Testing membership in varieties, algebraic natural proofs, and geometric complexity theory

Markus Bläser

Saarland University

with Christian Ikenmeyer, Gorav Jindal, Vladimir Lysikov, Anurag Pandey, and Frank-Olaf Schreyer

Orbit closure containment problems

The minrank problem

Variety membership and natural proofs

Variety membership problem

Variety membership problem

- ► "Given" a variety V and
- ightharpoonup given a point x in the ambient space
- ▶ decide whether $x \in V!$

What is the complexity of this problem?

 \longrightarrow depends on the encoding of V

Varieties given by circuits

Theorem

If V is given by a list of arithmetic circuits, then the membership problem is in coRP.

Proof:

- Let $C_1, ..., C_t$ computing $f_1, ..., f_t$ such that $V = V(f_1, ..., f_t)$.
- ► Test whether $f_1(x) = \cdots = f_t(x) = 0$ by evaluating C_τ at x. (Polynomial Identity Testing)

Remark

Can be realized as a many-one reduction to PIT.

PIT reduces to PIT for constant polynomials

Lemma

There is a many-one reduction from general PIT to PIT for constant polynomials.

Proof:

- Let C be a circuit of size s computing $f(X_1, ..., X_n)$.
- ► The degree and the bit size of the coefficients are exponentially bounded in s.
- f is not identically zero iff $f(2^{2^{s^2}}, \dots, 2^{2^{ns^2}}) \neq 0$.

Remark

The proof yields a many-one reduction from PIT to hypersurface membership testing when the surface is given as a circuit.

Further ways to specify varieties

- Explicitely in the problem: Let $V = (V_n)$ and consider V-membership
- As an orbit closure: Let $G = (G_n)$ be a sequence of groups acting on an n-dimensional ambient space. Given (x, v) decide whether $x \in \overline{G_n v}!$ (Orbit containment problem)
- By a dense subset: Given circuits computing a polynomial map, decide whether x lies in the closure of the image.

Tensor rank and matrix multiplication

Definition

 $u \otimes v \otimes w \in U \otimes V \otimes W$ is called a rank-one tensor.

Definition (Rank)

R(t) is the smallest r such that there are rank-one tensors t_1, \ldots, t_r with $t = t_1 + \cdots + t_r$.

Lemma

Let $t \in U \otimes V \otimes W$ and $t' \in U' \otimes V' \otimes W'$.

- $\blacktriangleright \ R(t \oplus t') \le R(t) + R(t')$
- $\blacktriangleright \ R(t \otimes t') \leq R(t)R(t')$

Strassen's algorithm and tensors

Observation: Tensor product \cong Recursion

Strassen's algorithm:

- $\qquad \qquad \mathsf{R}(\langle 2,2,2\rangle^{\otimes s}) \leq 7^s$

Definition (Exponent of matrix multiplication)

$$\omega = \inf\{\tau \mid R(\langle n,n,n\rangle) = O(n^\tau)\}$$

Strassen: $\omega \leq \log_2 7 \leq 2.81$

If
$$R(\langle k,m,n\rangle) \leq r$$
, then $\omega \leq 3 \cdot \frac{\log r}{\log kmn}.$

Restrictions

Definition

Let $A:U\to U'$, $B:V\to V'$, $C:W\to W'$ be homomorphism.

- $(A \otimes B \otimes C)(u \otimes v \otimes w) = A(u) \otimes B(v) \otimes C(w)$
- $\begin{array}{l} \blacktriangleright \ \, (A \otimes B \otimes C)t = \sum_{i=1}^r A(u_i) \otimes B(\nu_i) \otimes C(w_i) \text{ for} \\ t = \sum_{i=1}^r u_i \otimes \nu_i \otimes w_i. \end{array}$
- ▶ $t' \le t$ if there are A, B, C such that $t' = (A \otimes B \otimes C)t$. ("restriction").

- ▶ If $t' \le t$, then $R(t') \le R(t)$
- $\begin{array}{l} \blacktriangleright \ \, \mathsf{R}(\mathsf{t}) \leq \mathsf{r} \, \, \textit{iff} \, \mathsf{t} \leq \langle \mathsf{r} \rangle. \\ \big(\langle \mathsf{r} \rangle \, \, \textit{"diagonal"} \, \, \textit{of size } \mathsf{r}. \big) \end{array}$

Orbit problems

Let $(A,B,C)\in \mathrm{End}(U)\times \mathrm{End}(V)\times \mathrm{End}(W)$ act on $U\otimes V\otimes W$ by

$$(A, B, C)u \otimes v \otimes w = A(u) \otimes B(v) \otimes C(w).$$

and linearity.

