad (\mathrm{II}) \,\, \text{ and } \,\, (\mathrm{III}):\, n^* \approx {\textstyle p \log(p)}\,.$

- Open questions
 - Non-independent samples: Samples drawn from a logit response/Glauber dynamics?
 - ▶ **Algorithmic results:** Can the SDP be circumvented?
 - Generalization to multiple blocks, more complex structures

- Open questions
 - Non-independent samples: Samples drawn from a logit response/Glauber dynamics?
 - ▶ **Algorithmic results:** Can the SDP be circumvented?
 - Generalization to multiple blocks, more complex structures
- Phase transitions and algorithms
 - Statistical/sample complexity

- Open questions
 - Non-independent samples: Samples drawn from a logit response/Glauber dynamics?
 - Algorithmic results: Can the SDP be circumvented?
 - Generalization to multiple blocks, more complex structures
- Phase transitions and algorithms
 - Statistical/sample complexity
 - Algorithmic complexity
- Different views of phase transitions: "Correlation decay" vs. "Analyticity of free energy" vs. "Glauber/heat bath dynamics"
 - ▶ We essentially saw only the first in this talk
 - ► All three seem to have strong connections with algorithms,
 - ...but in weirdly different ways!

- Open questions
 - Non-independent samples: Samples drawn from a logit response/Glauber dynamics?
 - ► Algorithmic results: Can the SDP be circumvented?
 - Generalization to multiple blocks, more complex structures
- Phase transitions and algorithms
 - Statistical/sample complexity
 - Algorithmic complexity
- Different views of phase transitions: "Correlation decay" vs. "Analyticity of free energy" vs. "Glauber/heat bath dynamics"
 - ▶ We essentially saw only the first in this talk
 - ► All three seem to have strong connections with algorithms,
 - ...but in weirdly different ways!
 - A story for another time...

- Open questions
 - Non-independent samples: Samples drawn from a logit response/Glauber dynamics?
 - ► Algorithmic results: Can the SDP be circumvented?
 - Generalization to multiple blocks, more complex structures
- Phase transitions and algorithms
 - Statistical/sample complexity
 - Algorithmic complexity
- Different views of phase transitions: "Correlation decay" vs. "Analyticity of free energy" vs. "Glauber/heat bath dynamics"
 - ▶ We essentially saw only the first in this talk
 - ► All three seem to have strong connections with algorithms,
 - ...but in weirdly different ways!
 - A story for another time...

- Open questions
 - Non-independent samples: Samples drawn from a logit response/Glauber dynamics?
 - ► Algorithmic results: Can the SDP be circumvented?
 - Generalization to multiple blocks, more complex structures
- Phase transitions and algorithms
 - Statistical/sample complexity
 - Algorithmic complexity
- Different views of phase transitions: "Correlation decay" vs. "Analyticity of free energy" vs. "Glauber/heat bath dynamics"
 - ▶ We essentially saw only the first in this talk
 - ► All three seem to have strong connections with algorithms,
 - ...but in weirdly different ways!
 - A story for another time...

Stochastic blockmodels

ullet one observation of random graph on p vertices

$$\mathbf{P}(i \leftrightarrow j) = \begin{cases} b & \text{for all } i \sim j \\ a & \text{for all } i \nsim j \end{cases}$$

• Exact recovery using SDP iff

$$a=\mathsf{a}\frac{\log p}{p}, b=\mathsf{b}\frac{\log p}{p}$$

and

$$(\mathsf{a} + \mathsf{b})/2 > 1 + \sqrt{\mathsf{a}\mathsf{b}}$$

Wigner matrices

Graphical models / MRF

ullet n observations $\sigma^{(1)},\ldots,\sigma^{(n)}$ i.i.d.

$$\mathbf{P}(\sigma) \propto \exp\left[\frac{\beta}{2p} \sum_{i,j} J_{ij} \sigma_i \sigma_j\right]$$

- Goal estimate sparse $J = \{J_{ij}\}_{ij}$ (max degree d)
- Sample complexity $n \gg 2^d \log p$

Wishart matrices

Stochastic blockmodels

ullet one observation of random graph on p vertices

$$\mathbf{P}(i \leftrightarrow j) = \begin{cases} b & \text{for all } i \sim j \\ a & \text{for all } i \nsim j \end{cases}$$

• Exact recovery using SDP iff

$$a = \mathsf{a}\frac{\log p}{p}, b = \mathsf{b}\frac{\log p}{p}$$

and

$$(a+b)/2 > 1 + \sqrt{ab}$$
 Abbé, Bandeira, Hall '14 Hajek, Wu '16

Wigner matrices

Graphical models / MRF

 $lackbox{ } n ext{ observations } \sigma^{(1)}, \ldots, \sigma^{(n)} ext{ i.i.d.}$

$$\mathbf{P}(\sigma) \propto \exp\left[\frac{\beta}{2p} \sum_{i,j} J_{ij} \sigma_i \sigma_j\right]$$

- Goal estimate sparse $J = \{J_{ij}\}_{ij}$ (max degree d)
- Sample complexity $n \gg 2^d \log p$

Chow-Liu '68 Bresler, Mossel, Sly '08 Santhanam, Wainwright '12 Bresler '15 Vuffray, Misra, Lokhov, Chertkov '16

Wishart matrices