Invariant theory and geodesically convex
optimization

O




Overview

O

» Introduction to algorithmic problems in invariant theory.

» Non-convex optimization problems but geodesically

convex.

» Connections to several areas of computer science,
mathematics and physics.
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Geometric complexity theory — asymptotic Quantum information theory— one-body
vanishing of Kronecker coefficients. quantum marginal problem.
\ V. .
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Functional analysis — Brascamp-Lieb Optimization— Geodesic convexity. Captures
inequalities. general linear programming.
\ J 0\ y.

Complexity theory and derandomization —

Special cases of polynomial identity
testing.




Motivating puzzle

Given two polygons in the plane, cut 1 into a finite number
of pieces and rearrange to get 2.
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Possible iff areas equal.

Area is an invariant and the only invariant.




Invariant theory

» Started with [Cayley 1846]. Developed later by Hilbert, Mumford
and others.

» Linear action of a group G on a vector space /.

Example 1
G =S, actson V/ = C" by permuting coordinates.
0 - (X1, e, Xp) 2 (%(1); ---:xa(n))°
« Symmetric polynomials are invariant under the group action.
* Generated by the n elementary symmetric polynomials.

Example 2
* G =5L,(C)xSL,(C)actsonV = M,,(C) by left-right multiplication.
(A,B) - X = AXB.
* Det(X) is invariant.
« Every polynomial invariant of the form g (X) = p(Det(X)).




Invariant theory

» Underlying field complex numbers C.
e Groups G: finite, GL,(C), SL,,(C), direct products of these etc.

G acts (linearly) on V
« idv=vforallvelV.
* (9192) ' v=g1 (g2 -v)forallg,.g, €GvEV.
e g-(cv)=cg-vforallceC,vevV.
e g-(vy+vy,)=g-vy+g-vy,forallg € G,v,,v, EV.

Objects of study
 Invariant polynomials: Polynomial functions on I/ invariant under action of
G.pst.p(g-v)=p(w)forallgeG,veV.
e Orbits: Orbit of vectorv = {g-v: g € G}.
« Orbit-closures: Orbits may not be closed. Take their closures.




Orbits and orbit-closures

Capture several interesting problems in theoretical computer
science.

Graph isomorphism: Whether orbits of two graphs the same.
Group action: permuting the vertices.

Arithmetic circuits: The VP vs VNP question. Whether
permanent lies in the orbit-closure of the determinant. Group

action: Action of GL,>(C) on polynomials induced by action on
variables.

Tensor rank: Whether a tensor lies in the orbit-closure of the

diagonal unit tensor. Group action: Natural action of GL,,(C) X
GL,(C) X GL,(C).



Computational invariant theory
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Highly algorithmic field.

Algorithms sought and well developed.

Algorithms still remain exponential time or even doubly
exponential time in some cases.

Bottleneck: Grobner basis computation or more generally
algebraic methods.



Null cone

Fix an action of G on V.

Null cone: Vectors v s.t. 0 lies in the orbit-closure of v.
{v:0 € G - v}

Sequence of group elements g4, ..., g, ... S.t. Ill_)rgo gk v =0,

Problem: Given v € I/, decide if it is in the null cone.
Will capture many interesting questions.

[Hilbert 1893; Mumford 1965]: v in null cone iff p(v) = 0 for all
homogeneous invariant polynomials p.

One direction clear (polynomials are continuous).

Other direction uses Nullstellansatz and some algebraic
geometry.



Example 1

G =SL,(C)*xSL,(C)actsonV = M, (C) by left-right
multiplication.

(4,B) - X = AXB.
Det(X) 1s invariant.
Every polynomial invariant of the form q(X) = p(Det(X)).
Null cone: Singular matrices.



Example 2

ST, : group of n X n diagonal matrices with determinant 1. [
G = ST,, X ST,, actson VV = M,,(C) by left-right multiplication. \\QZ'
(A,B) - X = AXB. /7 \1.
Det(X) 1s invariant. ." --9
Are there other invariants? H

X141 Xy, X, 1 Invariant.
S018 X1 5(1) * X2,6(2) ** Xn,o(n) fOr any permutation o. And these are all.

Null cone: perfect matching.
Ay is in null cone iff H has no perfect matching.




Example 3: Linear programming

T,,: group of n X n diagonal matrices.
G =T,actsonV =C™. t € T,, t =diag(ty, ..., t).

Fix m vectors w, ..., w(™ e cn,

t-e; =[[L t. " e

v € V. Define supp(v) = {j € [m]:v; # O}.