We can interpret $t \in U' \otimes V' \otimes W'$ as an element of $U \otimes V \otimes W$ by embedding U' into U, V' into V, and W' into W.

$$R(t) \leq r \ \textit{iff} \ t \in (\operatorname{End}(U) \times \operatorname{End}(U) \times \operatorname{End}(U)) \langle r \rangle.$$

Border rank and orbit problems

- \triangleright S_r be the set of all tensors of rank r.
- $ightharpoonup X_r := \overline{S_r}$ is the set of tensors of border rank $\leq r$.

Lemma

If
$$\underline{R}(\langle k,m,n\rangle) \leq r$$
, then $\omega \leq 3 \cdot \frac{\log r}{\log kmn}.$

$$\underline{R}(t) \leq r \text{ iff } t \in \overline{(\mathrm{GL}_r \times \mathrm{GL}_r \times \mathrm{GL}_r) \langle r \rangle}.$$

Identity testing

Lemma (Valiant)

If a polynomial $f \in k[X_1, \ldots, X_n]$ can be computed by a formula of size s, then there is a matrix pencil of size $m \times m$

$$A:=A_0+X_1A_1+\cdots+X_nA_n$$

such that f = det(A). We have m = O(s).

Observation

f is identically zero iff A does not have full rank.

$$\operatorname{SL}_{\mathfrak{m}} \times \operatorname{SL}_{\mathfrak{m}}$$
 acts on (A_0, \ldots, A_n) by

$$(S,T)(A_0,...,A_n) := (SA_0T,...,SA_nT).$$

Noncommutative identity testing

Definition

Let G act on V. The *null cone* are all vectors v such that $0 \in \overline{Gv}$.

One can define a noncommutative version of the rank of a matrix pencil.

Theorem (Bürgin-Draisma)

A does not have full noncommutative rank iff A is in the null cone of the left-right-SL-action.

Theorem (Garg-Gurvits-Oliviera-Wigderson)

This null-cone problem can be solved deterministically in polynomial time.

Projections as orbit problems

Definition

- 1. $f \in K[X]$ is a projection of $g \in K[X]$ if there is a substitution $r: X \to X \cup K$ such that f = r(g). " $f \le g$ "
- 2. A p-family (f_n) is a *p-projection* of another p-family (g_n) if there is a p-bounded q such that $f_n \leq g_{q(n)}$. " $(f_n) \leq_p (g_n)$ "
- ► End_n acts on $k[X_1,...,X_n]$ by $(gh)(x) = h(g^tx)$ for $g \in \operatorname{End}_n$, $h \in k[X_1,...,X_n]$, $x \in k^n$.
- ▶ If $f \in \operatorname{End}_n h$ and h is homogeneous of degree d, then f is homogeneous of degree d
- ▶ If $f \le h$, then $\deg f$ can be smaller than $\deg h$.
- ▶ Padding: Replace f by $X_1^{\deg h \deg f}$ f.
- ▶ If $f \le h$, then $X_1^{\deg h \deg f} f \in \operatorname{End}_n h$
- ightharpoonup VP and VP_{ws} are closed under End_n .

Valiant's conjecture

Conjecture (Valiant)

 $\mathsf{VP} \neq \mathsf{VNP}$

▶ the weaker conjecture $VP_{ws} \neq VNP$ is equivalent to $per \not\leq_p det$.

Conjecture (Mulmuley & Sohoni)

 $\mathsf{VNP} \not\subseteq \overline{\mathsf{VP}_{\mathrm{ws}}}$

 $\qquad \text{equivalent to } X_{11}^{n-m}\operatorname{per}_{\mathfrak{m}}\notin \overline{\operatorname{GL}_{n^2}\det_{\mathfrak{n}}} \text{ for any } \mathfrak{n}=\operatorname{poly}(\mathfrak{m}).$

Orbit closure containment problem

We want to understand the complexity of deciding

$$x \in \overline{Gv}$$
?

- We will focus on tensors.
- Tensor rank is NP-hard (Hastad).
- Very little is known about closures.
- In partcular, we do not know any hardness results for border rank.

Orbit closure containment problems

The minrank problem

Variety membership and natural proofs

The minrank problem

Definition

Let $A_1,\ldots,A_k\in K^{m\times n}$. The *min-rank* of A_1,\ldots,A_k is the minimum number r such that there are scalars $\lambda_1,\ldots,\lambda_m$, not all being 0, with

$$\operatorname{rk}(\lambda_1 A_1 + \cdots + \lambda_k A_k) \leq r$$
.

We denote the min-rank by $\min R(A_1, ..., A_k)$.

- Can also be phrased in terms of a matrix pencil $X_1A_1 + \cdots + X_kA_k$.
- Can be phrased in terms of tensors by stacking the matrices on top of each other.

