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Overview

 Introduction to algorithmic problems in invariant theory.

 Non-convex optimization problems but geodesically
convex.

 Connections to several areas of computer science, 
mathematics and physics.

Geometric complexity theory – asymptotic 
vanishing of Kronecker coefficients.

Quantum information theory– one-body 
quantum marginal problem.

Functional analysis – Brascamp-Lieb
inequalities.

Optimization– Geodesic convexity. Captures 
general linear programming.

Complexity theory and derandomization –
Special cases of polynomial identity 

testing.



Motivating puzzle

 Given two polygons in the plane, cut 1 into a finite number 
of pieces and rearrange to get 2.

 Possible iff areas equal.

 Area is an invariant and the only invariant.

?

1 2



Invariant theory

 Started with [Cayley 1846]. Developed later by Hilbert, Mumford
and others.

 Linear action of a group 𝐺 on a vector space 𝑉.

Example 1
• 𝐺 = 𝑆𝑛 acts on 𝑉 = 𝐶𝑛 by permuting coordinates. 

𝜎 ⋅ 𝑥1, … , 𝑥𝑛 → 𝑥𝜎(1), … , 𝑥𝜎(𝑛) .

• Symmetric polynomials are invariant under the group action. 
• Generated by the 𝑛 elementary symmetric polynomials.

Example 2
• 𝐺 = 𝑆𝐿𝑛 𝐶 × 𝑆𝐿𝑛(𝐶) acts on 𝑉 = 𝑀𝑛(𝐶) by left-right multiplication. 

𝐴, 𝐵 ⋅ 𝑋 = 𝐴𝑋𝐵.
• Det(𝑋) is invariant.
• Every polynomial invariant of the form 𝑞 𝑋 = 𝑝(Det(𝑋)).



Invariant theory

 Underlying field complex numbers 𝐶.

 Groups 𝐺: finite, 𝐺𝐿𝑛(𝐶), 𝑆𝐿𝑛(𝐶), direct products of these etc.

Objects of study
• Invariant polynomials: Polynomial functions on 𝑉 invariant under action of 

𝐺. 𝑝 s.t. 𝑝 𝑔 ⋅ 𝑣 = 𝑝(𝑣) for all 𝑔 ∈ 𝐺, 𝑣 ∈ 𝑉.
• Orbits: Orbit of vector 𝑣 = 𝑔 ⋅ 𝑣 ∶ 𝑔 ∈ 𝐺 . 
• Orbit-closures: Orbits may not be closed. Take their closures.

𝐺 acts (linearly) on 𝑉
• id⋅ 𝑣 = 𝑣 for all 𝑣 ∈ 𝑉.
• 𝑔1𝑔2 ⋅ 𝑣 = 𝑔1 ⋅ 𝑔2 ⋅ 𝑣 for all 𝑔1. 𝑔2 ∈ 𝐺, 𝑣 ∈ 𝑉.
• 𝑔 ⋅ 𝑐𝑣 = 𝑐𝑔 ⋅ 𝑣 for all 𝑐 ∈ 𝐶, 𝑣 ∈ 𝑉.
• 𝑔 ⋅ 𝑣1 + 𝑣2 = 𝑔 ⋅ 𝑣1 + 𝑔 ⋅ 𝑣2 for all 𝑔 ∈ 𝐺, 𝑣1, 𝑣2 ∈ 𝑉.



Orbits and orbit-closures

 Capture several interesting problems in theoretical computer 
science.

 Graph isomorphism: Whether orbits of two graphs the same. 
Group action: permuting the vertices.

 Arithmetic circuits: The 𝑉𝑃 vs 𝑉𝑁𝑃 question. Whether 
permanent lies in the orbit-closure of the determinant. Group 
action: Action of 𝐺𝐿𝑛2(𝐶) on polynomials induced by action on 

variables. 

 Tensor rank: Whether a tensor lies in the orbit-closure of the 
diagonal unit tensor. Group action: Natural action of 𝐺𝐿𝑛 𝐶 ×
𝐺𝐿𝑛 𝐶 × 𝐺𝐿𝑛 𝐶 .



Computational invariant theory

• Highly algorithmic field.
• Algorithms sought and well developed.
• Algorithms still remain exponential time or even doubly 

exponential time in some cases.
• Bottleneck: Gr ሷ𝑜bner basis computation or more generally 

algebraic methods.



Null cone

 Fix an action of 𝐺 on 𝑉.

