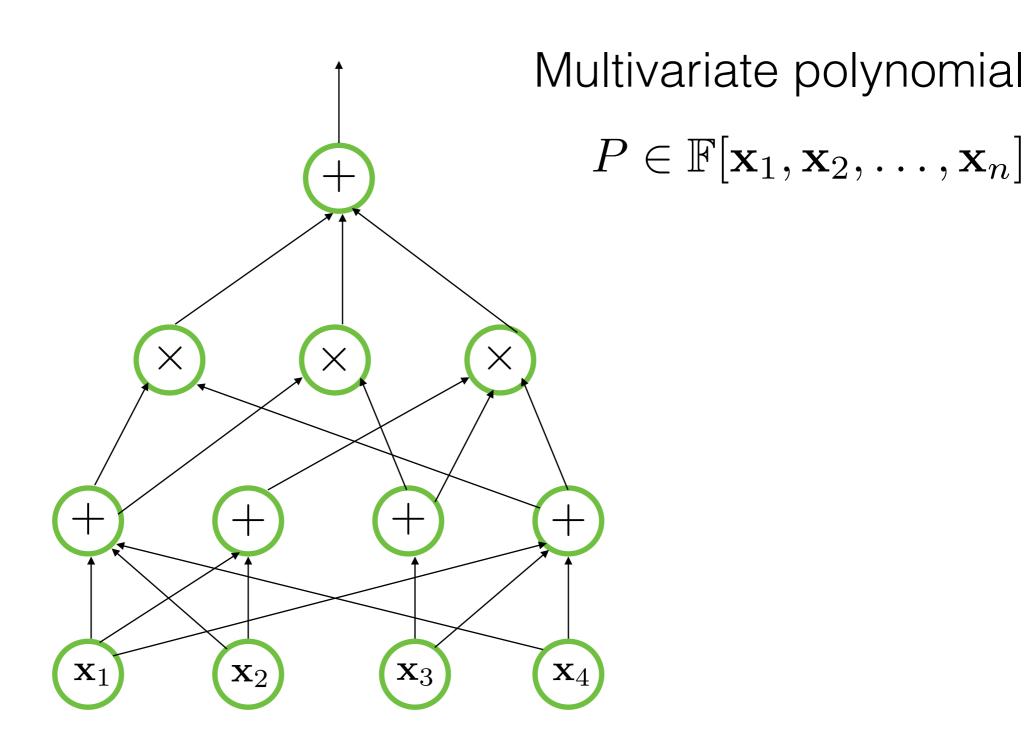
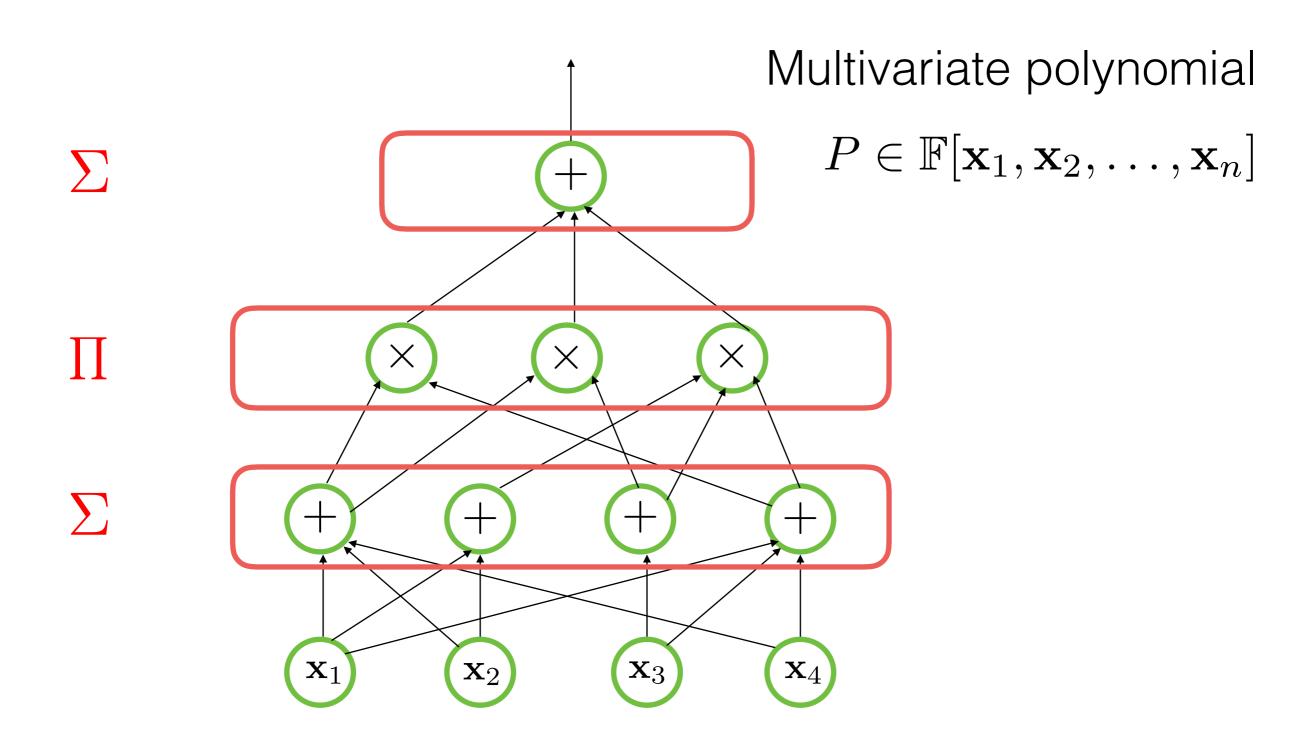
Some Closure Results for Polynomial Factorization and Applications

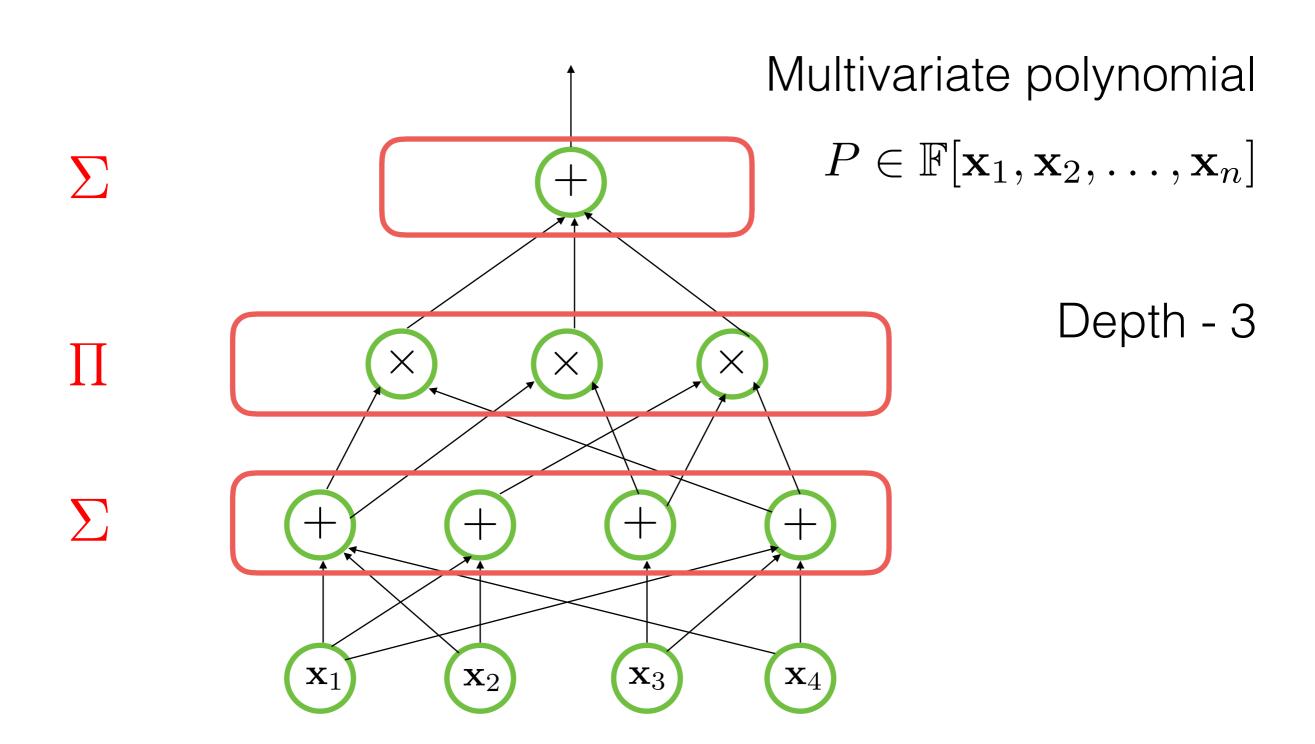
Chi-Ning Chou

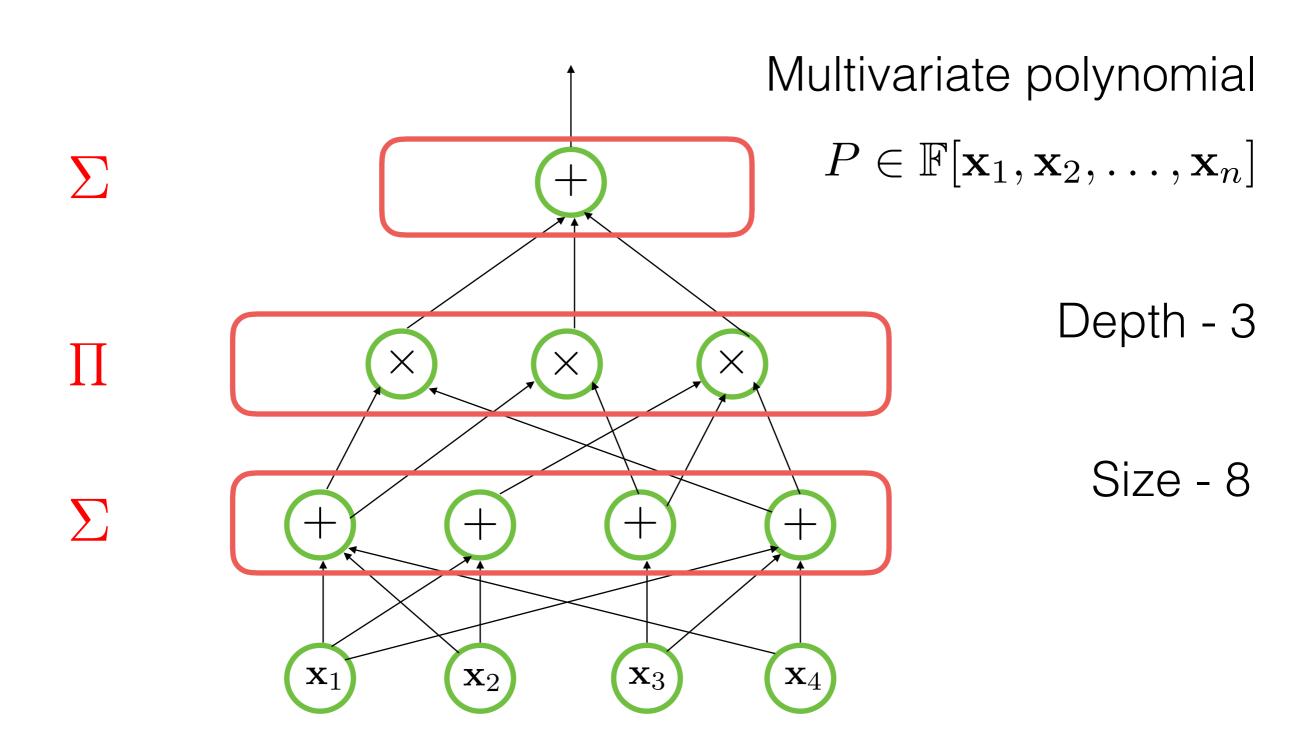
Harvard University

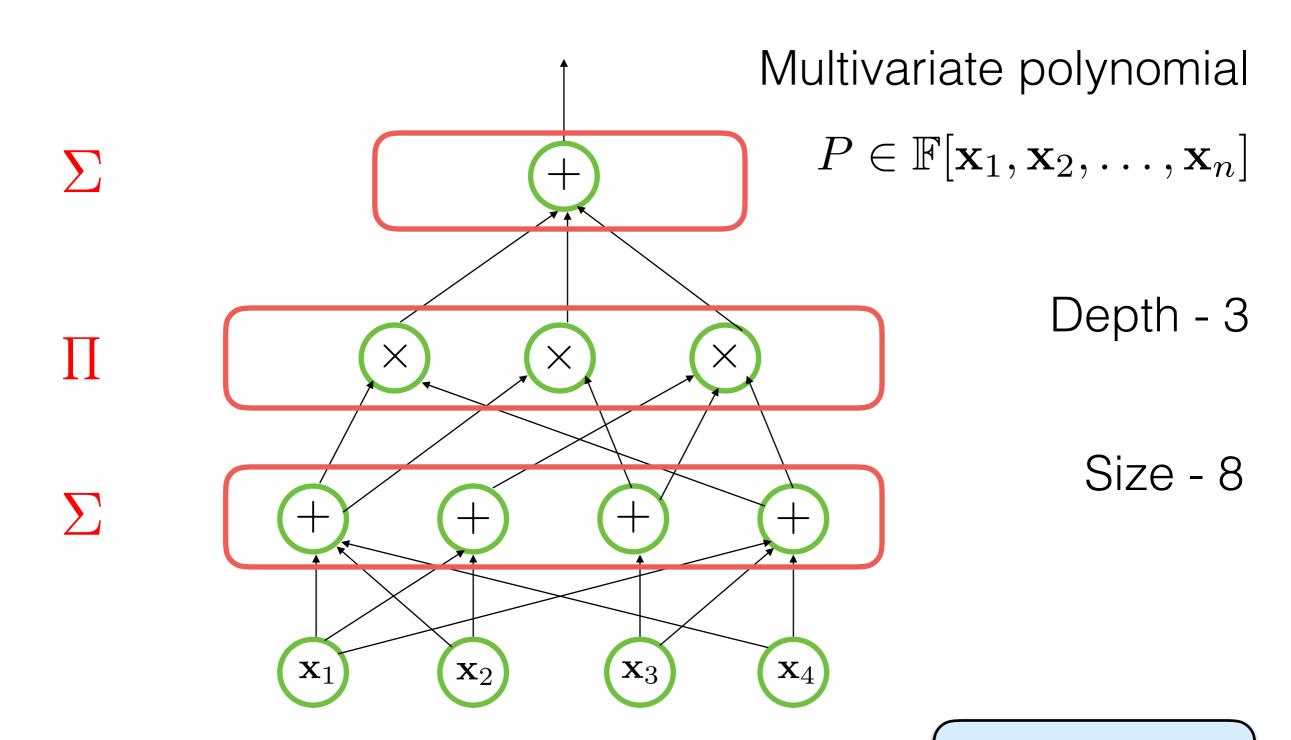
Joint work with Mrinal Kumar and Noam Solomon











*Assume $\mathbb{F} = \mathbb{Q}$

$$\mathcal{C} = \left\{ \{f_1, f_2, \dots \} \right\}$$

$$\mathcal{C} = \Big\{ \{f_1, f_2, \dots \} \Big\}$$
 For simplicity, denote $f = f_n$.

$$\mathcal{C} = \Big\{ \{f_1, f_2, \dots \} \Big\}$$
 For simplicity, denote $f = f_n$.