Geometric description

Theorem

Let U, V, W be vector spaces over an algebraically closed field F. The set of all tensors $T \in U \otimes V \otimes W$ with minrank at most r is Zariski closed.

Definition

We call the projective variety

$$\mathbb{P}\mathcal{M}_{U\otimes V\otimes W,r}=\{[T]\in\mathbb{P}(U\otimes V\otimes W)\mid \exists x\neq 0\colon \operatorname{rk}(Tx)\leq r\}$$

the projective minrank variety, and the corresponding affine cone

$$\mathcal{M}_{U \otimes V \otimes W, r} = \{T \in U \otimes V \otimes W \mid \exists x \neq 0 \colon \operatorname{rk}(Tx) \leq r\}$$

the affine minrank variety, or just the minrank variety.

Simple properties

Lemma

Let V' and W' be subspaces of V and W respectively. Then

$$\mathcal{M}_{U\otimes V'\otimes W',r}=\mathcal{M}_{U\otimes V\otimes W,r}\cap (U\otimes V'\otimes W').$$

Lemma

Let $\dim U = k$, $\dim V = n$ and $\dim W > s = n(k-1) + r$. Then

$$\mathcal{M}_{U\otimes V\otimes W,r}=\bigcup_{\substack{W'\subset W\\\dim W'=s}}\mathcal{M}_{U\otimes V\otimes W',r}.$$

Lemma

The variety $\mathcal{M}_{U\otimes V\otimes W,r}$ is invariant under the standard action of $\mathrm{GL}(U)\times \mathrm{GL}(V)\times \mathrm{GL}(W)$ on $U\otimes V\otimes W$.

Orbit problem

- ▶ Let $L = (F^n)^{\oplus (k-1)} \oplus F^r$, dim L = s := n(k-1) + r.
- Let L_i be the i-th summand with standard basis e_{ij} , $1 \le j \le \dim L_i$.
- ▶ Let $U = F^k$ with standard basis e_i .

$$T_{k,n,r} = e_1 \otimes (\sum_{j=1}^r e_{1j} \otimes e_{1j}) + \sum_{i=2}^k e_i \otimes (\sum_{j=1}^n e_{ij} \otimes e_{ij}),$$

▶ The group $GL(U) \times GL(L) \times GL(L)$ acts on $U \otimes L \otimes L$.

Theorem

Suppose V and W are subspaces of L. Then

$$\mathcal{M}_{U\otimes V\otimes W,r}=\overline{(\mathrm{GL}(U)\times\mathrm{GL}(L)\times\mathrm{GL}(L))T_{k,n,r}}\cap (U\otimes V\otimes W).$$

Symmetries

Theorem

If r < n, then the stabilizer of $T_{k,n,r}$ in $\operatorname{GL}_k \times \operatorname{GL}_s \times \operatorname{GL}_s$ is isomorphic to $(\operatorname{GL}_r \times \operatorname{GL}_1) \times (\operatorname{GL}_n \times \operatorname{GL}_1)^{k-1} \rtimes \mathfrak{S}_{k-1}$.

$$(\mathsf{Z}_1, z_1, \dots, \mathsf{Z}_k, z_k) \in (\mathrm{GL}_r \times \mathrm{GL}_1) \times (\mathrm{GL}_n \times \mathrm{GL}_1)^{k-1}$$

is embedded into $\operatorname{GL}_k \times \operatorname{GL}_s \times \operatorname{GL}_s$ via

$$(\operatorname{diag}(z_1,\ldots,z_k),\operatorname{diag}(Z_1,\ldots,Z_k),\operatorname{diag}((z_1Z_1)^{-T},\ldots,(z_kZ_k)^{-T}))$$

and \mathfrak{S}_{k-1} permutes the last k-1 coordinates of U and the last k-1 summands of L simultaneously.

Theorem

If stab T = stab $T_{k,n,r}$, then T lies in $(GL_k \times GL_s \times GL_s)T_{k,n,r}$. If stab T \supset stab $T_{k,n,r}$, then T $\in (GL_k \times GL_s \times GL_s)T_{k,n,r}$

Complexity

Problem (HMinRank)

Given matrices (A_1,\ldots,A_m) and a number r, decide whether $\min R(A_1,\ldots,A_m) \leq r$.

HMinRank1: special case when r = 1.

Problem ($HQuad_{S,F}$)

Given a set of quadratic forms represented by lists of coefficients from $S \subseteq F$, determine if it has a common nontrivial zero over F.

Theorem

 $\mathrm{HQuad}_{\{0,1,-1\},F}$ is NP-hard for any field F.

Complexity (2)

Theorem

Let F be a field and K be an effective subfield of F. Then $\mathrm{HMinRank1}_{K,F}$ is polynomial-time equivalent to $\mathrm{HQuad}_{K,F}$.