 Null cone: Vectors 𝑣 s.t. 0 lies in the orbit-closure of 𝑣.

 𝑣: 0 ∈ 𝐺 ⋅ 𝑣 .

 Sequence of group elements 𝑔1, … , 𝑔𝑘 , … s.t. lim
𝑘→∞

𝑔𝑘 ⋅ 𝑣 = 0.

 Problem: Given 𝑣 ∈ 𝑉,  decide if it is in the null cone.

 Will capture many interesting questions.

 [Hilbert 1893; Mumford 1965]: 𝑣 in null cone iff 𝑝 𝑣 = 0 for all 
homogeneous invariant polynomials 𝑝.

 One direction clear (polynomials are continuous).

 Other direction uses Nullstellansatz and some algebraic 
geometry.



Example 1

• 𝐺 = 𝑆𝐿𝑛 𝐶 × 𝑆𝐿𝑛(𝐶) acts on 𝑉 = 𝑀𝑛(𝐶) by left-right 
multiplication. 

𝐴, 𝐵 ⋅ 𝑋 = 𝐴𝑋𝐵.

• Det(𝑋) is invariant.

• Every polynomial invariant of the form 𝑞 𝑋 = 𝑝(Det(𝑋)).

• Null cone: Singular matrices.



Example 2

• 𝑆𝑇𝑛: group of 𝑛 × 𝑛 diagonal matrices with determinant 1.

• 𝐺 = 𝑆𝑇𝑛 × 𝑆𝑇𝑛 acts on 𝑉 = 𝑀𝑛(𝐶) by left-right multiplication. 

𝐴, 𝐵 ⋅ 𝑋 = 𝐴𝑋𝐵.

• Det(𝑋) is invariant.

• Are there other invariants?

• 𝑋1,1 ⋅ 𝑋2,2⋯𝑋𝑛,𝑛 is invariant.

• So is 𝑋1,𝜎(1) ⋅ 𝑋2,𝜎(2)⋯𝑋𝑛,𝜎(𝑛) for any permutation 𝜎. And these are all.

• Null cone: perfect matching.

• 𝐴𝐻 is in null cone iff 𝐻 has no perfect matching.

𝐻

1 0 1

1 0 0

1 1 1

𝐴𝐻



Example 3: Linear programming

 𝑇𝑛: group of 𝑛 × 𝑛 diagonal matrices.

 𝐺 = 𝑇𝑛 acts on 𝑉 = 𝐶𝑚. 𝒕 ∈ 𝑇𝑛, 𝒕 = diag(𝑡1, … , 𝑡𝑛).

 Fix 𝑚 vectors 𝑤(1), … , 𝑤 𝑚 ∈ 𝐶𝑛.

𝒕 ⋅ 𝑒𝑗 = ς𝑖=1
𝑛 𝑡

𝑖

𝑤𝑖
𝑗

𝑒𝑗.

 𝑣 ∈ 𝑉. Define supp 𝑣 = 𝑗 ∈ 𝑚 : 𝑣𝑗 ≠ 0 .

 Theorem: 𝑣 not in null cone iff convex hull of 𝑤
𝑗
∶ 𝑗 ∈ 𝑠𝑢𝑝𝑝(𝑣)

contains 0.

 Captures linear programming.

 So the null cone (membership) problem is a non-commutative
analogue of linear programming.



Symbolic matrices

 Symbolic matrices: 𝐿 = σ𝑖=1
𝑚 𝑥𝑖𝐴𝑖 .

 𝐴1, … , 𝐴𝑚 are 𝑛 × 𝑛 matrices over 𝐶.

 𝑥1, … , 𝑥𝑚 are formal variables (commuting or non-
commuting).

 𝐿 has entries linear polynomials in 𝑥1, … , 𝑥𝑚.

 Question: Is 𝐿 singular?

 Dual life depending on whether the variables commute or 
not.



Commuting variables

 𝐿 = σ𝑖=1
𝑚 𝑥𝑖𝐴𝑖 .

 SING: Is 𝐿 singular over 𝐶 𝑥1, … , 𝑥𝑚 ? [Edmonds’ problem 67].

 𝐶 𝑥1, … , 𝑥𝑚 - field of rational functions.

 Proposition: 𝐿 SING if σ𝑖 𝛼𝑖𝐴𝑖 singular for all 𝛼1, … , 𝛼𝑚 ∈ 𝐶.