 VP: Polynomials computed by poly(n) size, poly(n) degree arithmetic circuits.

$$\mathcal{C} = \Big\{ \{f_1, f_2, \dots \} \Big\}$$
 For simplicity, denote $f = f_n$.

- VP: Polynomials computed by poly(n) size, poly(n) degree arithmetic circuits.
- Depth- Δ : Polynomials computed by poly(n) size, poly(n) degree, and depth- Δ arithmetic circuits.

$$\mathcal{C} = \Big\{ \{f_1, f_2, \dots \} \Big\}$$
 For simplicity, denote $f = f_n$.

- VP: Polynomials computed by poly(n) size, poly(n) degree arithmetic circuits.
- Depth- Δ : Polynomials computed by poly(n) size, poly(n) degree, and depth- Δ arithmetic circuits.
- Many more such as VF, VBP, VNP...

• Lower bounds:

Lower bounds:

Goal: Find an explicit f such that $f \notin C$.

Lower bounds:

Goal: Find an explicit f such that $f \notin C$.

• Polynomial identity test (PIT):

Lower bounds:

Goal: Find an explicit f such that $f \notin C$.

Polynomial identity test (PIT):

Goal: Given $f, g \in \mathcal{C}$, does $f(x) = g(x) \ \forall x$?

Lower bounds:

Goal: Find an explicit f such that $f \notin C$.

Polynomial identity test (PIT):

Goal: Given $f, g \in \mathcal{C}$, does $f(x) = g(x) \ \forall x$?

Lower bounds:

Goal: Find an explicit f such that $f \notin C$.

• Polynomial identity test (PIT):

Goal: Given $f, g \in \mathcal{C}$, does $f(x) = g(x) \ \forall x$?

Polynomial factorization:

Goal: Given $f \in \mathcal{C}$ where f = gh, find g.

Lower bounds:

Goal: Find an explicit f such that $f \notin C$.

• Polynomial identity test (PIT):

Goal: Given $f, g \in \mathcal{C}$, does $f(x) = g(x) \ \forall x$?

Polynomial factorization:

Goal: Given $f \in \mathcal{C}$ where f = gh, find g.

• Let $f = g^e h$

• Let $f = g^e h$, g is irreducible

• Let $f = g^e h$, g is irreducible and g, h coprime.

- Let $f = g^e h$, g is irreducible and g, h coprime.
- Algorithmic problem: Given f, output g.

- Let $f = g^e h$, g is irreducible and g, h coprime.
- Algorithmic problem: Given f, output g.
- Closure problem: If $f \in \mathcal{C}$, does $g \in \mathcal{C}'$?

- Let $f = g^e h$, g is irreducible and g, h coprime.
- Algorithmic problem: Given f, output g.
- Closure problem: If $f \in \mathcal{C}$, does $g \in \mathcal{C}'$?
- Applications:

- Let $f = g^e h$, g is irreducible and g, h coprime.
- Algorithmic problem: Given f, output g.
- Closure problem: If $f \in \mathcal{C}$, does $g \in \mathcal{C}'$?
- Applications:
 - Decoding Reed-Solomon codes.

- Let $f = g^e h$, g is irreducible and g, h coprime.
- Algorithmic problem: Given f, output g.
- Closure problem: If $f \in \mathcal{C}$, does $g \in \mathcal{C}'$?
- Applications:
 - Decoding Reed-Solomon codes.
 - Hardness versus Randomness.

- Let $f = g^e h$, g is irreducible and g, h coprime.
- Algorithmic problem: Given f, output g.
- Closure problem: If $f \in \mathcal{C}$, does $g \in \mathcal{C}'$?
- Applications:
 - Decoding Reed-Solomon codes.
 - Hardness versus Randomness.

	\mathcal{C}	\mathcal{C}'
[Kal89]	VP	VP

	\mathcal{C}	\mathcal{C}'
[Kal89]	VP	VP
[DSY09, C KS18]	$\bigcup_{\Delta\in\mathbb{N}}\mathrm{Depth*-}\Delta$	$\bigcup_{\Delta\in\mathbb{N}}\mathrm{Depth-}\Delta$

^{*} There are some degree constraints.

	\mathcal{C}	\mathcal{C}'
[Kal89]	VP	VP
[DSY09, C KS18]	$\bigcup_{\Delta\in\mathbb{N}}\mathrm{Depth*-}\Delta$	$\bigcup_{\Delta\in\mathbb{N}}\mathrm{Depth-}\Delta$
[DSS18, C KS18]	$\frac{\operatorname{VF}(n^{\log n})}{(\operatorname{resp. VBP}(n^{\log n}), \operatorname{VNP}(n^{\log n}))}$	$\frac{\operatorname{VF}(n^{\log n})}{(\operatorname{resp. VBP}(n^{\log n}), \operatorname{VNP}(n^{\log n}))}$

^{*} There are some degree constraints.

	\mathcal{C}	\mathcal{C}'
[Kal89]	VP	VP
[DSY09, C KS18]	$\bigcup_{\Delta\in\mathbb{N}}\mathrm{Depth*-}\Delta$	$\bigcup_{\Delta\in\mathbb{N}}\mathrm{Depth-}\Delta$
[DSS18, C KS18]	$\frac{\operatorname{VF}(n^{\log n})}{(\operatorname{resp. VBP}(n^{\log n}), \operatorname{VNP}(n^{\log n}))}$	$\frac{\operatorname{VF}(n^{\log n})}{(\operatorname{resp. VBP}(n^{\log n}), \operatorname{VNP}(n^{\log n}))}$
[C KS18]	VNP	VNP

^{*} There are some degree constraints.

Polynomial Factorization (Closure Problem)

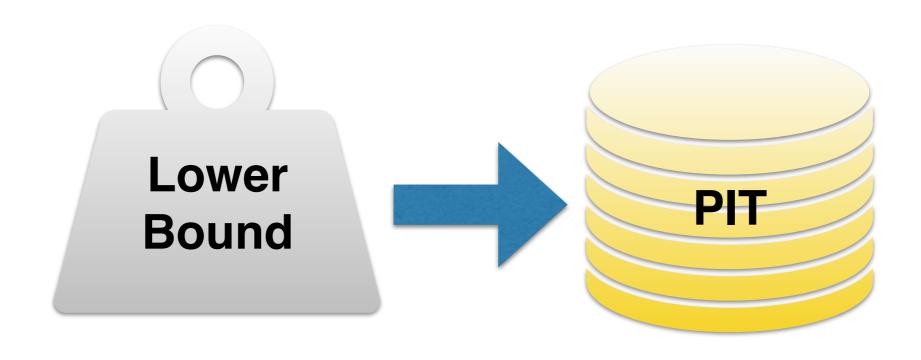
Goal: If $f \in \mathcal{C}$ then $g \in \mathcal{C}'$.

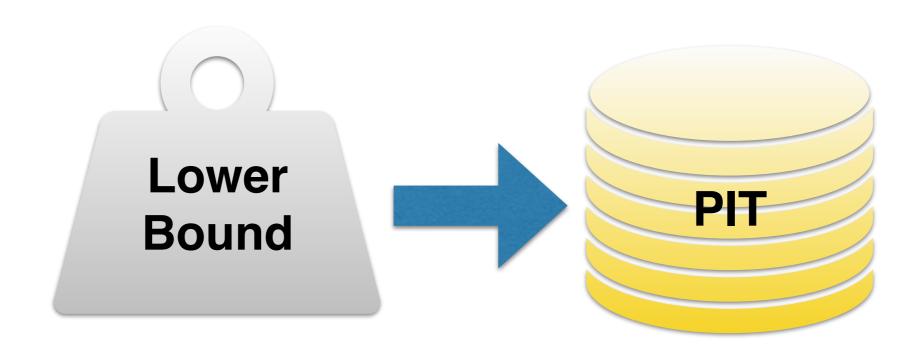
existential

	\mathcal{C}	\mathcal{C}'
[Kal89]	VP	VP
[DSY09, C KS18]	$\bigcup_{\Delta\in\mathbb{N}}\mathrm{Depth*-}\Delta$	$\bigcup_{\Delta\in\mathbb{N}}\mathrm{Depth-}\Delta$
[DSS18, C KS18]	$\operatorname{VF}(n^{\log n}))$ (resp. $\operatorname{VBP}(n^{\log n}), \operatorname{VNP}(n^{\log n})$)	$\operatorname{VF}(n^{\log n}))$ (resp. $\operatorname{VBP}(n^{\log n}), \operatorname{VNP}(n^{\log n})$)
[C KS18]	VNP	VNP

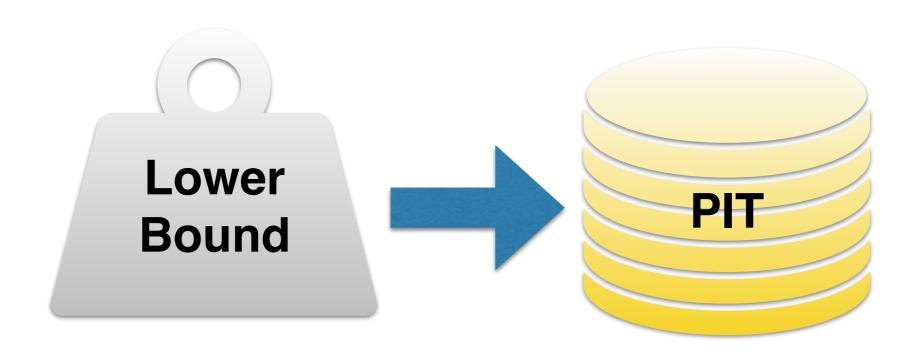
^{*} There are some degree constraints.

Application:

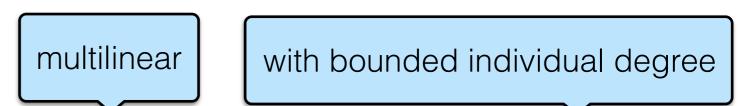




• [KI04]: Permanent not in VP => PIT for VP



• [KI04]: Permanent not in VP => PIT for VP



• [DSY09]: $\omega(\text{poly}(n))$ for $\text{Depth-}\Delta => \text{PIT}$ for $\text{Depth-}\Delta - 5$



• [KI04]: Permanent not in VP => PIT for VP

multilinear with bounded individual degree

• [DSY09]: $\omega(\text{poly}(n))$ for $\text{Depth-}\Delta => \text{PIT}$ for $\text{Depth-}\Delta - 5$

multilinear with degree $O(\log^2 n/\log^2 \log n)$

• [CKS18]: $\omega(\text{poly}(n))$ for Depth- $\Delta => \text{PIT}$ for Depth- $\Delta - 5$

Goal: Find an explicit $\{f_n\}$ such that $\{f_n\} \notin \mathcal{C}$.

• [S73, BS83] An $\Omega(n \log n)$ lower bound for general arithmetic circuits.

- [S73, BS83] An $\Omega(n \log n)$ lower bound for general arithmetic circuits.
- [NW97, KS14, KLSS14, FLMS14, KS17] Exponential lower bounds for homogeneous depth-3, depth-4, depth-5 circuits.

- [S73, BS83] An $\Omega(n \log n)$ lower bound for general arithmetic circuits.
- [NW97, KS14, KLSS14, FLMS14, KS17] Exponential lower bounds for homogeneous depth-3, depth-4, depth-5 circuits.
- [R10] $n^{1+\Omega(1)}$ lower bound for constant depth circuits.

- [S73, BS83] An $\Omega(n \log n)$ lower bound for general arithmetic circuits.
- [NW97, KS14, KLSS14, FLMS14, KS17] Exponential lower bounds for homogeneous depth-3, depth-4, depth-5 circuits.
- [R10] $n^{1+\Omega(1)}$ lower bound for constant depth circuits.
- No lower bounds for \overline{VP} and \overline{Depth} - Δ .

- [S73, BS83] An $\Omega(n \log n)$ lower bound for general arithmetic circuits.
- [NW97, KS14, KLSS14, FLMS14, KS17] Exponential lower bounds for homogeneous depth-3, depth-4, depth-5 circuits.
- [R10] $n^{1+\Omega(1)}$ lower bound for constant depth circuits.
- No lower bounds for \overline{VP} and $\overline{Depth-\Delta}$.

Goal: Given $f \in \mathcal{C}$, determine whether $f \equiv 0$.

Goal: Given $f \in \mathcal{C}$, determine whether $f \equiv 0$.

Goal: Given $f \in \mathcal{C}$, determine whether $f \equiv 0$.

• Easy when using randomness: Schwartz-Zippel.

Goal: Given $f \in \mathcal{C}$, determine whether $f \equiv 0$.

- Easy when using *randomness*: Schwartz-Zippel. sub-exponential time
- No non-trivial *deterministic* PIT for \overline{VP} and $\overline{Depth-\Delta}$.

Goal: Given $f \in \mathcal{C}$, determine whether $f \equiv 0$.

• Easy when using randomness: Schwartz-Zippel.

sub-exponential time

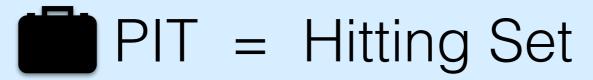
• No non-trivial *deterministic* PIT for \overline{VP} and $\overline{Depth-\Delta}$.

Goal: Given $f \in \mathcal{C}$, determine whether $f \equiv 0$.

• Easy when using randomness: Schwartz-Zippel.

sub-exponential time

• No non-trivial *deterministic* PIT for \overline{VP} and $\overline{Depth-\Delta}$.



Goal: Given $f \in \mathcal{C}$, determine whether $f \equiv 0$.

• Easy when using randomness: Schwartz-Zippel.

sub-exponential time

• No non-trivial *deterministic* PIT for \overline{VP} and $\overline{Depth-\Delta}$.

 ${\mathcal P}$ is a hitting set for ${\mathcal C}$ if for any **non-zero** $f\in {\mathcal C}$

$$\exists \mathbf{a} \in \mathcal{P}, \ f(\mathbf{a}) \neq 0.$$

Goal: Explicitly construct a hitting set \mathcal{P} for \mathcal{C} .

 ${\mathcal P}$ is a hitting set for ${\mathcal C}$ if for any **non-zero** $f\in{\mathcal C}$

$$\exists \mathbf{a} \in \mathcal{P}, \ f(\mathbf{a}) \neq 0.$$

Goal: Explicitly construct a hitting set \mathcal{P} for \mathcal{C} .

