Proving super-polynomial lower bounds for syntactic multilinear branching programs Approaches and Challenges

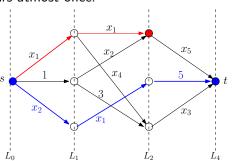
Ramya C

CMI, Chennai, INDIA. (Joint work with B.V.Raghavendra Rao, IIT Madras)

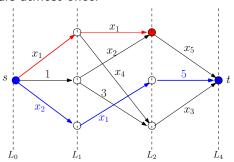
March 21, 2019

• Multilinear polynomial - every variable has degree at most one in any monomial. E.g.: \det_n is multilinear.

- Multilinear polynomial every variable has degree at most one in any monomial. E.g.: det_n is multilinear.
- Syntactic Multilinear ABP (smABP): along any path a variable as an edge label appears atmost once.

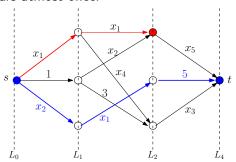


- Multilinear polynomial every variable has degree at most one in any monomial. E.g.: det_n is multilinear.
- Syntactic Multilinear ABP (smABP): along any path a variable as an edge label appears atmost once.



• Alon et al. (2017) showed $\Omega\left(\frac{n^2}{\log^2 n}\right)$ size lower bound for smABPs computing an explicit *n*-variate multilinear polynomial.

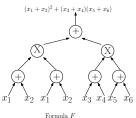
- Multilinear polynomial every variable has degree at most one in any monomial. E.g.: \det_n is multilinear.
- Syntactic Multilinear ABP (smABP): along any path a variable as an edge label appears atmost once.



- Alon et al. (2017) showed $\Omega\left(\frac{n^2}{\log^2 n}\right)$ size lower bound for smABPs computing an explicit *n*-variate multilinear polynomial.
- <u>Goal:</u> Prove super-polynomial lower bounds for smABPs.

• Arithmetic Formulas - circuits whose underlying graph is tree.

• Arithmetic Formulas - circuits whose underlying graph is tree.

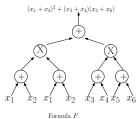


• Arithmetic Formulas - circuits whose underlying graph is tree.



• Multilinear formula : every gate computes a multilinear polynomial.

• Arithmetic Formulas - circuits whose underlying graph is tree.

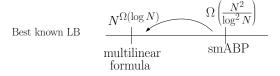


- Multilinear formula: every gate computes a multilinear polynomial.
- Raz (2009) showed that multilinear formulas computing det_n or perm_n must have size $n^{\Omega(\log n)}$.

Possible Approaches to prove smABP Lower Bounds Goal: Prove super-polynomial lower bounds for smABPs.

Best known LB $N^{\Omega(\log N)} \qquad \Omega\left(\frac{N^2}{\log^2 N}\right)$ multilinear smABP formula

<u>Goal:</u> Prove super-polynomial lower bounds for smABPs.



smABPs to multilinear formula

An smABP of size $N^{O(1)}$ computing an N-variate polynomial f can be converted into multilinear formula of size $N^{O(\log N)}$ computing f.

Goal: Prove super-polynomial lower bounds for smABPs.

Best known LB $\begin{array}{c|c} N^{\Omega(\log N)} & \Omega\left(\frac{N^2}{\log^2 N}\right) \\ & & \text{multilinear} \\ & \text{formula} \end{array}$

smABPs to multilinear formula

An smABP of size $N^{O(1)}$ computing an N-variate polynomial f can be converted into multilinear formula of size $N^{O(\log N)}$ computing f.

Possible Approaches to prove smABP Lower Bounds

1. Convert an smABP into multilinear formula of size $N^{o(\log N)}$ - Raz's $N^{\Omega(\log N)}$ lower bound is sufficient.

Goal: Prove super-polynomial lower bounds for smABPs.

Best known LB $\frac{N^{\Omega(\log N)}}{\prod_{\substack{\text{multilinear} \\ \text{formula}}}} \frac{\Omega\left(\frac{N^2}{\log^2 N}\right)}{\sup_{\substack{\text{smABP}}}}$

smABPs to multilinear formula

An smABP of size $N^{O(1)}$ computing an N-variate polynomial f can be converted into multilinear formula of size $N^{O(\log N)}$ computing f.