Theorem: v not in null cone iff convex hull of {w(j ) J € supp (v)}
contains 0.
Captures linear programming.

So the null cone (membership) problem is a non-commutative
analogue of linear programming.



Symbolic matrices

Symbolic matrices: L = Y/t x;A; .
Aq, ..., A, are n X n matrices over C.

X1, ..., Xy, are formal variables (commuting or non-
commuting).

L has entries linear polynomials in x4, ..., x,,,.

Question: Is L singular?

Dual life depending on whether the variables commute or
not.



Commuting variables

L= YY" xiA;.
SING: Is L singular over C (x4, ..., x,;)? [Edmonds’ problem 67].
C(xq, ..., x,,) - field of rational functions.

Proposition: L SING if }}; a;A; singular for all a4, ..., a,,, € C.
(all matrices in the subspace spanned by 4, ..., 4,,, singular).

Efficient randomized algorithm: plug in random values for
X1, -, X [LOVASZ 79].

Efficient deterministic algorithm — major open problem.
Captures polynomial identity testing (PIT) [Valiant 79].
Implies circuit lower bounds [ Kabanets, Impagliazzo 04].



Non-commuting variables

L = ?;1 xiAi .
NC-SING: Is L singular for non-commuting x4, ..., x,,,?

Various ways to define. Extensive work by Amitsur, Cohn and
others.

L NC-SING ifforall d, };; B; ® A; singular for all B, ..., B,,, €
Mg (C).

Plug in matrices for x;’s. Take “matrix linear combinations”
instead of linear combinations.



Example

e SING and NC-SING can difter.

0 X Y
o [ = (—x 0 Z).
-y —z 0

» Skew symmetric. When x, y, z commute, L is
singular.

» Homework: When x, y, z non-commuting, then L is
not singular.



Example 4: Noncommutative singularity

- G =SL,(C)xSL,(C) actsonV = M, (C)®P™ by simultaneous left-
right multiplication.

(B,C) - (Aq, ..., Ap) = (BA4C, ..., BA,,C).
Theorem [Derksen, Weyman 00, ...]: (44, ..., 4,,) in null cone iff
L =), x; A; NC-SING.
Theorem [G, Gurvits, Oliveira, Wigderson 16]: Deterministic
polynomial time algorithm for NC-SING.

Brascamp-Lieb inequalities: Generalize Cauchy-Schwarz,
Holder’s, Loomis-Whitney, Shearer’s inequalities.

Feasibility can be phrased as a null cone problem.

Theorem [G, Gurvits, Oliveira, Wigderson 16b]: Polynomial time
algorithm to test feasibility and compute optimal constants.



Null cone and optimization

Recap: Null cone membership unifies many problems in
computer science and mathematics.

G actingon V.

v € V in null cone if there is sequence of group elements

1y s Gpoy 10e S.1. Ill Ji V= 0.

Equivalently, NC (v) = ir€1£||g -v||5 = 0.
g

f,(g) = llg - v||5. Non-convex but has a lot of structure.



Example 1

- ST, : group of n X n diagonal matrices with determinant 1.
- G =S8T, xST,, actson V = M,,(C) by left-right
multiplication.

(B,C) - A = BAC.

NC(A):infpy, p=1, c;=1 i jlAi 121D || c;]%.
infx,y>0,Hixi:ijj=1 Zi,lei,j |2xiyj-

Non-convex but a simple transformation makes it convex.
x; = exp(4;) and y; = exp(y;) makes it convex.



Example 2

- G =SL,(C)xSL,(C)actsonV = M, (C)®™ by
simultaneous left-right multiplication.
(B,C) - (Ay, ., Ap) = (BALC, ..., BA,,,C).
* NC(Ay, ..., Ap): infy ys0 Det(x)=Det(v)=1 tr[ZiAiXAZL Y]-
» Non-convex. No change of variables that makes it convex.

o X =exp(P),Y = exp(Q) doesn’t work.

e Non-commutativity of matrix multiplication. exp(M + N) #
exp(M) exp(N).



Alternating minimization for NC-SING

e Recall: 44, ..., 4,,, NC-SING if
Det(X;2, B; ® 4;) = 0,
for all d, for all B; (d x d matrices).
e Alsoiff NC(44,...,A,,) > 0.

e [KKT condition]: NC(A44, ..., 4,,,) > 0iff can be transformed
to satisty the following two conditions:

Y A;Al ~Tand Y, AT A; =~ I.
o Allowed: Simultaneous left-right multiplication by
matrices.
e Ay, ..,A > BA,C,..,BA,C.