Corollary

Let F be a field and K be an effective subfield of F. Then $\mathrm{HMinRank1}_{K,F}$ is NP-hard.

Corollary

Given two tensors t and t', deciding whether the orbit closure of t is contained in the orbit closure of t' (under the usual $\mathrm{GL}_n \times \mathrm{GL}_n \times \mathrm{GL}_n$ action) is NP-hard.

Orbit closure containment problems

The minrank problem

Variety membership and natural proofs

How to prove lower bounds?

The generic GCT approach to proving lower bounds:

- ▶ Given a sequence of points x_n and
- ightharpoonup a sequence of varieties V_n
- $\blacktriangleright \ \ \text{we want to prove that} \ x_n \notin V_n$
- by exhibiting a sequence f_n of polynomials such that
- $f_n(x_n) \neq 0$ and f_n vanishes on V_n .

How to prove lower bounds?

The generic GCT approach to proving lower bounds:

- ▶ Given a sequence of points x_n and
- ightharpoonup a sequence of varieties V_n
- $\blacktriangleright \ \ \text{we want to prove that} \ x_n \notin V_n$
- by exhibiting a sequence f_n of polynomials such that
- $f_n(x_n) \neq 0$ and f_n vanishes on V_n .

What is the complexity of f_n ?

How to prove lower bounds?

The generic GCT approach to proving lower bounds:

- ightharpoonup Given a sequence of points x_n and
- ightharpoonup a sequence of varieties $V_{\mathfrak{n}}$
- $\blacktriangleright \ \ \text{we want to prove that} \ x_n \notin V_n$
- by exhibiting a sequence f_n of polynomials such that
- $f_n(x_n) \neq 0$ and f_n vanishes on V_n .

What is the complexity of f_n ?

Superpolynomial, if membership testing is hard!

Properties of varieties

Definition

A p-family of varieties (V_n) is polynomially definable, if for each n, there are polynomials f_1,\ldots,f_m such that V_n is the common zero set of these polynomials and $L(f_i)$ is polynomially bounded in n for all $1 \le i \le m$.

Definition

A p-family of varieties (V_n) with $V_n \subseteq F^{p(n)}$ is uniformly generated if for all n, there are polynomials $g_1, \ldots, g_{p(n)}$ over K such that

- 1. the image of $(g_1,\ldots,g_{p(n)})$ is dense in V_n ,
- 2. each g_i has polynomial circuit complexity, and
- 3. there is a polynomial time bounded Turing machine M that given $\mathfrak n$ in unary, outputs for each g_i an arithmetic circuit.

Barriers

Theorem

Let F be a field and K be an effective subfield. Let $V=(V_n)$ be a p-family of varieties such that V is polynomially definable over K and uniformly generated and the V-membership problem is NP -hard. Then $\mathsf{coNP} \subseteq \exists \mathsf{BPP}$.

- 1. Guess a circuit C of size polynomial in n.
- 2. Generate the circuits $D_1, \ldots, D_{p(n)}$ computing polynomials $g_1, \ldots, g_{p(n)}$ generating a dense subset.
- 3. Use polynomial identity testing to check whether $C(g_1, \ldots, g_{p(n)})$ is identically zero. If not, reject.
- 4. Otherwise, use polynomial identity testing to check whether $C(x_1,\ldots,x_{p(n)})$ is identically zero. If yes, reject. Otherwise accept.

Barriers (2)

Lemma

Let $(V_n) \subseteq F^{p(n)}$ be a p-family of varieties. Let (G_n) be a sequence of groups and (u_n) be a sequence of vectors such that V_n is the G_n -orbit closure of u_n . If for a generic element $g \in G_n$, the coordinate functions $(\gamma_1, \ldots, \gamma_{p(n)})$ of gu_n can be described by polynomial size circuits $(C_1, \ldots, C_{p(n)})$ and the mapping $1^n \mapsto (C_1, \ldots, C_{p(n)})$ is polynomial time computable, then (V_n) is uniformly generated.

Corollary

Let S be an effective subfield of F. For infinitely many n, there is an m, a tensor $t \in S^{m \times n \times n}$ and a value r such that there is no algebraic $\operatorname{poly}(n)$ -natural proof for the fact that the minrank of t is greater than r unless $\operatorname{coNP} \subseteq \exists \mathsf{BPP}$.

Is this the end?

- ► We construct various equations for the minrank varieties using GCT methods, even "in the regime" where the membership problem is NP-hard.
- They have polynomial size descriptions in other models, for instance, they are given by:
 - succinctly represented exponential size determinants,
 - succinctly represented exponential sums, or
 - succinct representation-theoretic objects.
- Proving that these equations do not vanish on our points of interest becomes the hard problem.