

Today

Scaling Problems

Null Cone

Alternating Minimization

Orbit Closure Intersection

Geodesic Convexity

Matrix Balancing

 $n \times n$ complex matrix A is **doubly balanced (DB)** if ℓ_2 norm of rows/columns of A are equal.

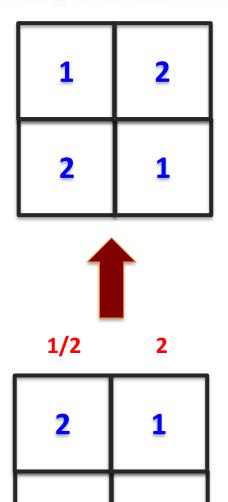
B is scaling of A if \exists complex $x_1, ..., x_n, y_1, ..., y_n$ s.t. $\prod x_i = \prod y_j = 1$ and $b_{ij} = x_i a_{ij} y_j$.

A has DB scaling if \exists scaling B of A s.t. B is DB.

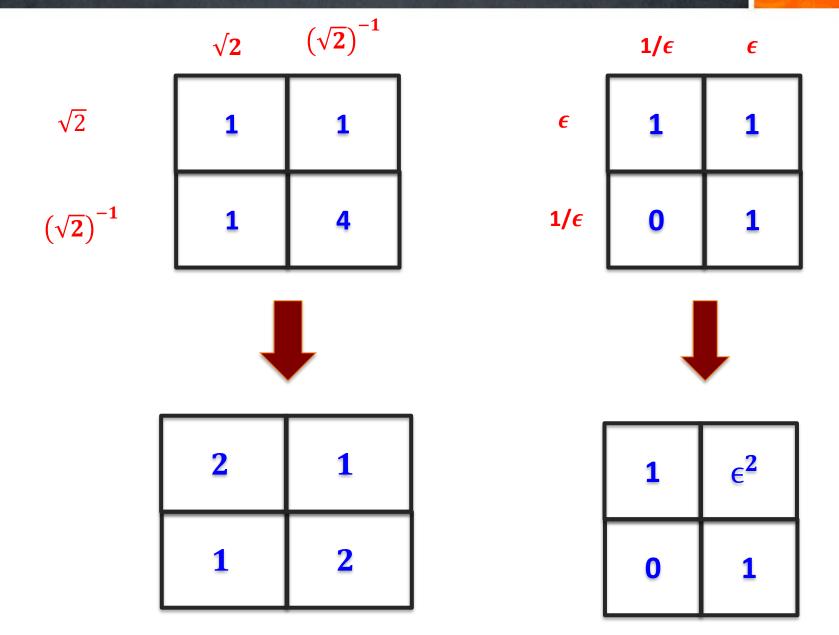
$$db(A) = \sum_{i} \left(\frac{r_i}{||A||^2} - \frac{1}{n} \right)^2 + \sum_{j} \left(\frac{c_j}{||A||^2} - \frac{1}{n} \right)^2$$

A has approx. DB scaling if $\forall \epsilon > 0$ there is scaling B_{ϵ} of A s.t. $db(B_{\epsilon}) < \epsilon$.

- 1. When does A have approx. DB scaling?
- 2. Can we find it efficiently?



Matrix Balancing - examples



Matrix Balancing – Algorithm S

Problem: $A \in M_n(\mathbb{C})$, $\epsilon > 0$, is there ϵ -scaling to DB? If yes, find it.

Algorithm S [Kruithof'37, ..., Sinkhorn'64]:

Repeat k times:

- 1. Normalize rows of A (make norm of rows equal)
- 2. Normalize columns of A (make norm of cols equal)

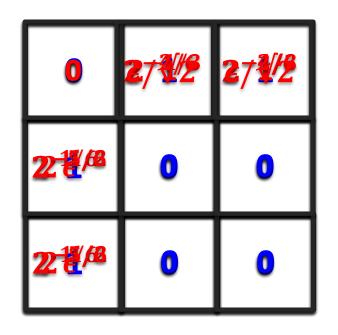
If at any point $\mathbf{db}(A) < \epsilon$, output the scaling.