Possible Approaches to prove smABP Lower Bounds

- 1. Convert an smABP into multilinear formula of size $N^{o(\log N)}$ Raz's $N^{\Omega(\log N)}$ lower bound is sufficient.
- 2. Prove $N^{\omega(\log N)}$ lower bound for multilinear formulas The above conversion is sufficient.

<u>Goal:</u> Prove super-polynomial lower bounds for smABPs.

Best known LB $N^{\Omega(\log N)} \qquad \Omega\left(\frac{N^2}{\log^2 N}\right)$ multilinear formula

smABPs to multilinear formula

An smABP of size $N^{O(1)}$ computing an N-variate polynomial f can be converted into multilinear formula of size $N^{O(\log N)}$ computing f.

Possible Approaches to prove smABP Lower Bounds

- 1. Convert an smABP into multilinear formula of size $N^{o(\log N)}$ Raz's $N^{\Omega(\log N)}$ lower bound is sufficient.
- 2. Prove $N^{\omega(\log N)}$ lower bound for multilinear formulas The above conversion is sufficient.

Both these approaches seem difficult with the current techniques!

Preliminaries - Partial Derivative Matrix

```
Let f \in \mathbb{F}[y_1, \dots, y_m, z_1, \dots, z_m] be a multilinear polynomial. M_f[p, q] = A iff A is the coefficient of monomial pq in f.

• \operatorname{rank}(M_{f+g}) \leq \operatorname{rank}(M_f) + \operatorname{rank}(M_g); \operatorname{rank}(M_{fg}) \leq \operatorname{rank}(M_f) \cdot \operatorname{rank}(M_g).
```

Preliminaries - Partial Derivative Matrix

Let $f \in \mathbb{F}[y_1, \dots, y_m, z_1, \dots, z_m]$ be a multilinear polynomial. $M_f[p, q] = A$ iff A is the coefficient of monomial pq in f.

- $\bullet \ \operatorname{rank}(M_{f+g}) \leq \operatorname{rank}(M_f) + \operatorname{rank}(M_g); \ \operatorname{rank}(M_{fg}) \leq \operatorname{rank}(M_f) \cdot \operatorname{rank}(M_g).$
- E.g. : $f = (x_1 + x_2)(x_3 + x_4) \cdots (x_{N-1} + x_N);$ $X = \{x_1, \dots, x_N\}; Y = \{y_1, \dots, y_{N/2}\}; Z = \{z_1, \dots, z_{N/2}\}.$ Consider $\varphi, \varphi' : X \to Y \cup Z.$ $f^{\varphi} = (y_1 + z_1)(y_2 + z_2) \cdots (y_{N/2} + z_{N/2}), rank(M_{f^{\varphi}}) = 2^{N/2}$ $f^{\varphi'} = (y_1 + y_2)(z_1 + z_2) \cdots (y_{N/2} + z_{N/2}), rank(M_{f^{\varphi'}}) = 1$

Preliminaries - Partial Derivative Matrix

Let $f \in \mathbb{F}[y_1, \dots, y_m, z_1, \dots, z_m]$ be a multilinear polynomial. $M_f[p, q] = A$ iff A is the coefficient of monomial pq in f.

- $\bullet \ \operatorname{rank}(M_{f+g}) \leq \operatorname{rank}(M_f) + \operatorname{rank}(M_g); \ \operatorname{rank}(M_{fg}) \leq \operatorname{rank}(M_f) \cdot \operatorname{rank}(M_g).$
- E.g. : $f = (x_1 + x_2)(x_3 + x_4) \cdots (x_{N-1} + x_N);$ $X = \{x_1, \dots, x_N\}; Y = \{y_1, \dots, y_{N/2}\}; Z = \{z_1, \dots, z_{N/2}\}.$ Consider $\varphi, \varphi' : X \to Y \cup Z.$ $f^{\varphi} = (y_1 + z_1)(y_2 + z_2) \cdots (y_{N/2} + z_{N/2}), rank(M_{f^{\varphi}}) = 2^{N/2}$ $f^{\varphi'} = (y_1 + y_2)(z_1 + z_2) \cdots (y_{N/2} + z_{N/2}), rank(M_{f^{\varphi'}}) = 1$
- When φ has |Y| = |Z| = |X|/2, $rank(M_{f^{\varphi}}) \leq 2^{N/2}$.

- The multilinear formula obtained from an smABP has more structure than an arbitrary multilinear formula of super-polynomial size.
- This talk: A finer analysis of techniques developed by Raz(2009) for these multilinear formulas.