• Running time is $poly(n, |\mathcal{P}|)$.

 ${\mathcal P}$ is a hitting set for ${\mathcal C}$ if for any **non-zero** $f\in {\mathcal C}$

$$\exists \mathbf{a} \in \mathcal{P}, \ f(\mathbf{a}) \neq 0.$$

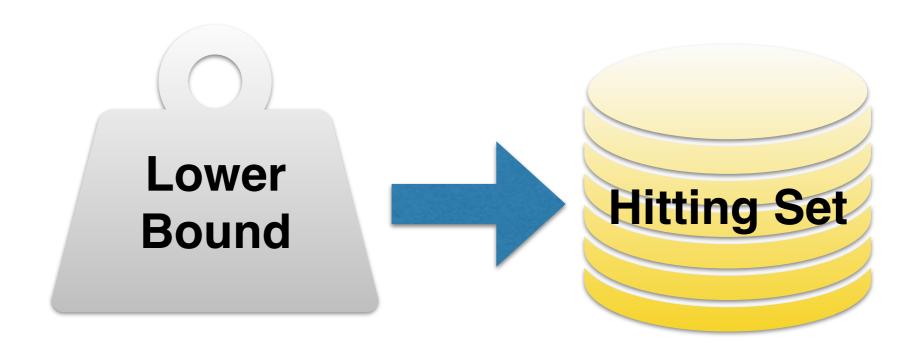
Goal: Explicitly construct a hitting set \mathcal{P} for \mathcal{C} .

- Running time is $poly(n, |\mathcal{P}|)$.
- No sub-exponential size hitting set for \overline{VP} , $\overline{Depth-\Delta}$.

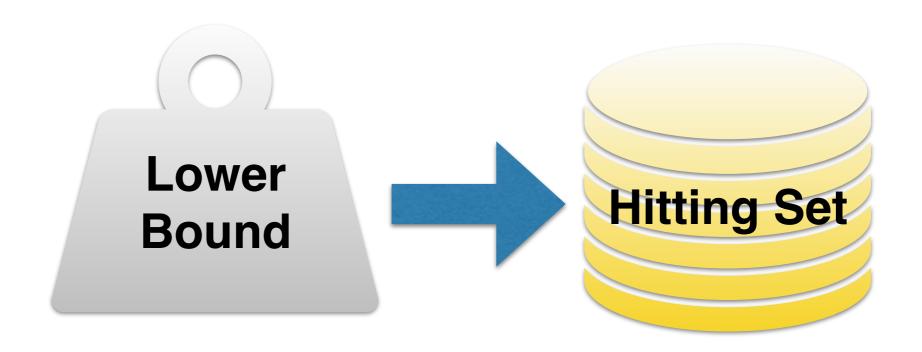
 ${\mathcal P}$ is a hitting set for ${\mathcal C}$ if for any **non-zero** $f\in {\mathcal C}$

$$\exists \mathbf{a} \in \mathcal{P}, \ f(\mathbf{a}) \neq 0.$$

Hardness versus Randomness framework [KI04, DSY09, **C**KS18]



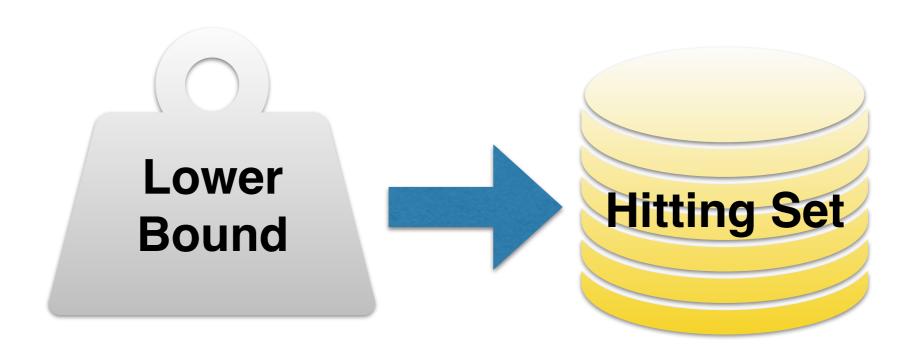
Hardness versus Randomness framework [KI04, DSY09, **C**KS18]



Nisan-Wigderson generator

Reduce #variables from $n \rightarrow \ell$

Hardness versus Randomness framework [KI04, DSY09, **C**KS18]

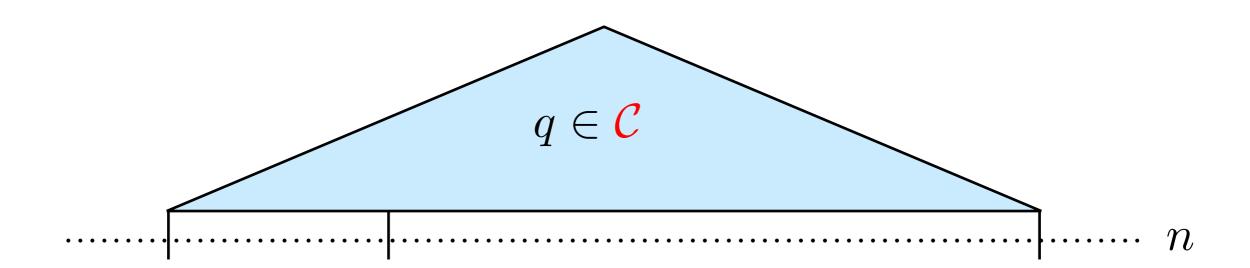


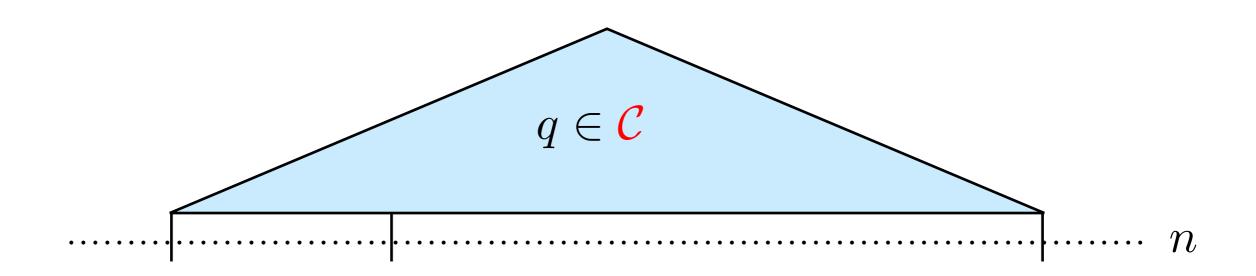
Nisan-Wigderson generator

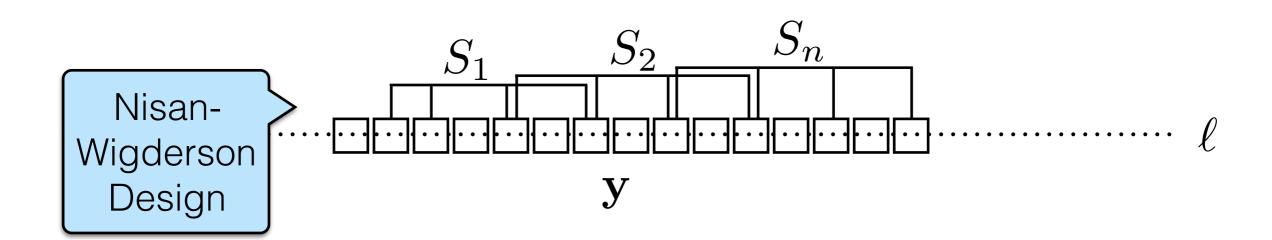
Reduce #variables from $n \to \ell$

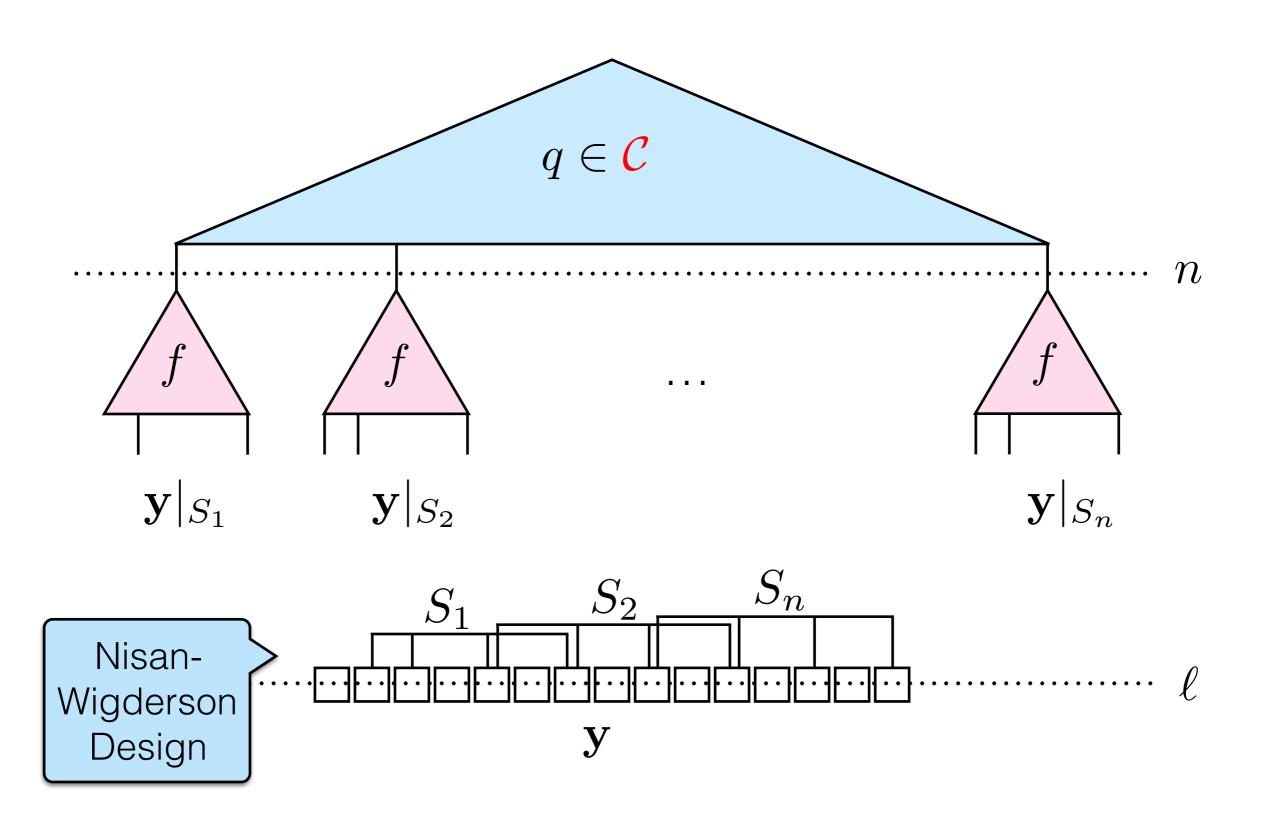
Schwartz-Zippel lemma

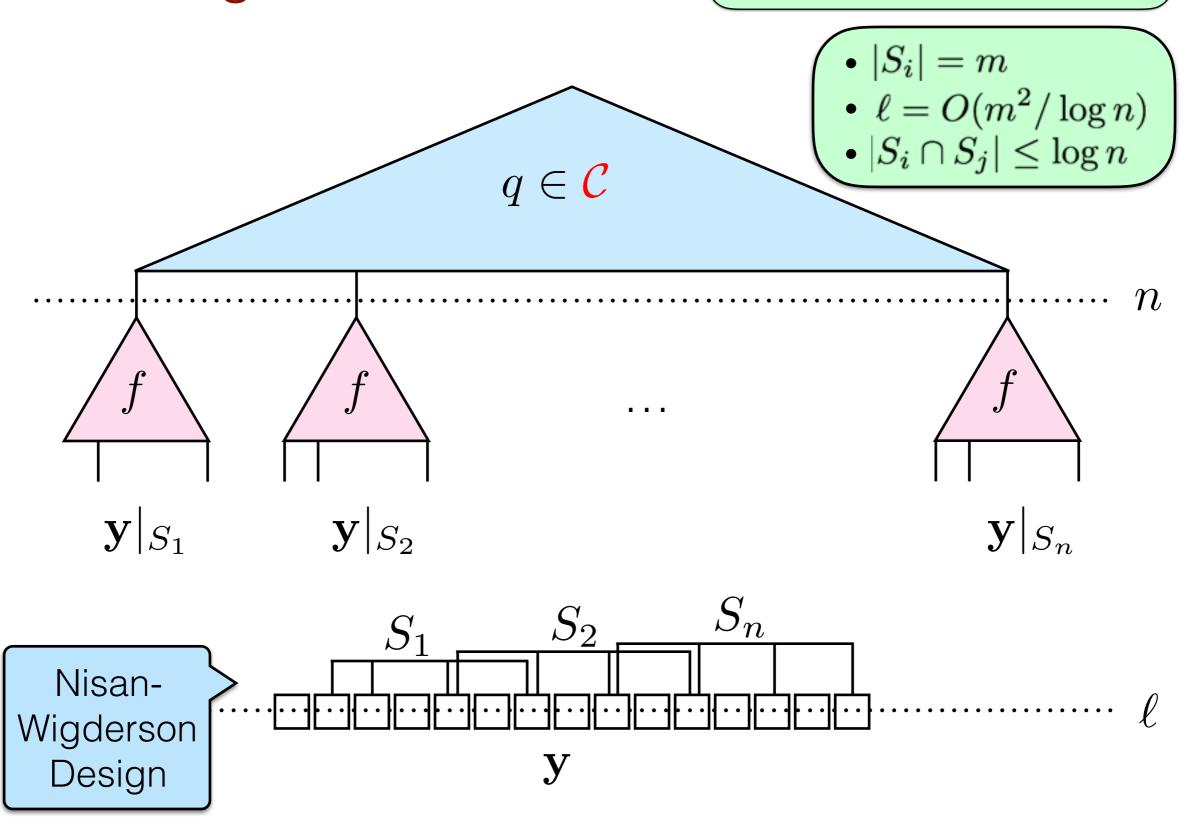
Brute-force to find hitting set in time $d^{O(\ell)}$