Else, output: no scaling.

Questions:

- Are we making progress at all?
- How do we know when to stop? (Which k?)
- Is there an ϵ_0 such that if can scale to ϵ_0 then can scale for any ϵ ?

Algorithm S – Two Examples



10/137	2 <mark>248</mark> 7	515/23 7
B 1213	3 3/2 8	0
6/11.1	0	0

Question: How can we distinguish between these two cases?

Observation: In first example, "huge" block of zeros (Hall blocker). In second, have a matching.

Are these the only cases?

Quantum Operators – Definition

A quantum operator is any map $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ given by $(A_1, ..., A_m)$ s.t.

$$T(X) = \sum_{1 \le i \le m} A_i X A_i^{\dagger}$$

Such maps take psd matrices to psd matrices.

Dual of $\mathbf{T}(\mathbf{X})$ is map $\mathbf{T}^*: \mathbf{M}_n(\mathbb{C}) \to \mathbf{M}_n(\mathbb{C})$ given by:

$$T^*(X) = \sum_{1 \le i \le m} A_i^{\dagger} X A_i$$

- Analog of scaling?
- Double balanced?

Can scaling solve PIT?

Operator balancing

A quantum operator $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is doubly balanced (DB) if $T(I) = T^*(I) = I$.

Scaling of T(X) consists of $L, R \in SL_n(\mathbb{C})$ s.t.

$$(A_1, \ldots, A_m) \rightarrow (LA_1R, \ldots, LA_mR)$$

Distance to doubly-balanced:

$$db(T) \stackrel{\text{def}}{=} \left\| \frac{T(I)}{||A||^2} - \frac{1}{n}I \right\|_F^2 + \left\| \frac{T^*(I)}{||A||^2} - \frac{1}{n}I \right\|_F^2$$

T(X) has approx. DB scaling if $\forall \epsilon > 0$, \exists scaling L_{ϵ} , R_{ϵ} s.t. operator $T_{\epsilon}(X)$ given by $(\mathbf{L}_{\epsilon}A_{1}R_{\epsilon}, \ldots, L_{\epsilon}A_{m}R_{\epsilon})$ has $db(T_{\epsilon}) \leq \epsilon$.

- 1. When does $(A_1, ..., A_m)$ have approx. DB scaling?
- 2. Can we find it efficiently?

Operator Balancing – Algorithm G

Problem: operator $\mathbf{T}=(A_1,\ldots,A_m)$, $\epsilon>0$, can T be ϵ -scaled to double stochastic? If yes, find scaling.

Algorithm G [Gurvits' 04]:

Repeat k times:

- 1. Left normalize T(X), i.e. make $T(I) \propto I$.
- 2. Right normalize T(X), i.e. make $T^*(I) \propto I$.

If at any point $db(T) < \epsilon$ output scaling.

Else output **no scaling**.

- Which k should we choose?
- Is there an ϵ_0 such that if can scale to ϵ_0 then can scale for any ϵ ?

Analysis – General Approach

Three steps:

- 1. [Upper bound] Potential function Φ is norm of input.
 - Φ upper bounded by input size
- 2. [Progress/step] If we are ϵ -far from DB then normalization decreases value of Φ by $\times exp(O(\epsilon))$
- 3. [Lower bound] If there is scaling, "some property" tells us that $\Phi \ge \exp(-poly(n))$
 - Bounded away from zero

Approach proves correctness & running time of $poly(nb/\epsilon)$

Analysis – Revisited (matrix scaling)

Three steps:

- 1. [Upper bound] Potential function $\Phi = ||A||^2$
 - Φ upper bounded by input size
- 2. [Progress/step] If we are ϵ -far from DB then normalization decreases value of Φ by $\times exp(O(\epsilon))$
- 3. [Lower bound] A not in null cone, there is "nice" invariant p(Z) s.t. $p(A) \neq 0$.
 - p(Z) invariant $\Rightarrow p(A) = p(B)$, $\forall B \in G \cdot A$
 - p(Z) integer coeffs. $\Rightarrow |p(A)|^2 \ge 1 \Rightarrow ||B|| \ge exp(-n)$

Proves correctness & running time of $poly(n \cdot log(v)/\epsilon)$

Invariants – Matrix Scaling

Matrix Scaling:
$$ST_n \times ST_n \cap M_n(\mathbb{C})$$

Matching monomials are invariants:

$$B = XAY \Rightarrow \prod \mathbf{b}_{\mathbf{i}\sigma(i)} = \prod x_i a_{i\sigma(i)} y_{\sigma(i)} = \prod x_i y_i \cdot \prod a_{i\sigma(i)} = \prod a_{i\sigma(i)}$$

- They generate all other invariants
 - If A not in null cone then $p(A) \neq 0$ for some matching
- A integer coeffs. & $p(A) \neq 0 \Rightarrow |p(A)|^2 \geq 1$

•
$$B \in \overline{G \cdot A} \Rightarrow |p(B)|^2 = |p(A)|^2 \ge 1$$

• p(B) is a matching monomial $\Rightarrow ||B||^{2n} \geq |p(B)|^2 \geq 1$

Algorithm S – Analysis

Algorithm S: matrix A integer entries bounded by ν , param. $\epsilon > 0$. Repeat k times:

- 1. Normalize rows of A
- 2. Normalize columns of *A*

If at any point $db(A) \leq \epsilon$, output the scaling so far.

Else, output: **no scaling.**

Analysis [~LSW'00]:

- 1. $||A||^2 \le v^2 \cdot n^2$ (bound on input)
- 2. $db(A) \ge \epsilon \Rightarrow ||A||^2$ decreases by $\exp(O(\epsilon))$ after normalization (AM-GM)
- 3. $||B|| \ge 1$ for any scaling of A

Invariants - Operator Scaling

Operator Scaling: $SL_n \times SL_n \cap M_n(\mathbb{C})^m$

• Invariants: given $B_i = LA_iR$

$$det(\sum B_i \otimes Y_i) = det(\sum (LA_iR) \otimes Y_i)$$

$$= det(\sum A_i \otimes Y_i) \cdot det(L)^d det(R)^d = det(\sum A_i \otimes Y_i)$$

- They generate all other invariants
 - If (A_i) not in null cone then $p(A) \neq 0$ for some such inv.
- A_i, Y_i integer coeffs. & $p(A) \neq 0 \Rightarrow |p(A)|^2 \geq 1$

•
$$B \in \overline{G \cdot A} \Rightarrow |p(B)|^2 = |p(A)|^2 \ge 1$$

$$\Rightarrow exp(nd) \cdot ||B||^{2nd} \geq |p(B)|^2 \geq 1$$

$$||B|| \ge exp(-n)$$

Algorithm G – Analysis

Algorithm G: tuple (A_i) integer entries bounded by ν , $\epsilon > 0$. Repeat k times:

- 1. Left normalize $(A_i) \to \sum A_i A_i^{\dagger} \sim I_n$
- 2. Right normalize $(A_i) o \sum A_i^\dagger A_i \sim I_n$ If at any point $db(T) < \epsilon$, output scaling.

Else, output: **no scaling.**

Solved Null-Cone Problem!

Analysis [GGOW'15]:

- 1. $\sum ||A_i||^2 \leq v^2 \cdot n^2$ (bound on input)
- 2. $\mathbf{d}b(\mathbf{A}) \geq \epsilon \Rightarrow \sum ||A_i||^2$ decreases by $\exp(O(\epsilon))$ after normalization (AM-GM)
- 3. $\sum ||B_i||^2 \ge exp(-n)$ for any scaling of A

(Recap) Hilbert's Foundational Results

Given vector space V and group G acting (linearly) on it Null cone $\mathcal{N}_G(V) = \{v \in V \mid \mathbf{0} \in \overline{G \cdot v}\}$

[Hil'93] Given vector space V and group G acting (linearly) on it $\mathcal{N}_G(V)$ is the common zero set of all invariant polynomials. I.e.

$$v \in \mathcal{N}_G(V) \Leftrightarrow p(v) = 0 \ \forall \ p \ \text{invariant}$$

Null-cone Problem: given $v \in V$, is $v \in \mathcal{N}_G(V)$?