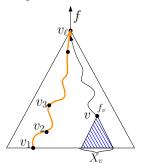
- The multilinear formula obtained from an smABP has more structure than an arbitrary multilinear formula of super-polynomial size.
- This talk: A finer analysis of techniques developed by Raz(2009) for these multilinear formulas.
- Upper bounding rank of the partial derivative matrix of a polynomial computed by an smABP seems to be difficult.

- The multilinear formula obtained from an smABP has more structure than an arbitrary multilinear formula of super-polynomial size.
- This talk: A finer analysis of techniques developed by Raz(2009) for these multilinear formulas.
- Upper bounding rank of the partial derivative matrix of a polynomial computed by an smABP seems to be difficult.
- Identify limitations of the formula from smABPs to prove upper bound on the rank of the partial derivative matrix of f under a random partition of the variables.

- The multilinear formula obtained from an smABP has more structure than an arbitrary multilinear formula of super-polynomial size.
- This talk: A finer analysis of techniques developed by Raz(2009) for these multilinear formulas.
- Upper bounding rank of the partial derivative matrix of a polynomial computed by an smABP seems to be difficult.
- Identify limitations of the formula from smABPs to prove upper bound on the rank of the partial derivative matrix of f under a random partition of the variables.
- We know hard polynomials that have full rank under any partition of the variables.

Central Signatures in a multilinear formula Φ

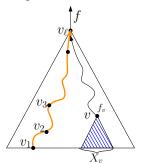
• f_{v} :polynomial computed at v, X_{v} :variables in formula rooted at v. Here, $X_{v_1} \subseteq X_{v_2} \subseteq \ldots \subseteq X_{v_{\ell}}$.



• For any path $\rho = (v_1, \dots, v_\ell)$, signature $(\rho) = (X_{\nu_1}, \dots, X_{\nu_\ell})$.

Central Signatures in a multilinear formula Φ

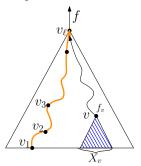
• f_{v} :polynomial computed at v, X_{v} :variables in formula rooted at v. Here, $X_{v_1} \subseteq X_{v_2} \subseteq \ldots \subseteq X_{v_{\ell}}$.



- For any path $\rho = (v_1, \dots, v_\ell)$, signature $(\rho) = (X_{v_1}, \dots, X_{v_\ell})$.
- A signature is *central* if $|X_{\nu_{i+1}}| \leq 2|X_{\nu_i}|$ for all $i \in [\ell-1]$.

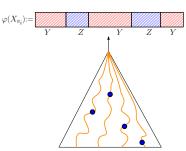
Central Signatures in a multilinear formula Φ

• f_{v} :polynomial computed at v, X_{v} :variables in formula rooted at v. Here, $X_{v_1} \subseteq X_{v_2} \subseteq \ldots \subseteq X_{v_{\ell}}$.

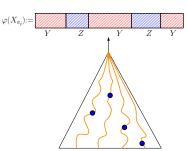


- For any path $\rho = (v_1, \dots, v_\ell)$, signature $(\rho) = (X_{v_1}, \dots, X_{v_\ell})$.
- A signature is *central* if $|X_{v_{i+1}}| \leq 2|X_{v_i}|$ for all $i \in [\ell-1]$.
- There is at least one central signature in Φ .

- For any $\varphi: X \to Y \cup Z$, $\varphi(X_{v_i}) \in Y \cup Z$.
- A central signature is k-unbalanced w.r.t φ if for some $i \in [\ell]$, $||\varphi(X_{v_i}) \cap Y| |\varphi(X_{v_i}) \cap Z|| > k$.

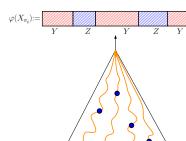


- For any $\varphi: X \to Y \cup Z$, $\varphi(X_{v_i}) \in Y \cup Z$.
- A central signature is k-unbalanced w.r.t φ if for some $i \in [\ell]$, $||\varphi(X_{v_i}) \cap Y| |\varphi(X_{v_i}) \cap Z|| > k$.



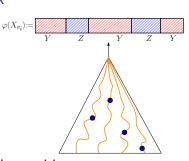
• Let $f = (x_1 + x_2)(x_3 + x_4)$ and φ, φ' be partitions. $f^{\varphi} = (y_1 + y_2)(y_3 + y_4)$, imbalance = 4, rank $(M_{f^{\varphi}}) = 1$. $f^{\varphi} = (y_1 + z_1)(y_2 + z_2)$, imbalance = 0, rank $(M_{f^{\varphi}}) = 4$.