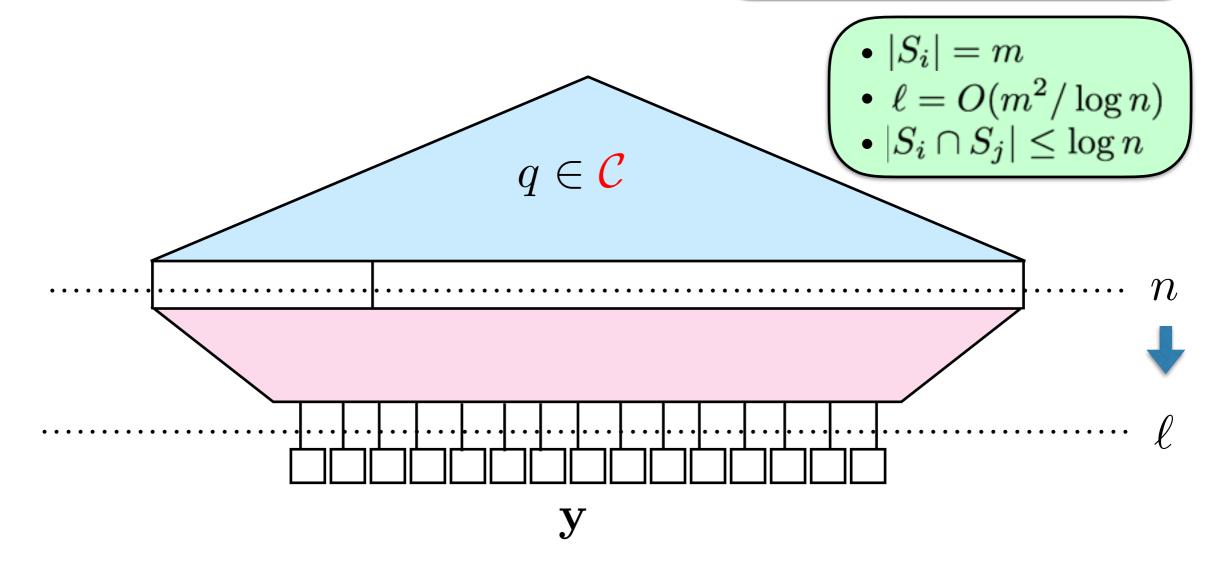




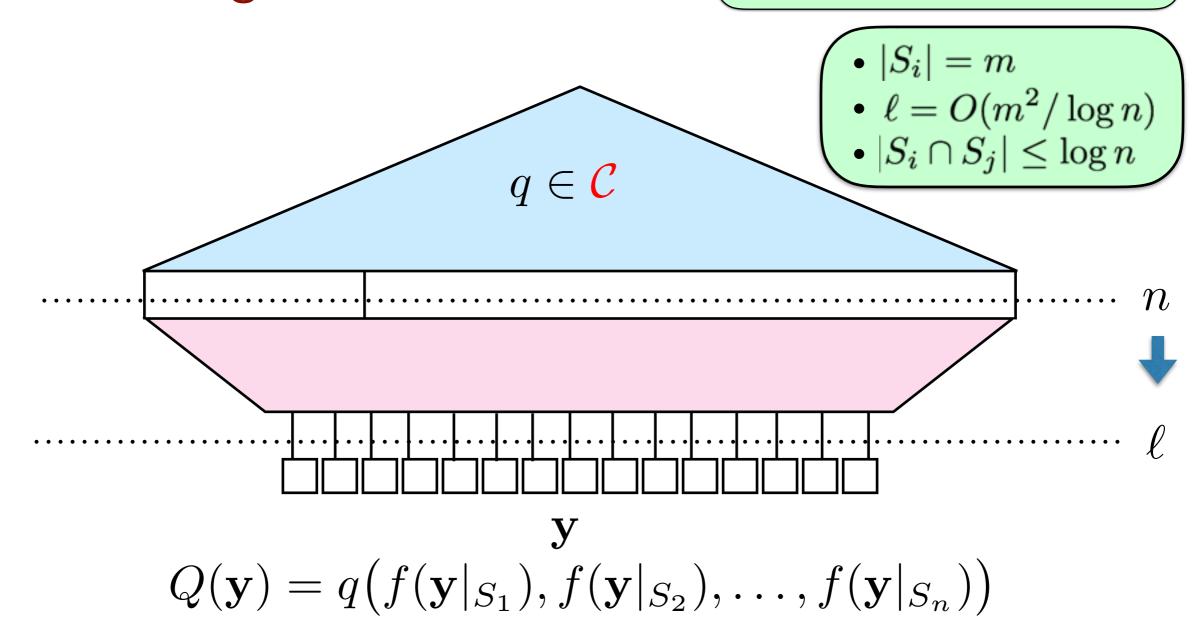




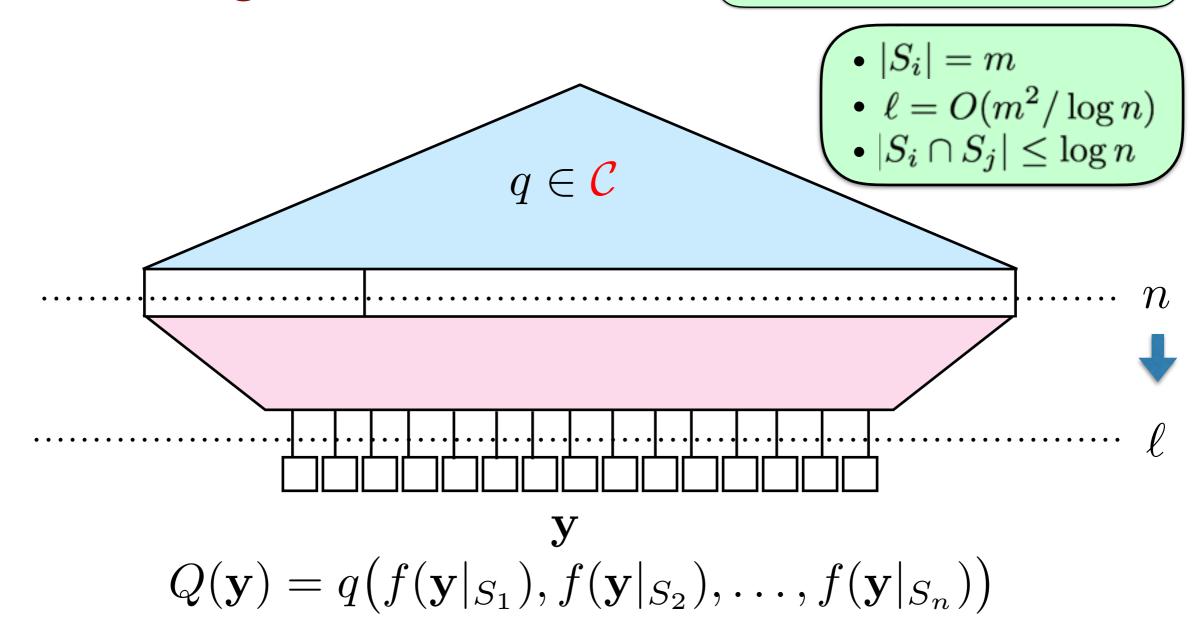
Goal: Hitting set $\mathcal{P} \subseteq \mathbb{F}^n$ for $\boldsymbol{\mathcal{C}}$



Goal: Hitting set $\mathcal{P} \subseteq \mathbb{F}^n$ for \mathcal{C}



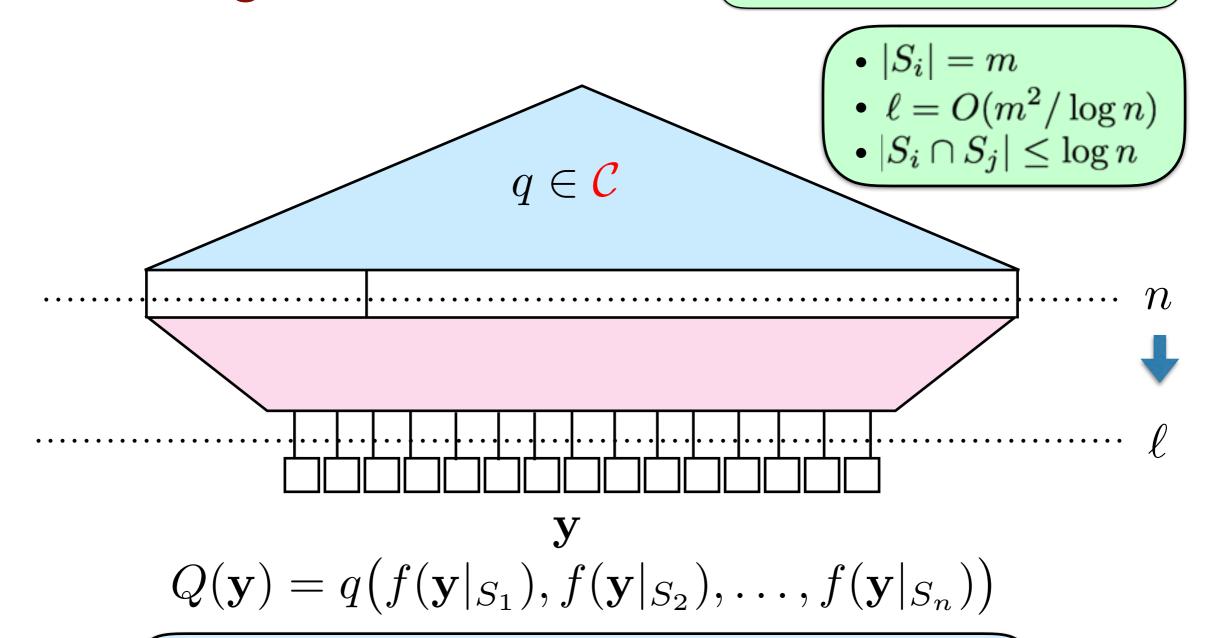
Goal: Hitting set $\mathcal{P} \subseteq \mathbb{F}^n$ for \mathcal{C}



Lemma [Schwartz, Zippel]

There exists hitting set of size $d^{O(\ell)}$ for degree d^{ℓ} -variate polynomials.

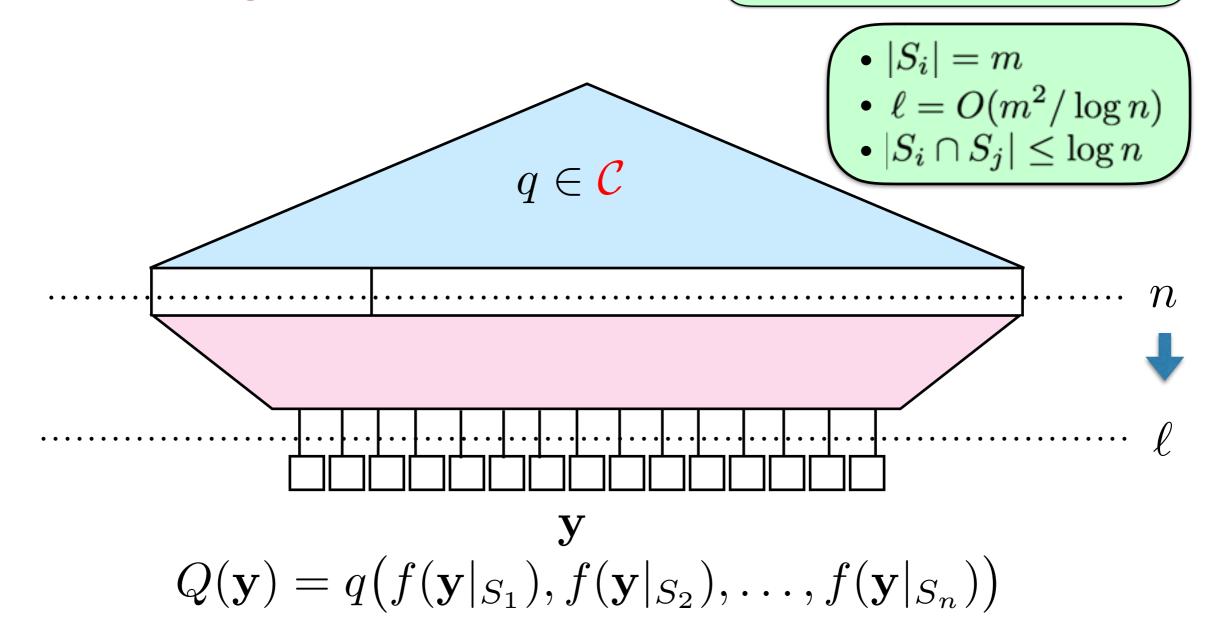
Goal: Hitting set $\mathcal{P} \subseteq \mathbb{F}^n$ for \mathcal{C}



Lemma [Schwartz, Zippel]

$$\ell = o(n) \Rightarrow 2^{o(n)} \text{ time } \square$$

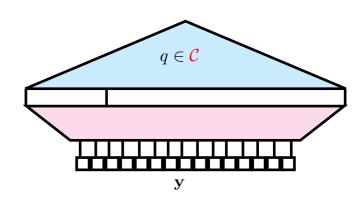
Goal: Hitting set $\mathcal{P} \subseteq \mathbb{F}^n$ for \mathcal{C}



Want: If $q \not\equiv 0$, then $Q \not\equiv 0$.

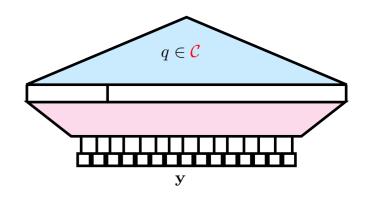
Key Lemma

Goal: If $q \not\equiv 0$, then $Q \not\equiv 0$.



$$Q(\mathbf{y}) = q(f(\mathbf{y}|S_1), f(\mathbf{y}|S_2), \dots, f(\mathbf{y}|S_n))$$

Key Lemma



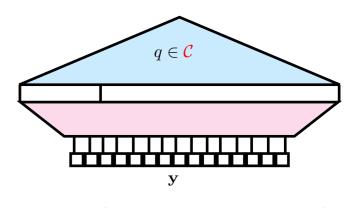
$$Q(\mathbf{y}) = q(f(\mathbf{y}|S_1), f(\mathbf{y}|S_2), \dots, f(\mathbf{y}|S_n))$$

Goal: If $q \not\equiv 0$, then $Q \not\equiv 0$.

Proof structure:

Suppose $Q \equiv 0$, then f can be computed by a small circuit.

Key Lemma



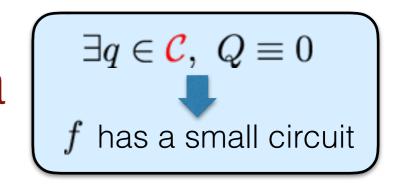
$$Q(\mathbf{y}) = q(f(\mathbf{y}|S_1), f(\mathbf{y}|S_2), \dots, f(\mathbf{y}|S_n))$$

Goal: If $q \not\equiv 0$, then $Q \not\equiv 0$.

Proof structure:

Suppose $Q \equiv 0$, then f can be computed by a small circuit.

To show f having a small circuit, we need **polynomial** factorization!