Two ways of solving this problem!

- Optimization: $\inf_{g \in G} (||g \cdot v||^2)$
- Algebraic: decide if all invariants vanish ("PIT")

Why are we talking about this? Where is DB?

Kempf-Ness & Non-commutative duality

Null-cone Problem: given $v \in V$, is $v \in \mathcal{N}_G(V)$ (i.e. $0 \in G \cdot v$)?

• Optimization: $cap(v) = \inf_{g \in G} (||g \cdot v||^2)$

How do we know we are "close" to the optimum?

- [KN'79] "Gradient is close to zero!"
 - Gradient "along the group action" (Lie Algebra)
 - General notion of convexity (geodesic-convexity)

[KN'79] "Non-commutative duality"

- $\mu(w)$ moment map: gradient along group action (Ankit's talk)
- Dual program: $cap_{\mu}(v) = \inf_{g \in G} ||\mu(g \cdot v)||^2$

Far from DB

$$cap_{\mu}(v) > 0 \Leftrightarrow cap(v) = 0$$

In Null cone

db(A), db(T) norms of moment map for matrix/operator scaling!

Algorithm S – Primal dual approach

Algorithm S: matrix A integer entries bounded by ν , param. $\epsilon > 0$. Repeat k times:

- 1. Normalize rows of *A*
- 2. Normalize columns of *A*

If at any point $db(A) \leq \epsilon$, output the scaling so far.

Else, output: no scaling.

Far from dual

Analysis [~LSW'00]:

- 1. $||A||^2 \le v^2 n^2$ (bound on input)
- 2. $db(A) \ge \epsilon \Rightarrow ||A||^2$ decreases by $exp(O(\epsilon))$ after normalization (AM-GM)
- 3. $||B|| \ge 1$ for any scaling of A

Progress in primal

Invariant Theory – Orbit Closure Intersection

Invariant Theory:

$$G=\mathbb{SL}_n(\mathbb{C})^2$$
, vector space $\mathbf{V}=\mathbf{M}_n(\mathbb{C})^{\mathbf{m}}$ action by L-R mult: $(A_1,\ldots,A_m) o (LA_1R,\ldots,LA_mR)$

Orbit Closure: given $v = (A_1, ..., A_m) \in V$, orbit closure is

$$\overline{\mathcal{O}_{v}} = \overline{\{(LA_{1}R, \dots, LA_{m}R) \mid (L, R) \in G\}}$$

Orbit Closure Intersection Problem: given two quantum operators

$$u=(A_1,\ldots,A_m),\ v=(B_1,\ldots,B_m)$$
, is $\overline{\mathcal{O}_u}\cap\overline{\mathcal{O}_v}\neq\emptyset$?

If v = 0 problem becomes the *null-cone problem*. From **[GGOW'16]**: connections to non-commutative PIT, non-commutative algebra, combinatorics, functional analysis...

How can we solve the orbit intersection problem for L-R action?

What do we need to do?

Why is Operator Balancing not enough?

- Orbit closures can be exponentially close and not intersect
 - Need to have $\epsilon = \exp(-poly(n))$ approximation
 - Not the case for null-cone problem
- Operator Balancing runs in time $poly(n/\epsilon)$
 - Only good for null cone

We need $\log(1/\epsilon)$ convergence!

How to get it? Different algorithm!