- For any $\varphi: X \to Y \cup Z$, $\varphi(X_{v_i}) \in Y \cup Z$.
- A central signature is k-unbalanced w.r.t φ if for some $i \in [\ell]$, $||\varphi(X_{v_i}) \cap Y| |\varphi(X_{v_i}) \cap Z|| > k$.



- Let $f = (x_1 + x_2)(x_3 + x_4)$ and φ, φ' be partitions. $f^{\varphi} = (y_1 + y_2)(y_3 + y_4)$, imbalance = 4, rank $(M_{f^{\varphi}}) = 1$. $f^{\varphi} = (y_1 + z_1)(y_2 + z_2)$, imbalance = 0, rank $(M_{f^{\varphi}}) = 4$.
- Φ is k-weak w.r.t. φ if every central signature in Φ is k-unbalanced w.r.t. φ .

- For any $\varphi: X \to Y \cup Z$, $\varphi(X_{V:}) \in Y \cup Z$.
- A central signature is k-unbalanced w.r.t φ if for some $i \in [\ell]$, $||\varphi(X_{v_i}) \cap Y| |\varphi(X_{v_i}) \cap Z|| > k$.



- Let $f = (x_1 + x_2)(x_3 + x_4)$ and φ, φ' be partitions. $f^{\varphi} = (y_1 + y_2)(y_3 + y_4)$, imbalance = 4, rank $(M_{f^{\varphi}}) = 1$. $f^{\varphi} = (y_1 + z_1)(y_2 + z_2)$, imbalance = 0, rank $(M_{f^{\varphi}}) = 4$.
- Φ is k-weak w.r.t. φ if every central signature in Φ is k-unbalanced w.r.t. φ .
- If Φ is k-weak w.r.t. φ , then rank $(M_{f\varphi})$ is low.

Theorem

If Φ is k-weak w.r.t φ , then $\operatorname{rank}(M_{f^{\varphi}}) \leq |\Phi| \cdot 2^{N/2-k/2}$.

Super-polynomial Lower bounds for smABPs Approach 1 : Via Central Signatures

Step 1 Convert size S smABP P into $S^{O(\log N)}$ size multilinear formula Φ .

Approach 1 : Via Central Signatures

Step 1 Convert size S smABP P into $S^{O(\log N)}$ size multilinear formula Φ . **Step 2** \mathcal{D} be distribution of partitions with |Y| = |Z| = |X|/2 and $\varphi \sim \mathcal{D}$.

Approach 1 : Via Central Signatures

Step 1 Convert size $\mathcal S$ smABP P into $\mathcal S^{O(\log N)}$ size multilinear formula Φ .

Step 2 $\mathcal D$ be distribution of partitions with |Y|=|Z|=|X|/2 and $\varphi\sim\mathcal D$. Φ is k-weak w.r.t $\varphi\implies {\sf rank}(M_{f^\varphi})\leq |\Phi|\cdot 2^{N/2-k/2}$.

Approach 1 : Via Central Signatures

- **Step 1** Convert size S smABP P into $S^{O(\log N)}$ size multilinear formula Φ .
- **Step 2** \mathcal{D} be distribution of partitions with |Y| = |Z| = |X|/2 and $\varphi \sim \mathcal{D}$. Φ is k-weak w.r.t $\varphi \implies \operatorname{rank}(M_{f\varphi}) \leq |\Phi| \cdot 2^{N/2-k/2}$.

Step 3

```
 \Pr[\Phi \text{ is not } k\text{-weak}] \leq \Pr[\exists \text{ central signature not } k\text{-unbalanced}]   \leq (\sharp \text{ of central signatures}) \cdot \Pr[\text{central sign. not } k\text{-unbalanced}]   \text{when } S = N^{o(1)}   \text{(via. hypergeometric distribution)}
```

Approach 1 : Via Central Signatures

Step 1 Convert size S smABP P into $S^{O(\log N)}$ size multilinear formula Φ .

Step 2 \mathcal{D} be distribution of partitions with |Y| = |Z| = |X|/2 and $\varphi \sim \mathcal{D}$. Φ is k-weak w.r.t $\varphi \implies \operatorname{rank}(M_{f^{\varphi}}) \leq |\Phi| \cdot 2^{N/2 - k/2}$.

