On Parameterized Lower Bounds for Multilinear Algebraic Models

Purnata Ghosal¹

Joint work with B. V. Raghavendra Rao¹

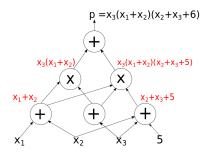
¹IIT Madras, India

Parameterized Lower Bounds

Our Result

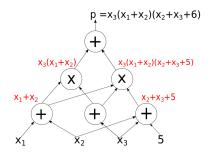
4 Conclusion

Arithmetic Circuits



 Model of computation for polynomials.

Arithmetic Circuits



- Model of computation for polynomials.
- Lower Bound Problem:
 Minimum size of circuit
 C ∈ C required to
 compute hard
 polynomial p.

Known Lower Bounds

• Superlinear $(\Omega(n \log d))$ lower bound for general arithmetic circuits computing $\sum_{i=1}^{n} x_i^{d-1}$ [Baur and Strassen, 1983].

Known Lower Bounds

- Superlinear $(\Omega(n \log d))$ lower bound for general arithmetic circuits computing $\sum_{i=1}^{n} x_i^{d-1}$ [Baur and Strassen, 1983].
- Monotone circuits over \mathbb{R} require $2^{\Omega(n)}$ size to compute Permanent [Jerrum and Snir, 1982]. [Srinivasan 2019] constructed a sequence of multilinear polynomials in MVNP that require monotone circuits of $2^{\Omega(n)}$ size.

Known Lower Bounds

- Superlinear $(\Omega(n \log d))$ lower bound for general arithmetic circuits computing $\sum_{i=1}^{n} x_i^{d-1}$ [Baur and Strassen, 1983].
- Monotone circuits over \mathbb{R} require $2^{\Omega(n)}$ size to compute Permanent [Jerrum and Snir, 1982]. [Srinivasan 2019] constructed a sequence of multilinear polynomials in MVNP that require monotone circuits of $2^{\Omega(n)}$ size.
- $\Sigma\Pi^{O(\sqrt{n})}\Sigma\Pi^{O(\sqrt{n})}$ circuits computing Determinant, Permanent have $2^{\Omega(\sqrt{n})}$ size [Gupta et al., 2014].

Need for Parameterization

• Finer analysis: Measure complexity using an additional parameter k with input size $n, k \ll n$.

Need for Parameterization

- Finer analysis: Measure complexity using an additional parameter k with input size $n, k \ll n$.
- Notion of tractability: f(k)poly(n), where f is a computable function in the parameter k, known as fixed parameter tractable or FPT.

Need for Parameterization

- Finer analysis: Measure complexity using an additional parameter k with input size $n, k \ll n$.
- Notion of tractability: f(k)poly(n), where f is a computable function in the parameter k, known as fixed parameter tractable or FPT.
- Study of parameterized view of algebraic complexity is interesting [Engels, 2016]

Need for Parameterization

• Our interest: specific parameters like degree.

Need for Parameterization

- Our interest: specific parameters like degree.
- Polynomials parameterized by degree can be computed in FPT-size.

Need for Parameterization

- Our interest: specific parameters like degree.
- Polynomials parameterized by degree can be computed in FPT-size.
- Improving the circuits to formulas would improve the space complexity of the parameterized algorithms in [Fomin et al., 2012], [Williams, 2009], [Koutis and Williams, 2009].

For multilinear models

- Results using polynomials parameterized by degree test for multilinear monomials present in the polynomial [Williams, 2009], [Koutis and Williams, 2009].
- Lower bounds on multilinear models in the classical setting do not translate to $n^{\Omega(k)}$ lower bounds [Raz, 2009].

Degree as Parameter

- There is a polynomial p of degree k, with FPT-size $\Sigma\Pi\Sigma\Pi$ circuit [G Prakash Rao 2017].
- $\Sigma \wedge \Sigma \wedge \Sigma$ circuits with top power gate fan-in restricted to o(k) require $n^{\Omega(k)}$ size to compute p.