(all matrices in the subspace spanned by 𝐴1, … , 𝐴𝑚 singular).

 Efficient randomized algorithm: plug in random values for 
𝑥1, … , 𝑥𝑚 [Lovász 79].

 Efficient deterministic algorithm – major open problem.

 Captures polynomial identity testing (PIT) [Valiant 79].

 Implies circuit lower bounds [Kabanets, Impagliazzo 04].



Non-commuting variables

 𝐿 = σ𝑖=1
𝑚 𝑥𝑖𝐴𝑖 .

 NC-SING: Is 𝐿 singular for non-commuting 𝑥1, … , 𝑥𝑚?

 Various ways to define. Extensive work by Amitsur, Cohn and 
others.

 𝐿 NC-SING if for all 𝑑, σ𝑖𝐵𝑖 ⊗𝐴𝑖 singular for all 𝐵1, … , 𝐵𝑚 ∈
𝑀𝑑(𝐶).

 Plug in matrices for 𝑥𝑖 ’s. Take “matrix linear combinations” 
instead of linear combinations.



Example

 SING and NC-SING can differ.

 𝐿 =
0 𝑥 𝑦
−𝑥 0 𝑧
−𝑦 −𝑧 0

.

 Skew symmetric. When 𝑥, 𝑦, 𝑧 commute, 𝐿 is 
singular.

 Homework: When 𝑥, 𝑦, 𝑧 non-commuting, then 𝐿 is 
not singular.



Example 4: Noncommutative singularity

• 𝐺 = 𝑆𝐿𝑛 𝐶 × 𝑆𝐿𝑛(𝐶) acts on 𝑉 = 𝑀𝑛(𝐶)
⊕𝑚 by simultaneous left-

right multiplication. 

𝐵, 𝐶 ⋅ (𝐴1, … , 𝐴𝑚) = (𝐵𝐴1𝐶,… , 𝐵𝐴𝑚𝐶).

 Theorem [Derksen, Weyman 00, …]: (𝐴1, … , 𝐴𝑚) in null cone iff
𝐿 = σ𝑖 𝑥𝑖 𝐴𝑖 NC-SING.

 Theorem [G, Gurvits, Oliveira, Wigderson 16]: Deterministic 
polynomial time algorithm for NC-SING.

 Brascamp-Lieb inequalities: Generalize Cauchy-Schwarz, 
H ሷ𝑜lder’s, Loomis-Whitney, Shearer’s inequalities.

 Feasibility can be phrased as a null cone problem.

 Theorem [G, Gurvits, Oliveira, Wigderson 16b]: Polynomial time 
algorithm to test feasibility and compute optimal constants.



Null cone and optimization

 Recap: Null cone membership unifies many problems in 
computer science and mathematics.

 𝐺 acting on 𝑉.

 𝑣 ∈ 𝑉 in null cone if there is sequence of group elements 
𝑔1, … , 𝑔𝑘 , … s.t. lim

𝑘→∞
𝑔𝑘 ⋅ 𝑣 = 0.

 Equivalently, 𝑁𝐶 𝑣 = inf
𝑔∈𝐺

𝑔 ⋅ 𝑣 2
2 = 0.

 𝑓𝑣 𝑔 = 𝑔 ⋅ 𝑣 2
2. Non-convex but has a lot of structure.



Example 1

• 𝑆𝑇𝑛: group of 𝑛 × 𝑛 diagonal matrices with determinant 1.

• 𝐺 = 𝑆𝑇𝑛 × 𝑆𝑇𝑛 acts on 𝑉 = 𝑀𝑛(𝐶) by left-right 
multiplication. 

𝐵, 𝐶 ⋅ 𝐴 = 𝐵𝐴𝐶.

 𝑁𝐶 𝐴 : infς𝑖 𝑏𝑖=ς𝑗 𝑐𝑗=1
σ𝑖,𝑗|𝐴𝑖,𝑗 |

2 𝑏𝑖
2|𝑐𝑗|

2.

 inf𝑥,𝑦>0,ς𝑖 𝑥𝑖=ς𝑗 𝑦𝑗=1
σ𝑖,𝑗|𝐴𝑖,𝑗 |

2𝑥𝑖𝑦𝑗.

 Non-convex but a simple transformation makes it convex.

 𝑥𝑖 = exp(𝜆𝑖) and 𝑦𝑗 = exp(𝜇𝑗) makes it convex.