Step 3

```
\Pr[\Phi \text{ is not } k\text{-weak}] \leq \Pr[\exists \text{ central signature not } k\text{-unbalanced}]
\leq (\sharp \text{ of central signatures}) \cdot \Pr[\text{central sign. not } k\text{-unbalanced}]
\text{when } S = N^{o(1)}
< 1
\text{(via. hypergeometric distribution)}
```

Step 4 With prob. 1-o(1), Φ is k-weak w.r.t. φ . With prob. 1-o(1), $\mathrm{rank}(M_{f^{\varphi}}) < 2^{N/2}$. ($\Rightarrow \Leftarrow$ as P computed a full rank polynomial) $\therefore S = N^{\Omega(1)}$.

Need: "small" formulas have "small" number of central signatures.

Approach 1 : Via Central Signatures

Step 1 Convert size S smABP P into $S^{O(\log N)}$ size multilinear formula Φ .

Step 2 \mathcal{D} be distribution of partitions with |Y| = |Z| = |X|/2 and $\varphi \sim \mathcal{D}$. Φ is k-weak w.r.t $\varphi \implies \operatorname{rank}(M_{f\varphi}) \leq |\Phi| \cdot 2^{N/2-k/2}$.

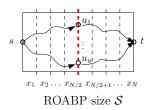
Step 3

```
 \Pr[\Phi \text{ is not } k\text{-weak}] \leq \Pr[\exists \text{ central signature not } k\text{-unbalanced}]   \leq (\sharp \text{ of central signatures}) \cdot \Pr[\text{central sign. not } k\text{-unbalanced}]   \text{when } S = N^{o(1)}   \text{(via. hypergeometric distribution)}
```

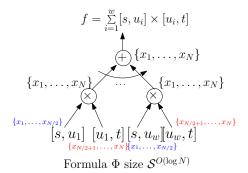
Step 4 With prob. 1-o(1), Φ is k-weak w.r.t. φ . With prob. 1-o(1), $\mathrm{rank}(M_{f^{\varphi}}) < 2^{N/2}$. ($\Rightarrow \Leftarrow$ as P computed a full rank polynomial) $\therefore S = N^{\Omega(1)}$.

<u>Need:</u> "small" formulas have "small" number of central signatures. <u>Roadblock:</u> For ROABPs, #central signatures could be $N^{\Omega(\log N)}$.

The Case of ROABPs

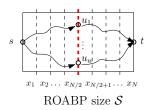


[u, v]= polynomial computed by subprogram with source u and sink v

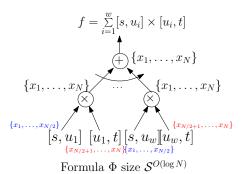


• For gate v in Φ ,let S_v be interval assoc. with gate v. Note, $X_v \subseteq S_v$.

The Case of ROABPs

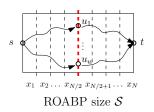


[u, v]= polynomial computed by subprogram with source u and sink v

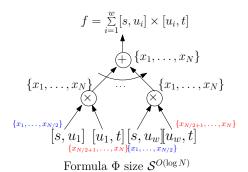


- For gate v in Φ ,let S_v be interval assoc. with gate v. Note, $X_v \subseteq S_v$.
- When $v = v_1 + \cdots + v_w$, $S_v = S_{v_1} = \cdots = S_{v_w}$.
- When $v = v_1 \times v_2$, $|S_v| = 2|S_{v_1}|$ and $|S_v| = 2|S_{v_2}|$.

The Case of ROABPs



[u, v]= polynomial computed by subprogram with source u and sink v



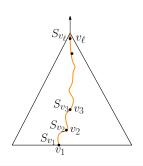
- For gate v in Φ ,let S_v be interval assoc. with gate v. Note, $X_v \subseteq S_v$.
- When $v = v_1 + \cdots + v_w$, $S_v = S_{v_1} = \cdots = S_{v_w}$.
- When $v = v_1 \times v_2$, $|S_v| = 2|S_{v_1}|$ and $|S_v| = 2|S_{v_2}|$.
- For a path $\rho = (v_1, \dots, v_\ell)$, ext-sign $(\rho) = (S_{v_1}, S_{v_2}, \dots, S_{v_\ell})$.