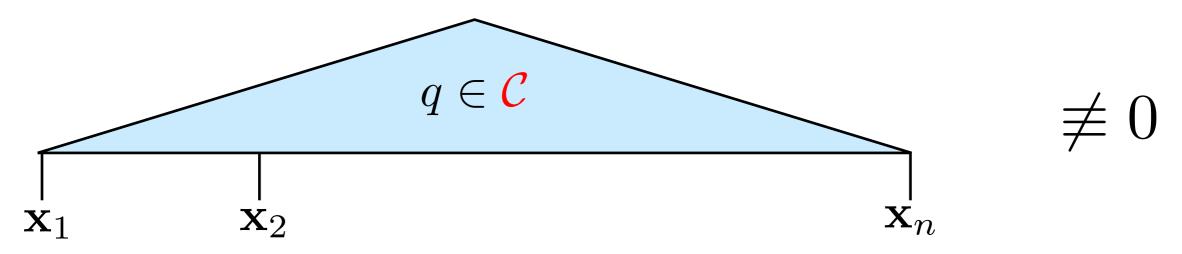
$$\exists q \in \mathcal{C}, \ Q \equiv 0$$
 f has a small circuit

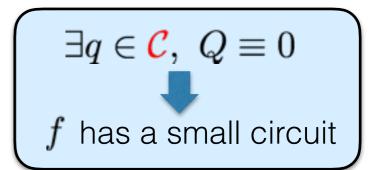
If
$$Q(\mathbf{y}) = q(f(\mathbf{y}|_{S_1}), f(\mathbf{y}|_{S_2}), \dots, f(\mathbf{y}|_{S_n})) \equiv 0$$

$$\exists q \in \mathcal{C}, \ Q \equiv 0$$

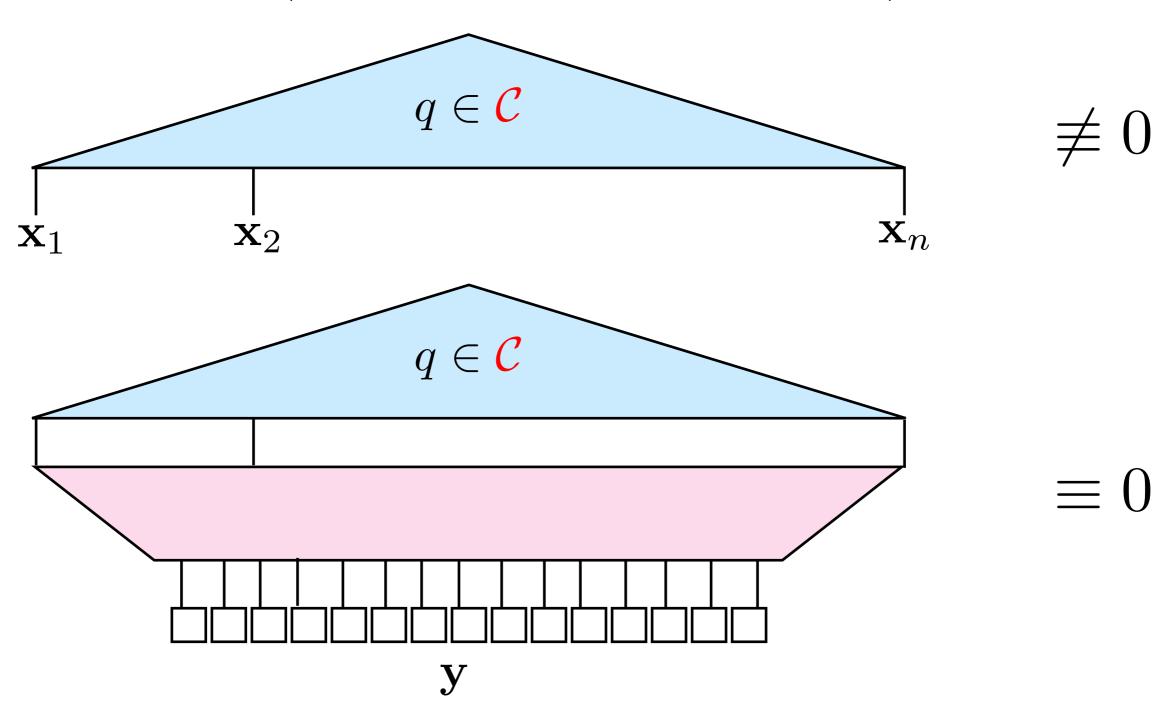
f has a small circuit

If
$$Q(\mathbf{y}) = q(f(\mathbf{y}|_{S_1}), f(\mathbf{y}|_{S_2}), \dots, f(\mathbf{y}|_{S_n})) \equiv 0$$

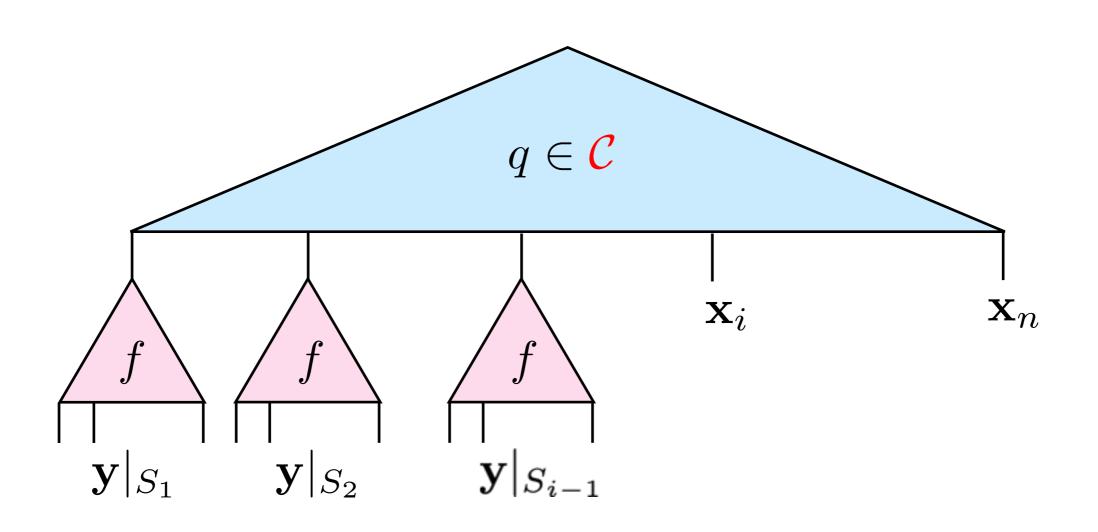




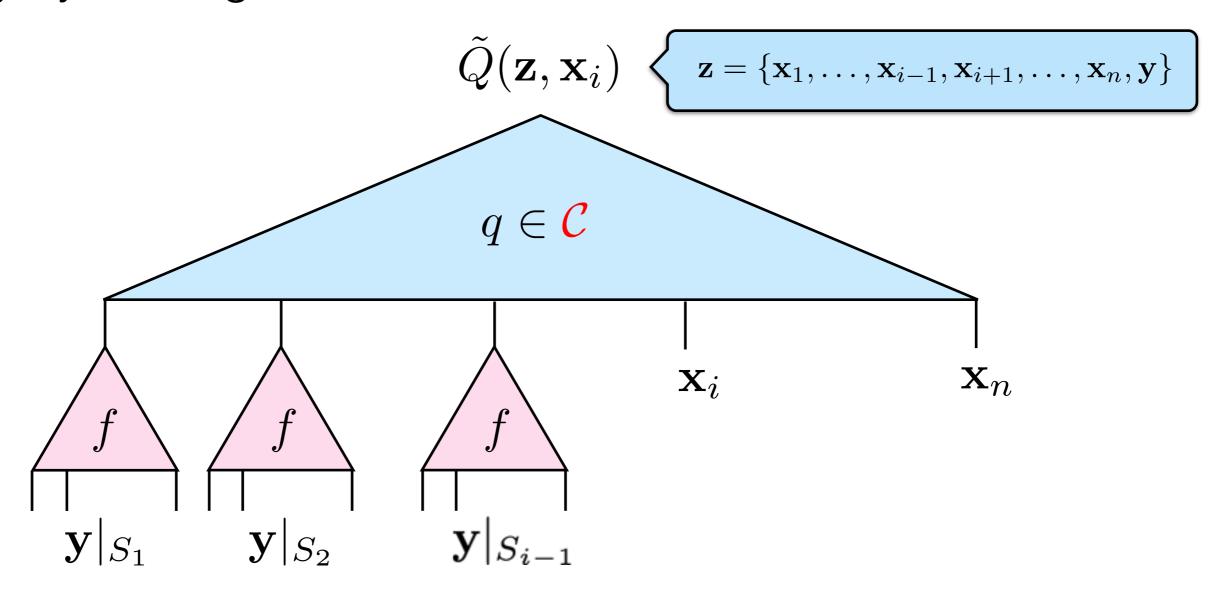
If
$$Q(\mathbf{y}) = q(f(\mathbf{y}|_{S_1}), f(\mathbf{y}|_{S_2}), \dots, f(\mathbf{y}|_{S_n})) \equiv 0$$



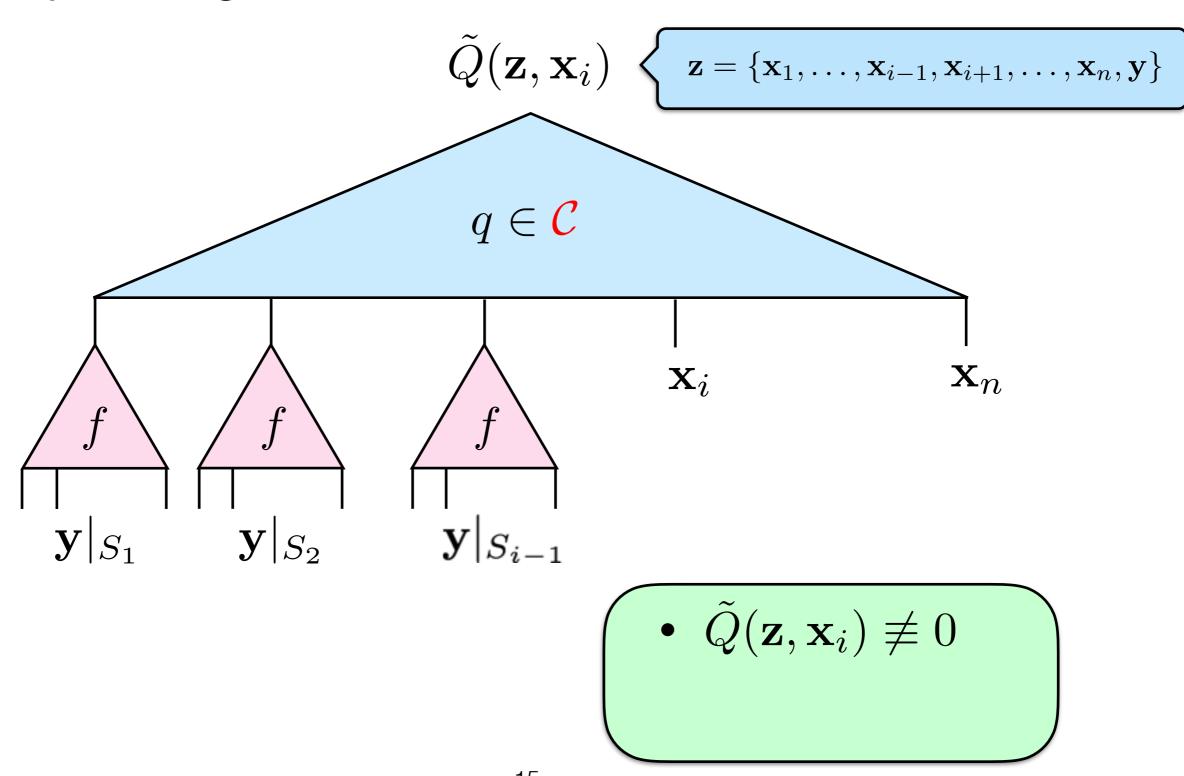
 $\exists q \in \mathcal{C}, \ Q \equiv 0$ f has a small circuit



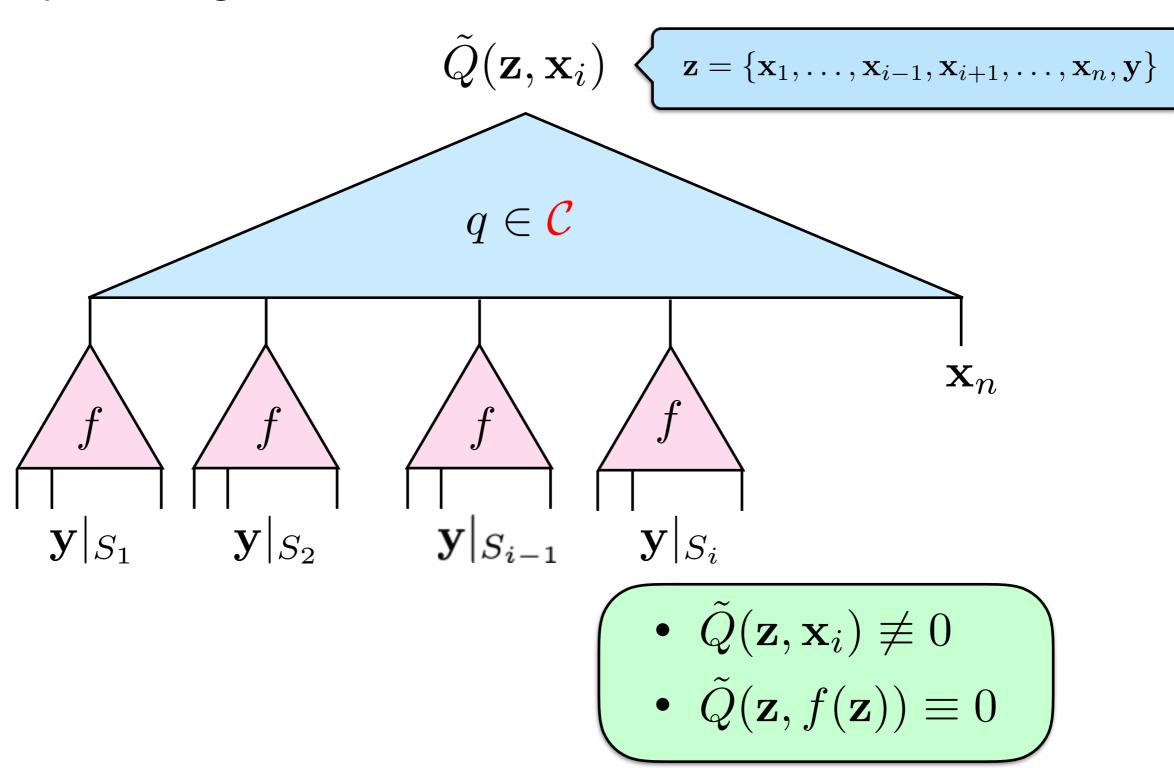
 $\exists q \in \mathcal{C}, \ Q \equiv 0$ f has a small circuit