Degree as Parameter

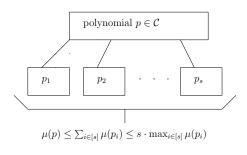
- There is a polynomial p of degree k, with FPT-size $\Sigma\Pi\Sigma\Pi$ circuit [G Prakash Rao 2017].
- $\Sigma \wedge \Sigma \wedge \Sigma$ circuits with top power gate fan-in restricted to o(k) require $n^{\Omega(k)}$ size to compute p.
- Depth-reduction in the classical setting [Agrawal and Vinay, 2008] doesn't translate directly to parameterized setting.

Degree as Parameter

- Same lower bound also obtained against $\sum \bigwedge^{o(k)} \sum \bigwedge \sum$ circuits computing SYM_n^k.
- Parameterized separation of depth-3 and depth-4 circuits.

Approach for Lower Bounds

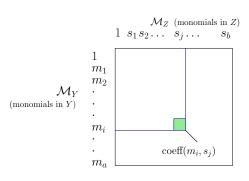
- Consider class C of arithmetic circuits of degree k.
- Fix complexity measure $\mu: \mathbb{F}[x_1,\ldots,x_n] \to \mathbb{R}^+$, sub-additive and sub-multiplicative.



Purnata Ghosal

Rank of the Coefficient Matrix

Coefficient matrix M_f of a multilinear polynomial $f = \sum_{i,j} \text{coeff}(m_i, s_j) m_i s_j$:



- Y, Z are partitions of X.
- Rank of M_f can indicate hardness of f.

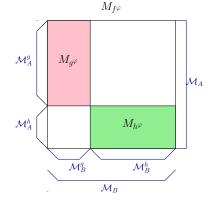
11 / 33

Example of Rank Calculation

Here,
$$X = \{x_1, x_2, x_3, x_4\}, Y = \{x_1, x_4\}, Z = \{x_2, x_3\}$$

Properties of Rank

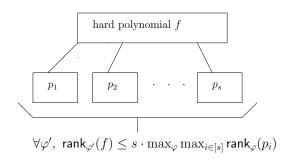
- Let g, h be polynomials, $var(g) \cap var(h) = \phi$.
- Let f = g + h, then $\operatorname{rank}(M_{f^{\varphi}}) \leq \operatorname{rank}(M_{g^{\varphi}}) + \operatorname{rank}(M_{h^{\varphi}})$.



Properties of Rank

- $f = g \times h$, $\operatorname{rank}(M_{f^{\varphi}}) \leq \operatorname{rank}(M_{g^{\varphi}}) \times \operatorname{rank}(M_{h^{\varphi}})$.
- Observation: For any multilinear polynomial f of degree k, $\operatorname{rank}_{\varphi}(f) \leq k \binom{n/2}{k/2}$, for any partition φ .

Approach to Lower bounds using Rank



-

Our Result

Theorem

For the parameterized polynomial family $f = (f_{n,2k})_{n,k \ge 0}$,

$$\operatorname{rank}_{arphi}(f_{n,2k}) = \Omega(rac{n^k}{(2k)^{2k}})$$

for every equi-partition $\varphi: X \to Y \cup Z$.

Our Result

Theorem

For the parameterized polynomial family $f = (f_{n,2k})_{n,k \ge 0}$,

$$\operatorname{rank}_{arphi}(f_{n,2k}) = \Omega(rac{n^k}{(2k)^{2k}})$$

for every equi-partition $\varphi: X \to Y \cup Z$.

Corollary

Any ROABP computing the polynomial family $f = (f_{n,2k})$ has size $\Omega(n^k/(2k)^{2k})$.

- Use the polynomial $p = \prod_{j \in [k/2]} (x_{1,j} w_{1,j} + \cdots + x_{\frac{n}{k},j} w_{\frac{n}{k},j})$.
- p has rank $n^{k/2}/k^{k/2}$ under one partition, but low rank with many others.