Extended central signatures in Φ

• For any $i \in [\ell-1]$, $|S_{\nu_{i+1}}| = |S_{\nu_i}|$ or $|S_{\nu_{i+1}}| = 2|S_{\nu_i}|$. Every ext-signature is central.

Extended central signatures in Φ

- For any $i \in [\ell-1]$, $|S_{\nu_{i+1}}| = |S_{\nu_i}|$ or $|S_{\nu_{i+1}}| = 2|S_{\nu_i}|$. Every ext-signature is central.
- For any Φ obtained from ROABP, #ext-sign = $2^{O(\log N)} = O(N)$.

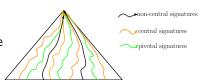


Theorem

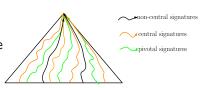
Let $f_1, \ldots f_m$ be polynomials computed by ROABPs of size S_1, \ldots, S_m . There is an explicit polynomial g such that if $g = f_1 + \cdots + f_m$ then either $m = N^{\Omega(1)}$ or there is an $i \in [m]$ such that $S_i = 2^{\Omega(N^{1/100})}$.

Exponential lower bounds for sum of ROABPs is known.

• Let P be smABP and Φ be multilinear formula obtained from P. Let \mathcal{R} be the set of central signatures in Φ .

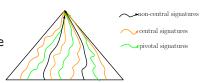


• Let P be smABP and Φ be multilinear formula obtained from P. Let $\mathcal R$ be the set of central signatures in Φ .



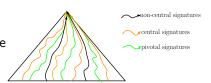
• Find a set $\mathcal{R}' \subseteq \mathcal{R}$ s.t. $\forall \gamma \in \mathcal{R}'$, γ is k-unbalanced $\Rightarrow \forall \gamma' \in \mathcal{R}$, γ is $(k - \delta)$ -unbalanced.

• Let P be smABP and Φ be multilinear formula obtained from P. Let $\mathcal R$ be the set of central signatures in Φ .



- Find a set $\mathcal{R}' \subseteq \mathcal{R}$ s.t. $\forall \gamma \in \mathcal{R}'$, γ is k-unbalanced $\Rightarrow \forall \gamma' \in \mathcal{R}$, γ is $(k \delta)$ -unbalanced.
- Need a "small" set of central sign. that "cover" all central signatures.

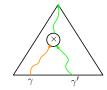
• Let P be smABP and Φ be multilinear formula obtained from P. Let $\mathcal R$ be the set of central signatures in Φ .



- Find a set $\mathcal{R}' \subseteq \mathcal{R}$ s.t. $\forall \gamma \in \mathcal{R}'$, γ is k-unbalanced $\Rightarrow \forall \gamma' \in \mathcal{R}$, γ is $(k \delta)$ -unbalanced.
- Need a "small" set of central sign. that "cover" all central signatures.

Signature Cover $\mathcal C$ of Φ

For every central sign. γ in Φ , either $\gamma \in \mathcal{C}$ or there is a $\gamma' \in \mathcal{C}$ such that the paths meet at \times gate.



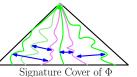
Theorem

If there exists a signature cover $\mathcal C$ of Φ s.t. every central sign. in $\mathcal C$ is k-unbalanced w.r.t. φ then $\operatorname{rank}(M_{f^{\varphi}}) \leq |\Phi| \cdot 2^{N/2-k/2}$.

Let $\mathcal C$ be a signature cover of Φ . If every central signature in $\mathcal C$ is k-unbalanced then rank is low.

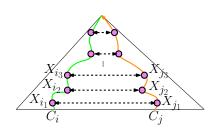
Let C be a signature cover of Φ . If every central signature in C is k-unbalanced then rank is low.

• Define a measure of "closeness" among central signatures in C.

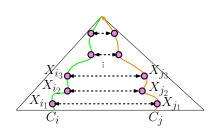


Let C be a signature cover of Φ . If every central signature in C is k-unbalanced then rank is low.

 $\quad \bullet \ \Delta(C_i,C_j) = \mathsf{max}_{k \in [\ell]} \, \Delta(X_{i_k},X_{j_k})$



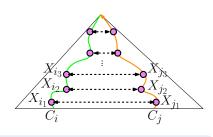
Let C be a signature cover of Φ . If every central signature in C is k-unbalanced then rank is low.