Alternating minimization for NC-SING

O

Goal: Transform 44, ..., 4, to satisfy
Y AAl ~Tand Y;ATA; =~ 1.

Left normalize: 4, ..., 4,,, — (Z AAT) 1/2 (Z AAT) 1/2
Ensures ),; 4;4] = I.
Right normalize: Ay, ..., 4,, = A, (X; ATA;) /2 A (3, ATA) 1/2

Ensures ), Al A; = 1.

Algorithm [G, Gurvits, Oliveira, Wigderson 16]
 Repeat for n? steps:
1. Left normalize;
2. Right normalize;
e Test lelAlA’{ ~1/n [ and ZLA’{AL ~1/n I.
Yes: not NC-SING.
No: NC-SING.




AnalySiS Wlog assume A4, ..., A, integer

matrices.

o« IfA,, ..., A, NC-SING, then know won’t converge. No way to transform and
satisfy both Y, A;AT = I, Y, AT A; ~ I (%).

o Goal:If A4, ..., A, not NC-SING, then converge in n? iterations.

» Need a potential function.

e Know: There exists d and d X d By, ..., By, s.t. Det(Q 72 B; ® 4;) # 0.

» Potential function: [Det(3%; B; @ A4;)| for a nice choice of B, ..., By,.

Analysis

e [Lower bound]: Initially |Det(3%, B; ® A;)| = 1. Need By, ..., B, to be
integer matrices.

» [Progress per step]: If 1/n-far from satisfying (+), normalization increases
|Det(}.7%, B; ® A;)| by a factor of exp(d/12n). Consequence of a robust AM-
GM inequality. Holds for all B4, ..., B, .

« [Upper bound]: If A4, ..., 4, left or right normalized, |[Det(}32; B; ® 4;)| <
exp(dn log(n)). Need By, ..., B,,, to have “small” entries.

» Niceness conditions can be satisfied by using Alon’s combinatorial
nullstellansatz. Schwarz-Zippel lemma not enough.



Capacity

Theorem [G, Gurvits, Oliveira, Wigderson 16]: Can optimize
NC(A; ..., A,,) upto additive error € in time poly(n, 1/¢).

Theorem [Allen-Zhu, G, Li, Oliveira, Wigderson 17]: Can
optimize NC (A, ..., A,,) upto error € in time poly(n,log(1/¢)).
Crucially relies on geodesic convexity.

Leads to a deterministic polynomial time algorithm for a
generalization of NC-SING.



Geodesically convex optimization

» Convex optimization widely applicable.
» Works with Euclidean geometry.

convex
Optimization

» Geodesic convexity: Convexity in a different geometry.
» Lot of work on structural aspects [Udriste 94].
» Less known about algorithmic aspects.
[Absil, Mahony, Sepulchre 09; Wiesel 12; Zhang, Sra 16].



Geodesic convex optimization

Space of psd matrices.

Euclidean geometry: shortest path between A and B given by straight
line y(t) = tA+ (1 — t)B. A

Euclidean convexity: f convex if for all shortest paths y,

flr@®) <tf(y(0) + (1 — Of (¥ (1)).

Extends to other geometries. Just the shortest paths (geodesics)
change.

Can define a geometry where the shortest path b
y(t) = B1/2 (B_l/ZAB_l/Z)tBl/Z.

B

A

If A and B commute, then y(t) = exp(tlog(4) + (1 — t)log(B)).
Our problems are convex in this geometry!



Conclusion

Null cone captures many interesting problems.
Intriguing interplay of analysis and algebra.

Algorithms analytic. Analysis crucially relies on
algebraic character of the problem.



Open problems

Main open problem: Design analogues of ellipsoid/interior point
metho )s in the geodesic world (polylog(1/¢) dependence on
error €).

Would problems in several different areas at once! In particular,
the null cone problem.

Concrete challenge: Null cone for the natural action of SL,,(C) %
SL,(C) xSL,(C) onn X n X n tensors.

Optimization problem: Given v € C " test if
infy y 7-0,pet(x)=et(r)=pet(z)=1|(X @ Y ® Z)v||5 = 0.

[Biirgisser, G, Oliveira, Walter, Wigderson 17] analyzed
alternating minimization. Not enough. poly(1/¢) vs polylog(1/e¢).
Explore applications of geodesic convexity in other areas such as
machine learning.
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