• Consider $K_{2k} = (V, E)$, define polynomial $p_{i,j}$ for edge (i,j) in K_{2k} .

- Consider $K_{2k} = (V, E)$, define polynomial $p_{i,j}$ for edge (i,j) in K_{2k} .
- Hard polynomial $f = \sum_{M \in \mathcal{M}} a_M \prod_{(i,j) \in M} (1 + p_{i,j})$, \mathcal{M} is family of all perfect matchings in K_{2k} .

- Consider $K_{2k} = (V, E)$, define polynomial $p_{i,j}$ for edge (i,j) in K_{2k} .
- Hard polynomial $f = \sum_{M \in \mathcal{M}} a_M \prod_{(i,j) \in M} (1 + p_{i,j})$, \mathcal{M} is family of all perfect matchings in \mathcal{K}_{2k} .
- Under any φ , there is $M \in \mathcal{M}$, $\prod_{(i,j) \in M} (1 + p_{i,j})$ is of rank $\Omega(n^k/g(k))$.

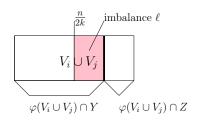
• For each vertex $i \in V$, $V_i = \{x_i, x_{i+1}, \dots, x_{i+\frac{n}{2k}-1}\}$, where $x_a \leq x_b$ iff $a \leq b$.

- For each vertex $i \in V$, $V_i = \{x_i, x_{i+1}, \dots, x_{i+\frac{n}{2k}-1}\}$, where $x_a \leq x_b$ iff $a \leq b$.
- $p_{i,j} = p(x_i, \dots, x_{j+\frac{n}{2k}-1})$ is defined on n/k ordered variables, like an interval.

- For each vertex $i \in V$, $V_i = \{x_i, x_{i+1}, \dots, x_{i+\frac{n}{2k}-1}\}$, where $x_a \leq x_b$ iff $a \leq b$.
- $p_{i,j} = p(x_i, \dots, x_{j+\frac{n}{2k}-1})$ is defined on n/k ordered variables, like an interval.
- We want edge polynomial $p_{i,j}$ to be of full rank.

$$p_{i,j} = p(x_i, \dots, x_{j+\frac{n}{2k}-1}) = \sum_{a < b} \omega_{a,b} x_a x_b$$

Rank lower bound for $p_{i,j}$



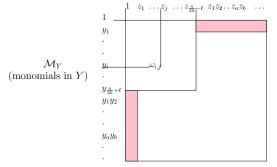
Theorem.

If $V_i \cup V_j$ is ℓ -unbalanced with respect to a partition $\varphi : X \to Y \cup Z$, then $\operatorname{rank}_{\varphi}(p_{ij}) = \Omega(n/2k - |\ell|)$.

Proof: Rank lower bound for $p_{i,j}$

Coefficient matrix for $M_{\varphi}(p_{i,j})$, where $p_{i,j} = \sum_{a < b} \omega_{a,b} x_a x_b$:

\mathcal{M}_Z (monomials in Z)



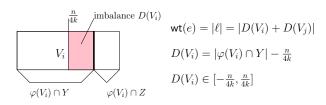
Analyzing rank of the polynomial f

- Let $p_M = \prod_{(i,j) \in M} (1 + p_{i,j})$.
- Main idea: Fix a partition φ . From any matching M, we obtain a matching N, p_N is full rank under φ .
- Assign weights $wt(e) = |\ell_e|$ for $e \in M$. Bad edges have weight above threshold t = n/2k n/2k(k-1).

Analyzing rank of the polynomial f

- If M has no bad edges, then each edge polynomial has rank $\Omega(n/2k wt(e)) = \Omega(n/2k(k-1))$, rank $\varphi(f) = \Omega(n^k/g(k))$.
- Otherwise, repeatedly swap end-points of bad edge (i,j) with good edge (i',j').
- Matching with new edges (i,j'),(i',j) or (i,i'),(j,j') has one bad edge lesser than M.