For $\delta > 0$, a δ -cluster of \mathcal{C} is a set of signatures in \mathcal{C} s.t. for every $C \in \mathcal{C}$, there is a $C_j \in \mathcal{C}$ with $\Delta(C, C_j) \leq \delta$.

Let $\mathcal C$ be a signature cover of Φ . If every central signature in $\mathcal C$ is k-unbalanced then rank is low.

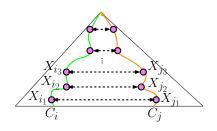
 $\quad \bullet \ \Delta(C_i, C_j) = \max_{k \in [\ell]} \Delta(X_{i_k}, X_{j_k})$



For $\delta > 0$, a δ -cluster of $\mathcal C$ is a set of signatures in $\mathcal C$ s.t. for every $C \in \mathcal C$, there is a $C_j \in \mathcal C$ with $\Delta(C, C_j) \leq \delta$.

Observation:If all central sign. in δ -cluster of $\mathcal C$ are k-unbalanced, then every signature in $\mathcal C$ is at least $k-2\delta$ -unbalanced.

Let $\mathcal C$ be a signature cover of Φ . If every central signature in $\mathcal C$ is k-unbalanced then rank is low.



For $\delta > 0$, a δ -cluster of $\mathcal C$ is a set of signatures in $\mathcal C$ s.t. for every $C \in \mathcal C$, there is a $C_j \in \mathcal C$ with $\Delta(C, C_j) \leq \delta$.

Observation:If all central sign. in δ -cluster of $\mathcal C$ are k-unbalanced, then every signature in $\mathcal C$ is at least $k-2\delta$ -unbalanced.

• Enough to find a signature cover with a "small" δ -cluster in Φ .

Lower bounds for smABPs

Approach via Central Signatures

Show that every smABP of size S can be converted to a multilinear formula of size $S^{O(\log N)}$ such that there is a δ -cluster of a signature cover with at most $S^{O(\log N)}$ signatures for any $\delta << N^{1/5}$.

Lower bounds for smABPs

Approach via Central Signatures

Show that every smABP of size S can be converted to a multilinear formula of size $S^{O(\log N)}$ such that there is a δ -cluster of a signature cover with at most $S^{o(\log N)}$ signatures for any $\delta << N^{1/5}$.

Challenge

Are there multilinear formulas of size S where any δ -cluster of a signature cover has $S^{\Omega(\log N)}$ signatures ?

Along any path in an smABP a variable appears at most once.

- Along any path in an smABP a variable appears at most once.
- The variables on $s \rightsquigarrow t$ paths are permutations(orders) in S_n .

- Along any path in an smABP a variable appears at most once.
- The variables on $s \rightsquigarrow t$ paths are permutations(orders) in S_n .
- \mathcal{L} -ordered ABPs : Given \mathcal{L} permutations in S_n , every path reads variables in one of the \mathcal{L} orders.

- Along any path in an smABP a variable appears at most once.
- The variables on $s \rightsquigarrow t$ paths are permutations(orders) in S_n .
- \mathcal{L} -ordered ABPs : Given \mathcal{L} permutations in S_n , every path reads variables in one of the \mathcal{L} orders.
- 1-ordered ABPs \equiv_P ROABP [Jansen et. al 2008]

- Along any path in an smABP a variable appears at most once.
- The variables on $s \rightsquigarrow t$ paths are permutations(orders) in S_n .
- \mathcal{L} -ordered ABPs : Given \mathcal{L} permutations in S_n , every path reads variables in one of the \mathcal{L} orders.
- 1-ordered ABPs \equiv_P ROABP [Jansen et. al 2008]

Lower bound for \mathcal{L} -ordered ABPs [R.,Raghavendra Rao 2018]

Let $\mathcal{L} \leq 2^{n^{1/2-\epsilon}}$, $\epsilon > 0$ and f_1, \ldots, f_m be \mathcal{L} -ordered ABPs of size S_1, \ldots, S_m . There exists an explicit polynomial g such that if $g = f_1 + \cdots + f_m$, $m = 2^{\Omega(N^{1/40})}$ or $\exists i \in [m]$ with $S_i = 2^{\Omega(N^{1/40})}$.

• How many orders can a poly(N) size smABP admit ?