Example 2

• 𝐺 = 𝑆𝐿𝑛 𝐶 × 𝑆𝐿𝑛(𝐶) acts on 𝑉 = 𝑀𝑛(𝐶)
⊕𝑚 by 

simultaneous left-right multiplication. 

𝐵, 𝐶 ⋅ (𝐴1, … , 𝐴𝑚) = (𝐵𝐴1𝐶,… , 𝐵𝐴𝑚𝐶).

 𝑁𝐶(𝐴1, … , 𝐴𝑚): inf𝑋,𝑌≻0,Det 𝑋 =Det 𝑌 =1 tr σ𝑖𝐴𝑖𝑋𝐴𝑖
† 𝑌 .

 Non-convex. No change of variables that makes it convex.

 𝑋 = exp 𝑃 , 𝑌 = exp(𝑄) doesn’t work.

 Non-commutativity of matrix multiplication. exp 𝑀 + 𝑁 ≠
exp 𝑀 exp(𝑁).



Alternating minimization for NC-SING

 Recall: 𝐴1, … , 𝐴𝑚 NC-SING if

Det σ𝑖=1
𝑚 𝐵𝑖 ⊗𝐴𝑖 = 0,

for all 𝑑, for all 𝐵𝑖 (𝑑 × 𝑑 matrices).

 Also iff 𝑁𝐶 𝐴1, … , 𝐴𝑚 > 0. 

 [KKT condition]: 𝑁𝐶 𝐴1, … , 𝐴𝑚 > 0 iff can be transformed
to satisfy the following two conditions:

σ𝑖 𝐴𝑖𝐴𝑖
𝑇 ≈ 𝐼 and σ𝑖 𝐴𝑖

𝑇𝐴𝑖 ≈ 𝐼.

 Allowed: Simultaneous left-right multiplication by 
matrices.

 𝐴1, … , 𝐴𝑚 → 𝐵𝐴1𝐶,… , 𝐵𝐴𝑚𝐶.



Alternating minimization for NC-SING

 Goal: Transform 𝐴1, … , 𝐴𝑚 to satisfy

σ𝑖 𝐴𝑖𝐴𝑖
𝑇 ≈ 𝐼 and σ𝑖𝐴𝑖

𝑇𝐴𝑖 ≈ 𝐼.

 Left normalize: 𝐴1, … , 𝐴𝑚 → σ𝑖𝐴𝑖𝐴𝑖
𝑇 −1/2

𝐴1, … , σ𝑖𝐴𝑖𝐴𝑖
𝑇 −1/2

𝐴𝑚.

 Ensures σ𝑖𝐴𝑖𝐴𝑖
𝑇 = 𝐼.

 Right normalize: 𝐴1, … , 𝐴𝑚 → 𝐴1 σ𝑖𝐴𝑖
𝑇𝐴𝑖

−1/2
, … , 𝐴𝑚 σ𝑖𝐴𝑖

𝑇𝐴𝑖
−1/2

.

 Ensures σ𝑖𝐴𝑖
𝑇𝐴𝑖 = 𝐼.

Algorithm [G, Gurvits, Oliveira, Wigderson 16]
• Repeat for 𝑛2 steps:
1. Left normalize;
2. Right normalize;

• Test if σ𝑖 𝐴𝑖𝐴𝑖
𝑇 ≈1/𝑛 𝐼 and σ𝑖 𝐴𝑖

𝑇𝐴𝑖 ≈1/𝑛 𝐼.

Yes: not NC-SING.
No: NC-SING.



Analysis

 If 𝐴1, … , 𝐴𝑚 NC-SING, then know won’t converge. No way to transform and 
satisfy both σ𝑖 𝐴𝑖𝐴𝑖

𝑇 ≈ 𝐼, σ𝑖 𝐴𝑖
𝑇𝐴𝑖 ≈ 𝐼 (∗).

 Goal: If 𝐴1, … , 𝐴𝑚 not NC-SING, then converge in 𝑛2 iterations.

 Need a potential function. 

 Know: There exists 𝑑 and 𝑑 × 𝑑 𝐵1, … , 𝐵𝑚 s.t. Det σ𝑖=1
𝑚 𝐵𝑖 ⊗𝐴𝑖 ≠ 0.

 Potential function: |Det σ𝑖=1
𝑚 𝐵𝑖 ⊗𝐴𝑖 | for a nice choice of 𝐵1, … , 𝐵𝑚.