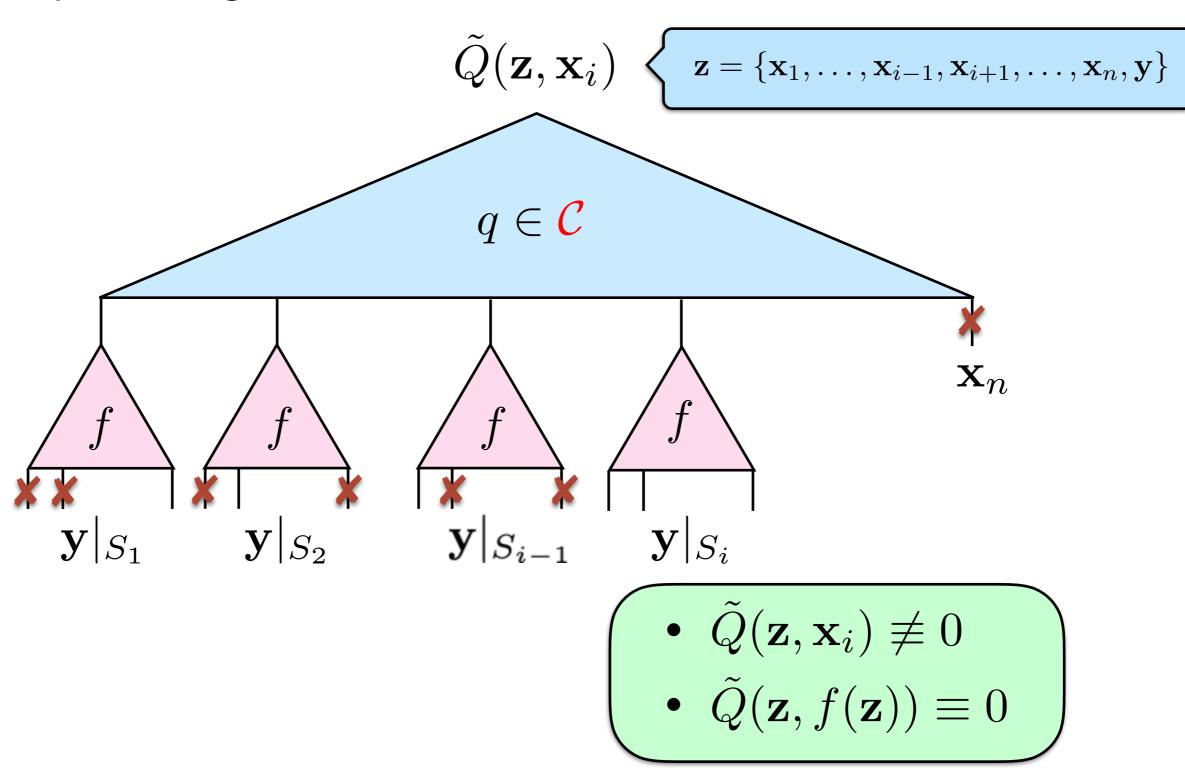
 $\exists q \in \mathcal{C}, \ Q \equiv 0$ f has a small circuit



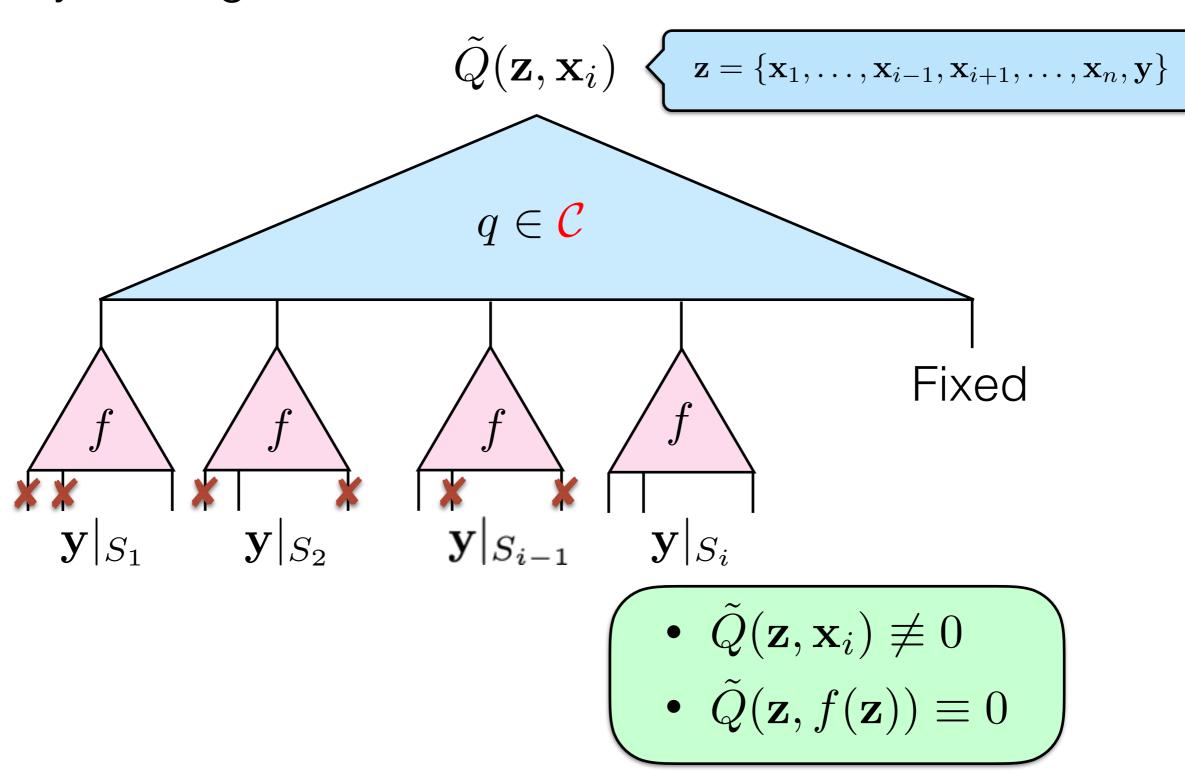
 $\exists q \in \mathcal{C}, \ Q \equiv 0$ f has a small circuit



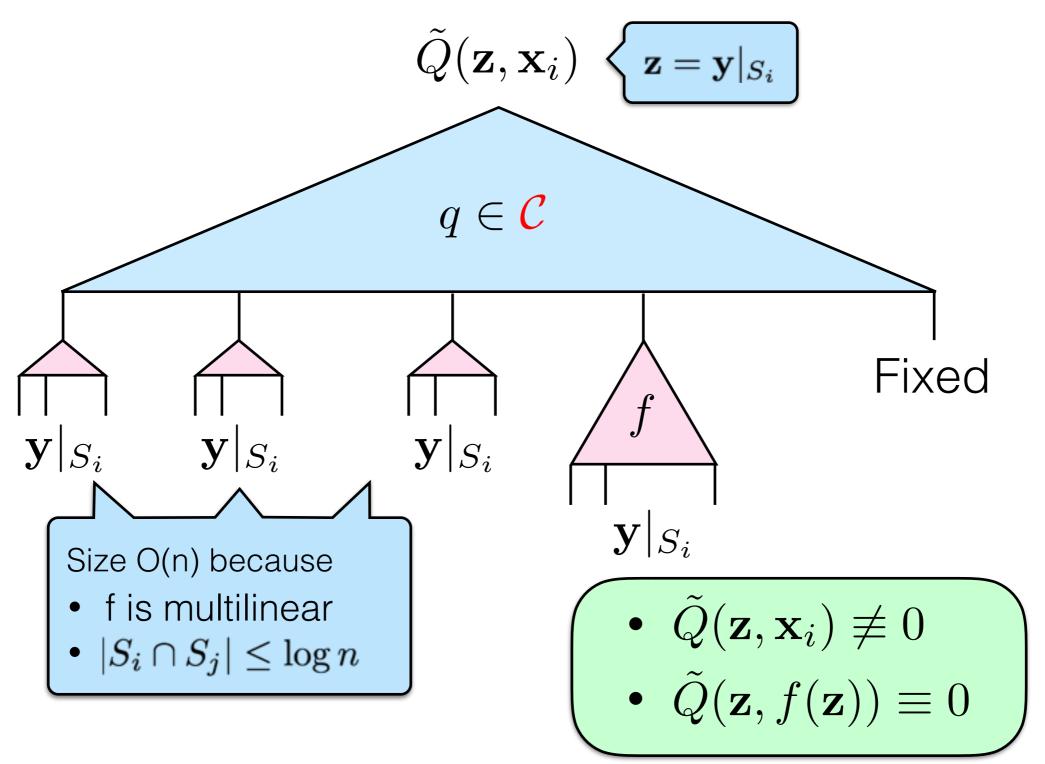
 $\exists q \in \mathcal{C}, \ Q \equiv 0$ f has a small circuit



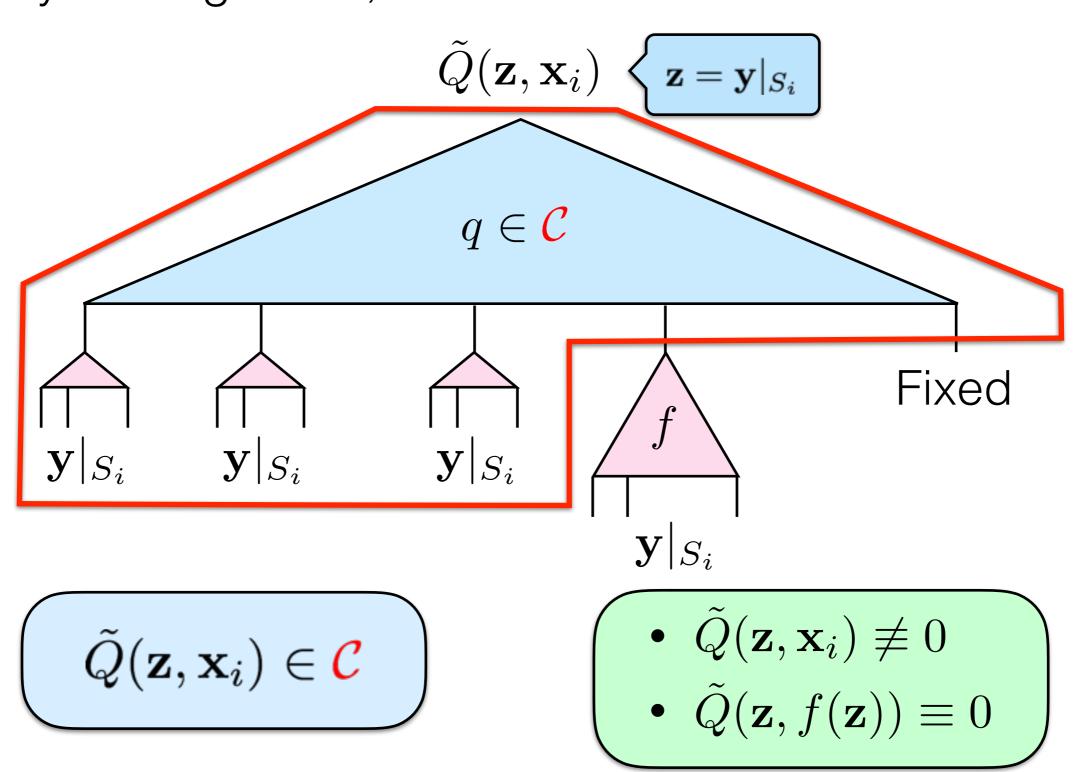
 $\exists q \in \mathcal{C}, \ Q \equiv 0$ f has a small circuit



 $\exists q \in \mathcal{C}, \ Q \equiv 0$ f has a small circuit



 $\exists q \in \mathcal{C}, \ Q \equiv 0$ f has a small circuit



Reducing to Polynomial Factorization

$$\tilde{Q}(\mathbf{z},\mathbf{x}_i) \in \mathcal{C}$$

•
$$\tilde{Q}(\mathbf{z}, \mathbf{x}_i) \not\equiv 0$$

$$\begin{pmatrix} \bullet & \tilde{Q}(\mathbf{z}, \mathbf{x}_i) \not\equiv 0 \\ \bullet & \tilde{Q}(\mathbf{z}, f(\mathbf{z})) \equiv 0 \end{pmatrix}$$

Reducing to Polynomial Factorization

$$ilde{Q}(\mathbf{z},\mathbf{x}_i) \in oldsymbol{\mathcal{C}}$$

•
$$\tilde{Q}(\mathbf{z}, \mathbf{x}_i) \not\equiv 0$$

$$\begin{pmatrix} \bullet & \tilde{Q}(\mathbf{z}, \mathbf{x}_i) \not\equiv 0 \\ \bullet & \tilde{Q}(\mathbf{z}, f(\mathbf{z})) \equiv 0 \end{pmatrix}$$

$$\mathbf{x}_i - f(\mathbf{z})$$
 divides $\tilde{Q}(\mathbf{z}, \mathbf{x}_i)$

Reducing to Polynomial Factorization

$$ilde{Q}(\mathbf{z},\mathbf{x}_i) \in \mathcal{oldsymbol{\mathcal{C}}}$$

•
$$\tilde{Q}(\mathbf{z}, \mathbf{x}_i) \not\equiv 0$$

$$\begin{pmatrix} \bullet & \tilde{Q}(\mathbf{z}, \mathbf{x}_i) \not\equiv 0 \\ \bullet & \tilde{Q}(\mathbf{z}, f(\mathbf{z})) \equiv 0 \end{pmatrix}$$

$$\mathbf{x}_i - f(\mathbf{z})$$
 divides $\tilde{Q}(\mathbf{z}, \mathbf{x}_i)$

Reducing to polynomial factorization!

$$\tilde{Q}(\mathbf{z},\mathbf{x}_i) \in \mathcal{C}$$
 f has a small circuit

Polynomial Factorization

	\mathcal{C}	\mathcal{C}'
[Kal89]	VP	VP

	\mathcal{C}	\mathcal{C}'
[Kal89]	VP	VP
[DSY09]	${ m Depth-}\Delta$ with bounded individual degree	$Depth-\Delta+3$

	\mathcal{C}	\mathcal{C}'
[Kal89]	VP	VP
[DSY09]	${ m Depth-}\Delta$ with bounded individual degree	$Depth-\Delta+3$
[DSS18, C KS18]	$\operatorname{VF}(n^{\log n})$ (resp. $\operatorname{VBP}(n^{\log n})$, $\operatorname{VNP}(n^{\log n})$)	$\frac{\operatorname{VF}(n^{\log n})}{(\operatorname{resp. VBP}(n^{\log n}), \operatorname{VNP}(n^{\log n}))}$

	\mathcal{C}	\mathcal{C}'
[Kal89]	VP	VP
[DSY09]	${ m Depth-}\Delta$ with bounded individual degree	$Depth-\Delta+3$
[DSS18, C KS18]	$\operatorname{VF}(n^{\log n})$ (resp. $\operatorname{VBP}(n^{\log n}), \operatorname{VNP}(n^{\log n})$)	$\frac{\operatorname{VF}(n^{\log n})}{(\operatorname{resp. VBP}(n^{\log n}), \operatorname{VNP}(n^{\log n}))}$
[C KS18]	${ m Depth-}\Delta$ with degree $O(\log^2 n/\log^2 \log n)$	$Depth-\Delta+3$

	\mathcal{C}	\mathcal{C}'
[Kal89]	VP	VP
[DSY09]	${ m Depth-}\Delta$ with bounded individual degree	$Depth-\Delta+3$
[DSS18, C KS18]	$\operatorname{VF}(n^{\log n})$ (resp. $\operatorname{VBP}(n^{\log n})$, $\operatorname{VNP}(n^{\log n})$)	$\operatorname{VF}(n^{\log n})$ (resp. $\operatorname{VBP}(n^{\log n}), \operatorname{VNP}(n^{\log n})$)
[C KS18]	${ m Depth-}\Delta$ with degree $O(\log^2 n/\log^2 \log n)$	$Depth-\Delta+3$
[C KS18]	VNP	VNP

	\mathcal{C}	C'
[Kal89]	VP	VP
[DSY09]	${ m Depth-}\Delta$ with bounded individual degree	$Depth-\Delta+3$
[DSS18, C KS18]	$\frac{\operatorname{VF}(n^{\log n})}{(\operatorname{resp. VBP}(n^{\log n}), \operatorname{VNP}(n^{\log n}))}$	$\operatorname{VF}(n^{\log n})$ (resp. $\operatorname{VBP}(n^{\log n}), \operatorname{VNP}(n^{\log n})$)
[C KS18]	${ m Depth-}\Delta$ with degree $O(\log^2 n/\log^2 \log n)$	$Depth-\Delta+3$
[C KS18]	VNP	VNP

Example: For any $P(\mathbf{z}, y) \in \mathbf{VP}$ such that $P(\mathbf{z}, f(\mathbf{z})) = 0$. Show that $f \in \mathbf{VP}$.