Low-depth formulas

smABP P size $n^{O(1)}$ computing fn variables

[Agrawal-Vinay 2008] [Tavenas 2013] $\frac{\sum \prod [O(\sqrt{n})] \sum \prod [O(\sqrt{n})]}{\text{multilinear formula}}$ size $2^{O(\sqrt{n} \log n)}$ computing f

Low-depth formulas

 $\begin{array}{c} \mathrm{smABP} \; \mathrm{P} \\ \mathrm{size} \; n^{O(1)} \\ \mathrm{computtng} \; f \\ n \; \mathrm{variables} \end{array}$

[Agrawal-Vinay 2008] [Tavenas 2013] $\begin{array}{l} \sum \prod^{[O(\sqrt{n})]} \sum \prod^{[O(\sqrt{n})]} \\ \text{multilinear formula} \\ \text{size } 2^{O(\sqrt{n}\log n)} \\ \text{computing } f \end{array}$

• In $\Sigma\Pi^{[O(\sqrt{n})]}\Sigma\Pi^{[O(\sqrt{n})]}$ the polynomials computed by bottom sum gates are of degree $O(\sqrt{n})$ in n variables.

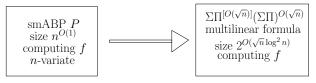
Low-depth formulas

 $\begin{array}{c} \mathrm{smABP} \ \mathrm{P} \\ \mathrm{size} \ n^{O(1)} \\ \mathrm{computing} \ f \\ n \ \mathrm{variables} \end{array}$

[Agrawal-Vinay 2008] [Tavenas 2013] $\begin{array}{c} \sum \prod^{[O(\sqrt{n})]} \sum \prod^{[O(\sqrt{n})]} \\ \text{multilinear formula} \\ \text{size } 2^{O(\sqrt{n}\log n)} \\ \text{computing } f \end{array}$

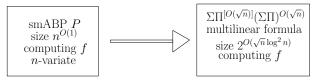
- In $\Sigma\Pi^{[O(\sqrt{n})]}\Sigma\Pi^{[O(\sqrt{n})]}$ the polynomials computed by bottom sum gates are of degree $O(\sqrt{n})$ in n variables.
- Can we ensure that the bottom sum gates compute polynomials in smaller number of variables say $O(\sqrt{n})$?

Theorem [R.,Raghavendra Rao 2018]



 $\Sigma\Pi^{[O(\sqrt{n})]}(\Sigma\Pi)^{O(\sqrt{n})}$ - sum of products of $O(\sqrt{n})$ polynomials each $O(\sqrt{n})$ -variate

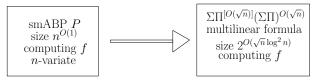
Theorem [R.,Raghavendra Rao 2018]



 $\Sigma\Pi^{[O(\sqrt{n})]}(\Sigma\Pi)^{O(\sqrt{n})}$ - sum of products of $O(\sqrt{n})$ polynomials each $O(\sqrt{n})$ -variate

Corollary

Theorem [R.,Raghavendra Rao 2018]

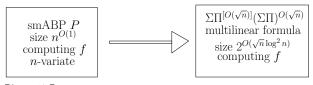


 $\Sigma\Pi^{[O(\sqrt{n})]}(\Sigma\Pi)^{O(\sqrt{n})}$ - sum of products of $O(\sqrt{n})$ polynomials each $O(\sqrt{n})$ -variate

Corollary

• Kumar, Saraf (2015) and Kayal, Saha (2015) showed a $2^{\Omega(\sqrt{n}\log n)}$ lower bound for $\Sigma\Pi^{[O(\sqrt{n})]}(\Sigma\Pi)^{[O(\sqrt{n})]}$ circuits.

Theorem [R.,Raghavendra Rao 2018]

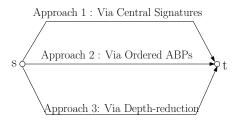


 $\Sigma\Pi^{[O(\sqrt{n})]}(\Sigma\Pi)^{O(\sqrt{n})}$ - sum of products of $O(\sqrt{n})$ polynomials each $O(\sqrt{n})$ -variate

Corollary

- Kumar, Saraf (2015) and Kayal, Saha (2015) showed a $2^{\Omega(\sqrt{n}\log n)}$ lower bound for $\Sigma\Pi^{[O(\sqrt{n})]}(\Sigma\Pi)^{[O(\sqrt{n})]}$ circuits.
- A similar depth reduction for multilinear circuits is known [Kumar et. al 2019]

Summary



Proving super-polynomial lower bound for smABPs

Thank You!