 Niceness conditions can be satisfied by using Alon’s combinatorial 
nullstellansatz. Schwarz-Zippel lemma not enough.

Analysis
• [Lower bound]: Initially Det σ𝑖=1

𝑚 𝐵𝑖 ⊗𝐴𝑖 ≥ 1. Need 𝐵1, … , 𝐵𝑚 to be 

integer matrices.
• [Progress per step]: If 1/𝑛-far from satisfying (∗), normalization increases 

Det σ𝑖=1
𝑚 𝐵𝑖 ⊗𝐴𝑖 by a factor of exp(𝑑/12𝑛). Consequence of a robust AM-

GM inequality. Holds for all 𝐵1, … , 𝐵𝑚 .
• [Upper bound]: If 𝐴1, … , 𝐴𝑚 left or right normalized, Det σ𝑖=1

𝑚 𝐵𝑖 ⊗𝐴𝑖 ≤
exp(𝑑𝑛 log(𝑛)). Need 𝐵1, … , 𝐵𝑚 to have “small” entries.

Wlog assume 𝐴1, … , 𝐴𝑚 integer 
matrices.



Capacity

 Theorem [G, Gurvits, Oliveira, Wigderson 16]: Can optimize 
𝑁𝐶(𝐴1… ,𝐴𝑚) upto additive error 𝜖 in time poly(𝑛, 𝟏/𝝐). 

 Theorem [Allen-Zhu, G, Li, Oliveira, Wigderson 17]: Can 
optimize 𝑁𝐶(𝐴1… ,𝐴𝑚) upto error 𝜖 in time poly(𝑛, 𝐥𝐨𝐠(𝟏/𝝐)).

 Crucially relies on geodesic convexity.

 Leads to a deterministic polynomial time algorithm for a 
generalization of NC-SING.



Geodesically convex optimization

 Convex optimization widely applicable.

 Works with Euclidean geometry.

 Geodesic convexity: Convexity in a different geometry.

 Lot of work on structural aspects [Udriste 94].

 Less known about algorithmic aspects.

[Absil, Mahony, Sepulchre 09; Wiesel 12; Zhang, Sra 16].



Geodesic convex optimization

 Space of psd matrices.

 Euclidean geometry: shortest path between 𝐴 and 𝐵 given by straight 
line 𝛾 𝑡 = 𝑡𝐴 + 1 − 𝑡 𝐵.

 Euclidean convexity: 𝑓 convex if for all shortest paths 𝛾,

𝑓 𝛾 𝑡 ≤ 𝑡𝑓 𝛾 0 + 1 − 𝑡 𝑓(𝛾(1)).

 Extends to other geometries. Just the shortest paths (geodesics) 
change.

 Can define a geometry where the shortest path

𝛾 𝑡 = 𝐵1/2 𝐵−1/2𝐴𝐵−1/2 𝑡
𝐵1/2.

 If 𝐴 and 𝐵 commute, then 𝛾 𝑡 = exp(𝑡 log 𝐴 + 1 − 𝑡 log(𝐵)).

 Our problems are convex in this geometry!

𝐴
𝐵

𝐴

𝐵



Conclusion

 Null cone captures many interesting problems.

 Intriguing interplay of analysis and algebra.

 Algorithms analytic. Analysis crucially relies on 
algebraic character of the problem.



Open problems

 Main open problem: Design analogues of ellipsoid/interior point 
methods in the geodesic world (polylog(1/𝜖) dependence on 
error 𝜖).

 Would problems in several different areas at once! In particular, 
the null cone problem.

 Concrete challenge: Null cone for the natural action of S𝐿𝑛 𝐶 ×
𝑆𝐿𝑛 𝐶 × 𝑆𝐿𝑛 𝐶 on 𝑛 × 𝑛 × 𝑛 tensors.

 Optimization problem: Given 𝑣 ∈ 𝐶𝑛
3
, test if

inf𝑋,𝑌,𝑍≻0,Det 𝑋 =Det 𝑌 =Det 𝑍 =1 𝑋⊗ 𝑌⊗ 𝑍 𝑣 2
2 = 0.

 [B ሷurgisser, G, Oliveira, Walter, Wigderson 17] analyzed 
alternating minimization. Not enough. poly(1/𝜖) vs polylog(1/𝜖).

 Explore applications of geodesic convexity in other areas such as 
machine learning.



Thank You