KN'79 – Duality Theory

[KN'79]:

- Elts of min norm in $\overline{\mathcal{O}_{(A_1,\ldots,A_m)}}$, are DB operators
 - ϵ -close to DB implies ϵ -close to min. norm
- $(B_1, ..., B_m)$ and $(C_1, ..., C_m)$ of minimum norm in $\overline{\mathcal{O}_{(A_1, ..., A_m)}}$ then equivalent under unitary

[AGLOW'18]: solving orbit closure intersection problem

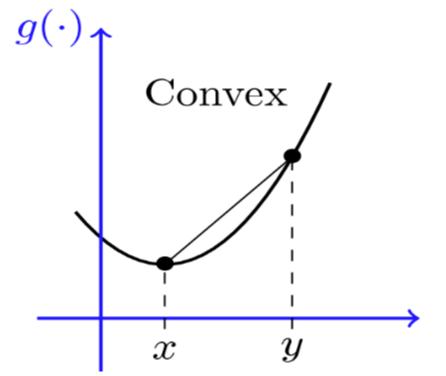
- 1. g-convex opt finds ϵ -approx to element of minimum norm (DB)
- 2. With elements of min norm, test if they are SU(n)-equivalent

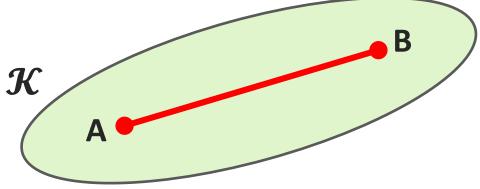
What is this g-convexity?

Convexity

Convexity (Euclidean geometry):

- Shortest path between A, B given by line
- Convex Set \mathcal{K} :
- Convex function:





Ellipsoid
Interior Point Methods

2nd order methods

What is Geodesic Convexity?

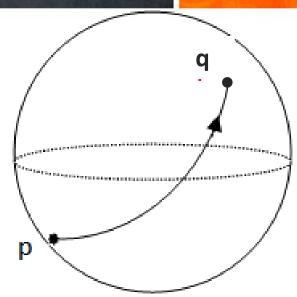
Geodesic Convexity:

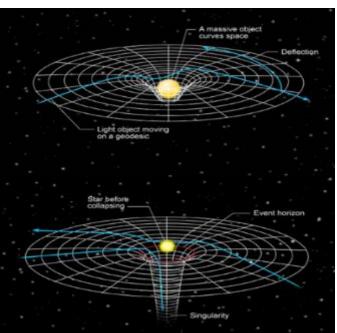
- Shortest path between A, B given by geodesic
- Geodesically Convex Set ${oldsymbol {\mathcal K}}$:

 $A, B \in \mathcal{K}$ so is its geodesics

Geodesically Convex function:

f convex along each geodesic!





Geodesic Convexity

Example (our setup): complex positive definite matrices S_+ with geodesic from A to B given by:

$$\gamma_{A,B}: [0,1] \to \mathcal{S}_+ \qquad \gamma_{A,B}(t) = A^{1/2} (A^{-1/2} B A^{-1/2})^t A^{1/2}$$

Convexity:

- $K \subseteq S_+$ g-convex if $\forall A, B \in K$ geodesic from A to B in K
- Function $f:K o\mathbb{R}$ is g-convex if univariate function $f(\gamma_{A,B}(t))$ is convex in t for any $A,B\in K$

Geodesically Convex Functions

Geodesically convex functions over S_+ :

- $\log(||g \cdot v||^2)$
- $\log(g \cdot g^{\dagger})$ (geodesically linear)

Log of capacity $\stackrel{\text{def}}{=} \log(||g \cdot v||^2) - \log(g \cdot g^{\dagger})$ g-convex!

For $\log(1/\epsilon)$ convergence, need new opt. tools for g-convex fncs.

No analog of ellipsoid or interior point method known for this setting.

Self Concordance & Self Robustness

Self concordance: $f: \mathbb{R} \to \mathbb{R}$ is self concordant if

$$|f^{\prime\prime\prime}(x)| \le 2\big(f^{\prime\prime}(x)\big)^{3/2}$$

 $f: \mathbb{R}^n \to \mathbb{R}$ self concordant if self concordant along each line.