Example: For any $P(\mathbf{z}, y) \in \mathbf{VP}$ such that $P(\mathbf{z}, f(\mathbf{z})) = 0$. Show that $f \in \mathbf{VP}$.

• P as an univariate polynomial: $P(\mathbf{z}, y) = \sum_{i=0}^{\infty} C_i(\mathbf{z}) y^i$.

Example: For any $P(\mathbf{z}, y) \in \mathbf{VP}$ such that $P(\mathbf{z}, f(\mathbf{z})) = 0$. Show that $f \in \mathbf{VP}$.

- P as an univariate polynomial: $P(\mathbf{z}, y) = \sum_{i=0}^{\infty} C_i(\mathbf{z}) y^i$.
- Derivative does not vanish: $\frac{\partial P(\mathbf{0},f(\mathbf{0}))}{\partial y} \stackrel{i=0}{=} \delta \neq 0.$

Example: For any $P(\mathbf{z}, y) \in \mathbf{VP}$ such that $P(\mathbf{z}, f(\mathbf{z})) = 0$. Show that $f \in \mathbf{VP}$.

- P as an univariate polynomial: $P(\mathbf{z}, y) = \sum_{i=0}^{\infty} C_i(\mathbf{z}) y^i$.
- Derivative does not vanish: $\frac{\partial P(\mathbf{0},f(\mathbf{0}))}{\partial y} \stackrel{i=0}{=} \delta \neq 0.$

Induction hypothesis:

Maintain
$$h_i \in \text{VP}$$
 for $i = 0, 1, ..., d = \deg(f)$ such that
$$\mathcal{H}_{\leq i}[h_i] = \mathcal{H}_{\leq i}[f].$$

Goal: $\mathcal{H}_{\leq i}[h_i] = \mathcal{H}_{\leq i}[f]$ and $h_i \in \mathbf{VP}$.

Goal: $\mathcal{H}_{\leq i}[h_i] = \mathcal{H}_{\leq i}[f]$ and $h_i \in \mathbf{VP}$.

Base case: $h_0 \in \mathbb{F}, h_0 \in \text{VP}$.

Goal: $\mathcal{H}_{\leq i}[h_i] = \mathcal{H}_{\leq i}[f]$ and $h_i \in VP$.

Base case: $h_0 \in \mathbb{F}, h_0 \in \mathbf{VP}$.

Induction step:
$$h_i = h_{i-1} - \frac{P(\mathbf{z}, h_{i-1}(\mathbf{z}))}{\delta}$$
 .

Goal: $\mathcal{H}_{\leq i}[h_i] = \mathcal{H}_{\leq i}[f]$ and $h_i \in \mathbf{VP}$.

Base case: $h_0 \in \mathbb{F}, h_0 \in \mathbf{VP}$.

Induction step:
$$h_i = h_{i-1} - \frac{P(\mathbf{z}, h_{i-1}(\mathbf{z}))}{\delta}$$
 .

• $(h_i \in VP)$: There's only additive poly(n,s,d) blow-up.

Goal: $\mathcal{H}_{\leq i}[h_i] = \mathcal{H}_{\leq i}[f]$ and $h_i \in \mathbf{VP}$.

Base case: $h_0 \in \mathbb{F}, h_0 \in \text{VP}$.

Induction step:
$$h_i = h_{i-1} - \frac{P(\mathbf{z}, h_{i-1}(\mathbf{z}))}{\delta}$$
 .

- $(h_i \in VP)$: There's only additive poly(n,s,d) blow-up.
- $(\mathcal{H}_{\leq i}[h_i] = \mathcal{H}_{\leq i}[f])$: Taylor's expansion.

Goal: $\mathcal{H}_{\leq i}[h_i] = \mathcal{H}_{\leq i}[f]$ and $h_i \in \mathbf{VP}$.

Base case: $h_0 \in \mathbb{F}, h_0 \in \text{VP}$.

Induction step:
$$h_i = h_{i-1} - \frac{P(\mathbf{z}, h_{i-1}(\mathbf{z}))}{\delta}$$
 .

- $(h_i \in VP)$: There's only additive poly(n,s,d) blow-up.
- $(\mathcal{H}_{\leq i}[h_i] = \mathcal{H}_{\leq i}[f])$: Taylor's expansion.

Want
$$h_i - h_{i-1} = \mathcal{H}_i[f - h_{i-1}]$$
.

In the following, we ignore **z** for simplicity.

Lemma:
$$\mathcal{H}_i[f - h_{i-1}] = -\frac{\mathcal{H}_i[P(\mathbf{z}, h_{i-1}(\mathbf{z}))]}{\delta}$$
.

In the following, we ignore **z** for simplicity.

Lemma:
$$\mathcal{H}_i[f-h_{i-1}] = -\frac{\mathcal{H}_i[P(\mathbf{z},h_{i-1}(\mathbf{z}))]}{\delta}$$
.

$$0 = P(h_{i-1} + f - h_{i-1})$$

Lemma:
$$\mathcal{H}_i[f-h_{i-1}] = -\frac{\mathcal{H}_i[P(\mathbf{z},h_{i-1}(\mathbf{z}))]}{\delta}$$
.

$$0 = P(h_{i-1} + f - h_{i-1})$$

$$= P(h_{i-1}) + \frac{\partial}{\partial y} P(h_{i-1}) \cdot (f - h_{i-1})$$

$$+ \frac{\partial^2}{\partial y^2} P(h_{i-1}) \cdot (f - h_{i-1})^2 + \cdots$$

Lemma:
$$\mathcal{H}_i[f-h_{i-1}] = -\frac{\mathcal{H}_i[P(\mathbf{z},h_{i-1}(\mathbf{z}))]}{\delta}$$
.

$$0 = P(h_{i-1}) + \frac{\partial}{\partial y} P(h_{i-1}) \cdot (f - h_{i-1})$$
$$+ \frac{\partial^2}{\partial y^2} P(h_{i-1}) \cdot (f - h_{i-1})^2 + \cdots$$

Lemma:
$$\mathcal{H}_i[f - h_{i-1}] = -\frac{\mathcal{H}_i[P(\mathbf{z}, h_{i-1}(\mathbf{z}))]}{\delta}$$
.

By induction
$$\deg(f - h_{i-1}) > i - 1.$$

$$0 = P(h_{i-1}) + \frac{\partial}{\partial y} P(h_{i-1}) \cdot (f - h_{i-1})$$
$$+ \frac{\partial^2}{\partial y^2} P(h_{i-1}) \cdot (f - h_{i-1})^2 + \cdots$$

Lemma:
$$\mathcal{H}_i[f-h_{i-1}] = -\frac{\mathcal{H}_i[P(\mathbf{z},h_{i-1}(\mathbf{z}))]}{\delta}$$
.

$$0 = \mathcal{H}_{\leq i} \left[P(h_{i-1}) + \frac{\partial}{\partial y} P(h_{i-1}) \cdot (f - h_{i-1}) \right]$$

+
$$\mathcal{H}_{\leq i} \left[\frac{\partial^2}{\partial y^2} P(h_{i-1}) \cdot (f - h_{i-1})^2 + \cdots \right]$$

Lemma:
$$\mathcal{H}_i[f-h_{i-1}] = -\frac{\mathcal{H}_i[P(\mathbf{z},h_{i-1}(\mathbf{z}))]}{\delta}$$
.

$$0 = \mathcal{H}_{\leq i} \left[P(h_{i-1}) + \frac{\partial}{\partial y} P(h_{i-1}) \cdot (f - h_{i-1}) \right]$$

$$+ \mathcal{H}_{\leq i} \left[\frac{\partial^2}{\partial y^2} P(h_{i-1}) \cdot (f - h_{i-1})^2 + \cdots \right]$$

In the following, we ignore **z** for simplicity.

Lemma:
$$\mathcal{H}_i[f - h_{i-1}] = -\frac{\mathcal{H}_i[P(\mathbf{z}, h_{i-1}(\mathbf{z}))]}{\delta}$$

By Taylor's expansion. By induction
$$deg(f-h_{i-1})>i-1.$$

$$0=\mathcal{H}_{\leq i}\left[P(h_{i-1})\right]+\mathcal{H}_{\leq i}\left[\frac{\partial}{\partial y}P(h_{i-1})\cdot(f-h_{i-1})\right]$$

In the following, we ignore **z** for simplicity.

Lemma:
$$\mathcal{H}_i[f - h_{i-1}] = -\frac{\mathcal{H}_i[P(\mathbf{z}, h_{i-1}(\mathbf{z}))]}{\delta}$$

By Taylor's expansion. By induction
$$deg(f - h_{i-1}) > i - 1.$$

$$0 = \mathcal{H}_{\leq i} \left[P(h_{i-1}) \right] + \mathcal{H}_{\leq i} \left[\frac{\partial}{\partial y} P(h_{i-1}) \cdot (f - h_{i-1}) \right]$$

$$= \mathcal{H}_{\leq i} \left[P(h_{i-1}) \right] + \mathcal{H}_0 \left[\frac{\partial}{\partial y} P(h_{i-1}) \right] \cdot \mathcal{H}_i \left[(f - h_{i-1}) \right]$$

In the following, we ignore **z** for simplicity.

Lemma:
$$\mathcal{H}_i[f - h_{i-1}] = -\frac{\mathcal{H}_i[P(\mathbf{z}, h_{i-1}(\mathbf{z}))]}{\delta}$$

By Taylor's expansion. By induction
$$deg(f-h_{i-1})>i-1.$$

$$0=\mathcal{H}_{\leq i}\left[P(h_{i-1})\right]+\mathcal{H}_{\leq i}\left[\frac{\partial}{\partial y}P(h_{i-1})\cdot(f-h_{i-1})\right]$$

$$= \mathcal{H}_{\leq i} \left[P(h_{i-1}) \right] + \mathcal{H}_0 \left[\frac{\partial}{\partial y} P(h_{i-1}) \right] \cdot \mathcal{H}_i \left[(f - h_{i-1}) \right]$$

$$\frac{\partial P(\mathbf{0}, f(\mathbf{0}))}{\partial y} = \delta \neq 0.$$

Key Idea: Newton Iteration

Lemma:
$$\mathcal{H}_{i}[f - h_{i-1}] = -\frac{\mathcal{H}_{i}[P(\mathbf{z}, h_{i-1}(\mathbf{z}))]}{\mathcal{S}_{i}}$$

(Sloppy Hensel Lifting) In the following, we ignore
$$\mathbf{z}$$
 for simplicity.

Lemma: $\mathcal{H}_i[f-h_{i-1}] = -\frac{\mathcal{H}_i[P(\mathbf{z},h_{i-1}(\mathbf{z}))]}{\delta}$.

By induction $\deg(f-h_{i-1}) > i-1$.

 $0 = \mathcal{H}_{\leq i}\left[P(h_{i-1})\right] + \mathcal{H}_{\leq i}\left[\frac{\partial}{\partial y}P(h_{i-1})\cdot(f-h_{i-1})\right]$
 $= \mathcal{H}_{\leq i}\left[P(h_{i-1})\right] + \mathcal{H}_0\left[\frac{\partial}{\partial y}P(h_{i-1})\right] \cdot \mathcal{H}_i\left[(f-h_{i-1})\right]$
 $= \mathcal{H}_{\leq i}\left[P(h_{i-1})\right] + \delta \cdot \mathcal{H}_i\left[(f-h_{i-1})\right]$

	\mathcal{C}	\mathcal{C}'
[Kal89]	VP	VP
[DSY09]	${ m Depth-}\Delta$ with bounded individual degree	$Depth-\Delta+3$
[DSS18, C KS18]	$\frac{\operatorname{VF}(n^{\log n})}{(\operatorname{resp. VBP}(n^{\log n}), \operatorname{VNP}(n^{\log n}))}$	$\operatorname{VF}(n^{\log n})$ (resp. $\operatorname{VBP}(n^{\log n}), \operatorname{VNP}(n^{\log n})$)
[C KS18]	${ m Depth-}\Delta$ with degree $O(\log^2 n/\log^2 \log n)$	$Depth-\Delta+3$
[C KS18]	VNP	VNP

Issue: How to efficiently implement the **update step**?

Recall that we have
$$\mathcal{H}_i[f-h_{i-1}] = -\frac{\mathcal{H}_i[P(\mathbf{z},h_{i-1}(\mathbf{z}))]}{\delta}.$$

Issue: How to efficiently implement the **update step**?

Recall that we have
$$\mathcal{H}_i[f-h_{i-1}] = -\frac{\mathcal{H}_i[P(\mathbf{z},h_{i-1}(\mathbf{z}))]}{\delta}.$$

Example: Does $\mathcal{H}_i[P(\mathbf{z}, h_{i-1})]$ have a small *constant*depth circuit?

Issue: How to efficiently implement the **update step**?

Recall that we have
$$\mathcal{H}_i[f-h_{i-1}] = -\frac{\mathcal{H}_i[P(\mathbf{z},h_{i-1}(\mathbf{z}))]}{\delta}.$$

Example: Does $\mathcal{H}_i[P(\mathbf{z}, h_{i-1})]$ have a small *constant*depth circuit?