Analyzing rank of the polynomial *f*Proof Outline



- *e* is a bad edge, wt(e) > t = n/2k n/2k(k-1).
- $\sum_{e' \in M} sgn(e')wt(e') = \sum_{i \in [2k]} D(V_i) = 0.$
- By averaging, there is an edge e_1 , $sgn(e_1)wt(e_1)<-t/(k-1)=-n/2k(k-1)+n/2k(k-1)^2$.

Analyzing rank of hard polynomial *f*Proof Outline

- Let $D(V_i) = a$, $D(V_j) = b$, $D(V_{i_1}) = c$, $D(V_{j_1}) = d$. Assume a, b > 0.
- Since c + d < 0, either both c, d < 0 or one of them is negative.

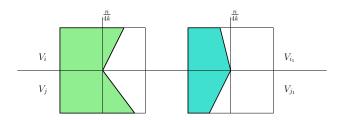
Purnata Ghosal

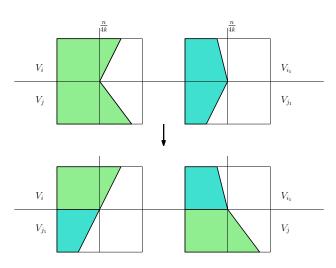
Analyzing rank of hard polynomial *f*

- Let $D(V_i) = a$, $D(V_j) = b$, $D(V_{i_1}) = c$, $D(V_{j_1}) = d$. Assume a, b > 0.
- Since c + d < 0, either both c, d < 0 or one of them is negative.
- Case 1: If c, d < 0 then |a+b| + |c+d| > |a+c| + |b+d| and matching with edges $(i, i_1), (j, j_1)$ has lower weight.

Case 1

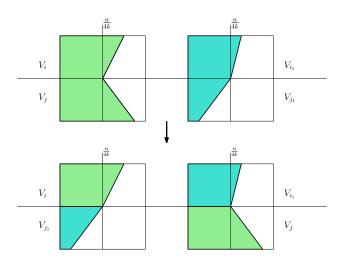
Edges e and e_1 are represented as:





New edges e' and e'_1 are more balanced.

Case 2: Proof Idea when $c \ge 0$, d < 0



Proof Outline: Case 2

- Let $c \ge 0$, d < 0. Now, $c + d < -n/2k(k-1) + n/2k(k-1)^2$ and d > -n/4k. So, $c \le n/4k n/2k(k-1) + n/2k(k-1)^2$.
- Then if c > a, b,

$$a + b < 2c \le n/2k - n/k(k-1) + n/k(k-1)^2$$
.

But
$$a + b \ge n/2k - n/2k(k-1)$$
.

Proof Outline: Case 2

- Subcase 1: If a > c, a + b > b + c, matching with edge pair $(i, j_1), (j, i_1)$ is preferred.
- Subcase 2: Similarly for b > c, a + b > a + c matching with edges $(i, i_1), (j_1, j)$ has higher rank.

Application: Size Lower Bound on ROABP

• Consider any ordering on the variables.

IIT Madras

31 / 33

Application: Size Lower Bound on ROABP

- Consider any ordering on the variables.
- Maximum rank of a polynomial computable by a ROABP is bounded by the width of the $(n/2)^{th}$ layer.

Application: Size Lower Bound on ROABP

- Consider any ordering on the variables.
- Maximum rank of a polynomial computable by a ROABP is bounded by the width of the $(n/2)^{th}$ layer.
- Width is bounded by size s. By previous theorem, we obtain the required bound.

More Results

- The family of hard polynomials $f_{n,2k}$ is of depth-4 and FPT size.
- We also construct hard polynomial h that is sum of 3 read-once polynomials.
- h achieves similar rank with a loss of constant factor in the exponent of n.

Thank you! Questions?