 $h: \mathcal{S}_+ \to \mathbb{R}$ g-self concordant if self concordant along each geodesic.

Unfortunately, log of capacity **NOT** self-concordant.

Self robustness: $f: \mathbb{R} \to \mathbb{R}$ is self robust if

$$|f^{\prime\prime\prime}(x)| \leq 2 \cdot f^{\prime\prime}(x)$$

 $f: \mathbb{R}^n \to \mathbb{R}$ self robust if self robust along each line.

 $h: \mathcal{S}_+ \to \mathbb{R}$ g-self robust if self robust along each geodesic.

Log of capacity is geodesically self-robust!

Question: Can we efficiently optimize g-self robust functions?

This work – g-convex opt for self-robust fcns

Problem: given $f: \mathcal{S}_+ \to \mathbb{R}$ g-self robust, $\epsilon > 0$, and bound on initial distance R to OPT (diameter) find $X_\epsilon \in \mathcal{S}_+$ such that

$$f(X_{\epsilon}) \leq \inf_{Y \in \mathcal{S}_{+}} f(Y) + \epsilon$$

Theorem [AGLOW'18]:

There exists a deterministic $poly(n, R, log(1/\epsilon))$, algorithm for the problem above.

- Second order method, generalizing recent work of [ALOW'17, CMTV'17] for matrix scaling to g-convex setting
- Generalizes to other manifolds and metrics

Remark:

• For operator scaling, X_{ϵ} also gives us scaling ϵ -close to DB

This paper – g-convex opt for self-robust fcns

Problem: given $f: S_+ \to \mathbb{R}$ g-self robust, $\epsilon > 0$, and bound on initial distance R to OPT (diameter) find $X_{\epsilon} \in S_+$ such that

$$f(X_{\epsilon}) \leq \inf_{Y \in \mathcal{S}_{+}} f(Y) + \epsilon$$

Algorithm

- Start with $X_0 = I$, $\ell = O(R \cdot log(1/\epsilon))$.
- For t=0 to $\ell-1$
 - $F^{(t)}(D) = f(X_t^{1/2} \exp(D)X_t^{1/2}).$
 - $\triangleright Q_t$ quadratic-approximation to $f^{(t)}$.
 - $> D_t = \operatorname{argmin}_{||D||_F \le 1} Q_t(D).$ (Euclidean convex opt.)
 - $> X_{t+1} = X_t^{1/2} exp(D_t) X_t^{1/2}.$
- Return X_{ℓ} .
 - Why would we need this instead of regular scaling?
 - What is the bound for R in operator scaling?
 - [AGLOW'18] polynomial bound for R

Remarks & Recap

Why do we need $\log(1/\epsilon)$ convergence?

- Orbit closures can be exponentially close and not intersect
 - Need to have $\epsilon = \exp(-poly(n))$ approximation
 - **Not** the case for null-cone problem
- SU(n)-equivalence algorithm also approximate (and lossy)

[AGLOW'18]: solving orbit closure intersection problem

- 1. g-convex opt finds ϵ -approx to element of minimum norm (DB)
- 2. With elements of min norm, test if they are SU(n)-equivalent

Advertisement

Amazing workshop at the IAS!
Videos & materials online
https://www.math.ias.edu/ocit2018

Survey on all of this (w/ Ankit) on arxiv & on EATCS complexity column!

(link on my webpage)

Open Questions

- Complexity of null-cone problem? Of OCI?
- Better algorithms for scaling problems?
 - Best algorithms we have are $poly(R \cdot log(1/\epsilon))$

- Efficient algorithms for null-cone and orbit closure intersection for more general actions?
 - Recent developments for general scaling, though still $poly(n/\epsilon)$
 - Upcoming work gets $poly(Rlog(1/\epsilon))$, but still have bad bounds on R

Thank you!