Key: Avoid **recursion**!

Goal: Efficiently implement $\mathcal{H}_i[P(\mathbf{z}, h_{i-1})]$.

Goal: Efficiently implement $\mathcal{H}_i[P(\mathbf{z}, h_{i-1})]$.

Lemma [DSY09]: For each $i = 1, 2, ..., d = \deg(f)$, there exists polynomial A_i of size $\operatorname{poly}(s, d)$ such that

$$\mathcal{H}_i[f] = \mathcal{H}_{\leq i}[A_i(C_0,C_1,\ldots,C_k)],$$
 where $P(\mathbf{z},y) = \sum_{i=0}^k C_i(\mathbf{z})y^i.$ Individual degree

Goal: Efficiently implement $\mathcal{H}_i[P(\mathbf{z}, h_{i-1})]$.

Lemma [DSY09]: For each $i = 1, 2, ..., d = \deg(f)$, there exists polynomial A_i of size poly(s, d) such that

$$\mathcal{H}_i[f] = \mathcal{H}_{\leq i}[A_i(C_0,C_1,\ldots,C_k)],$$
 where $P(\mathbf{z},y) = \sum_{i=0}^k C_i(\mathbf{z})y^i.$ Individual degree

 $\{C_i\}$ can be **reused** and **efficiently extracted** from P!

Lemma [DSY09]: For each i = 1, 2, ..., d = deg(f), there exists polynomial A_i of size poly(s, d) such that

$$\mathcal{H}_{\leq i}[f] = \mathcal{H}_{\leq i}[A_i(C_0, C_1, \dots, C_k)].$$

Lemma [DSY09]: For each i = 1, 2, ..., d = deg(f), there exists polynomial A_i of size poly(s, d) such that

$$\mathcal{H}_{\leq i}[f] = \mathcal{H}_{\leq i}[A_i(C_0, C_1, \dots, C_k)].$$

Lemma [CKS18]: For each $i = 1, 2, ..., d = \deg(f)$, there exists polynomial A_i of size $O(d^2i)$ such that

$$\mathcal{H}_{\leq i}[f] = \mathcal{H}_{\leq i}[A_i(g_0, g_1, \dots, g_d)]$$

where

Lemma [DSY09]: For each i = 1, 2, ..., d = deg(f), there exists polynomial A_i of size poly(s, d) such that

$$\mathcal{H}_{\leq i}[f] = \mathcal{H}_{\leq i}[A_i(C_0, C_1, \dots, C_k)].$$

Lemma [CKS18]: For each $i = 1, 2, ..., d = \deg(f)$, there exists polynomial A_i of size $O(d^2i)$ such that

$$\mathcal{H}_{\leq i}[f] = \mathcal{H}_{\leq i}[A_i(g_0, g_1, \dots, g_d)]$$

where

$$g_i = \mathcal{H}_{\leq \mathbf{d}} \left[\frac{\partial^i}{\partial y^i} P(\mathbf{z}, \mathcal{H}[f]) \right] - \mathcal{H}_0 \left[\frac{\partial^i}{\partial y^i} P(\mathbf{z}, \mathcal{H}[f]) \right].$$

Efficiently extracted from P.

Lemma [DSY09]: For each i = 1, 2, ..., d = deg(f), there exists polynomial A_i of size poly(s, d) such that

$$\mathcal{H}_{\leq i}[f] = \mathcal{H}_{\leq i}[A_i(C_0, C_1, \dots, C_k)].$$

Lemma [CKS18]: For each $i = 1, 2, ..., d = \deg(f)$, there exists polynomial A_i of size $O(d^2i)$ such that

$$\mathcal{H}_{\leq i}[f] = \mathcal{H}_{\leq i}[A_i(g_0, g_1, \dots, g_d)]$$

where

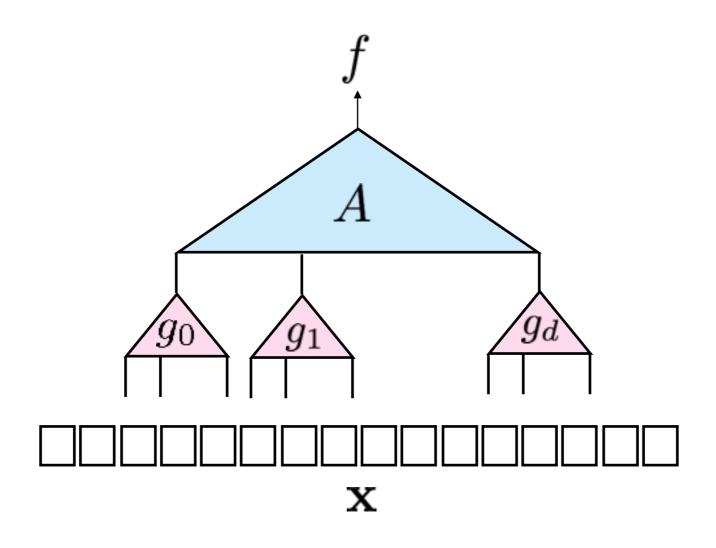
$$g_i = \mathcal{H}_{\leq \mathbf{d}} \left[\frac{\partial^i}{\partial y^i} P(\mathbf{z}, \mathcal{H}[f]) \right] - \mathcal{H}_0 \left[\frac{\partial^i}{\partial y^i} P(\mathbf{z}, \mathcal{H}[f]) \right].$$

Efficiently extracted from P.

Lemma [CKS18]: For each $i=1,2,\ldots,d=\deg(f)$, there exists polynomial A of size $O(d^2i)$ such that $f=A(g_0,g_1,\ldots,g_d)$

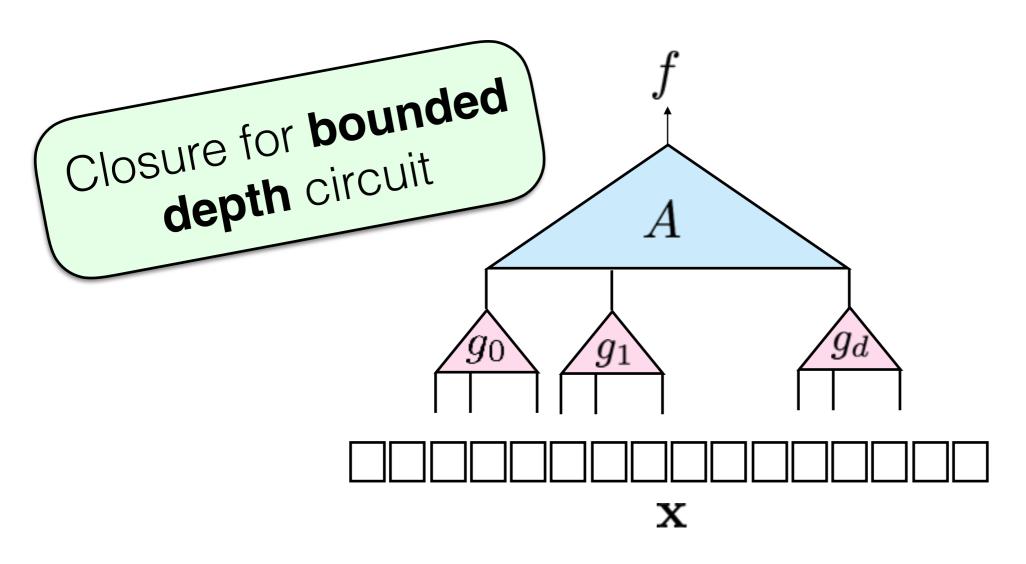
Lemma [CKS18]: For each $i = 1, 2, ..., d = \deg(f)$, there exists polynomial A of size $O(d^2i)$ such that

$$f = A(g_0, g_1, \dots, g_{\mathbf{d}})$$



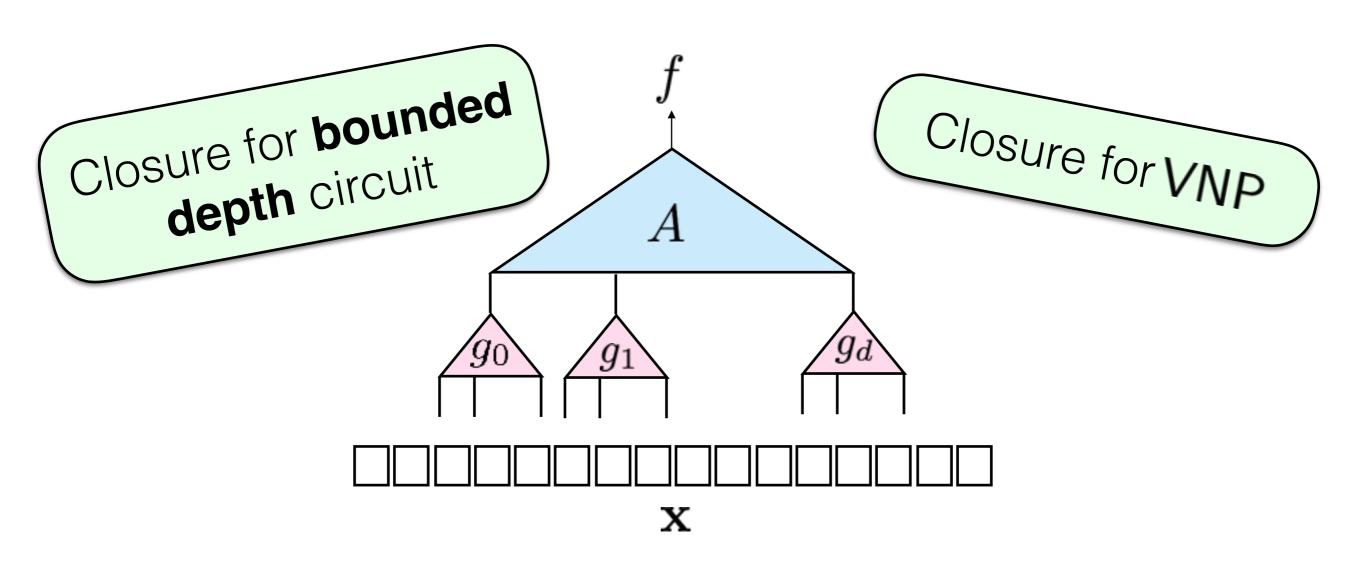
Lemma [CKS18]: For each $i=1,2,\ldots,d=\deg(f)$, there exists polynomial A of size $O(d^2i)$ such that

$$f = A(g_0, g_1, \dots, g_{\mathbf{d}})$$

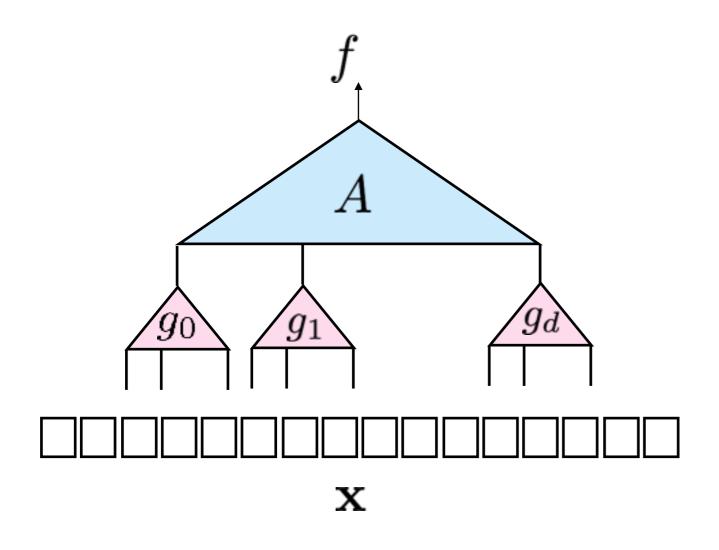


Lemma [CKS18]: For each i = 1, 2, ..., d = deg(f), there exists polynomial A of size $O(d^2i)$ such that

$$f = A(g_0, g_1, \dots, g_{\mathbf{d}})$$

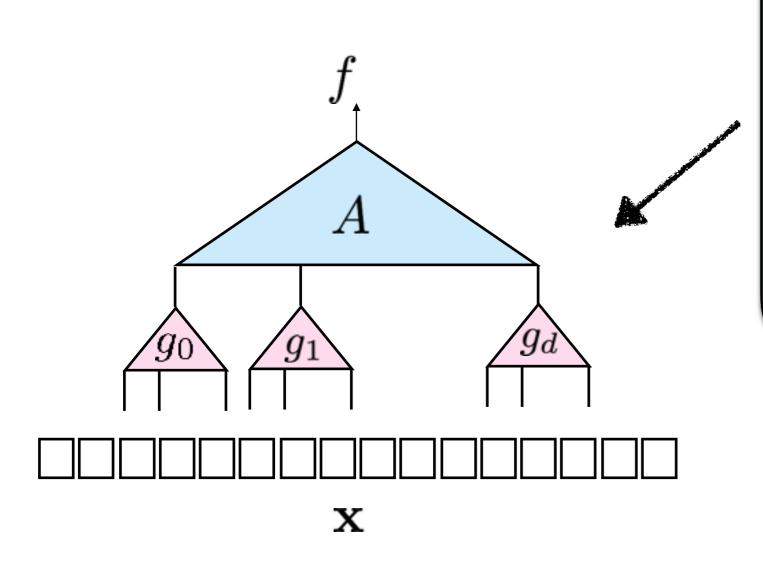


Closure for Bounded Depth Circuits [CKS18]



Closure for Bounded Depth Circuits

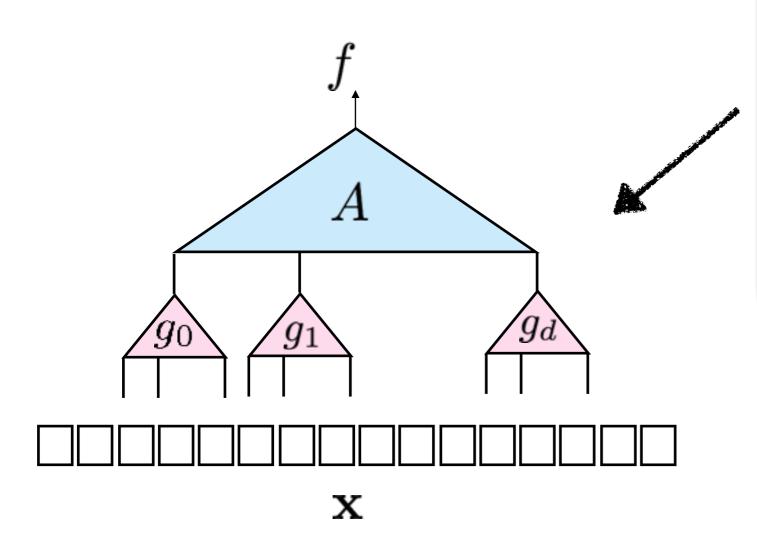
[**C**KS18]



Depth reduction [GKKS13]

Closure for Bounded Depth Circuits

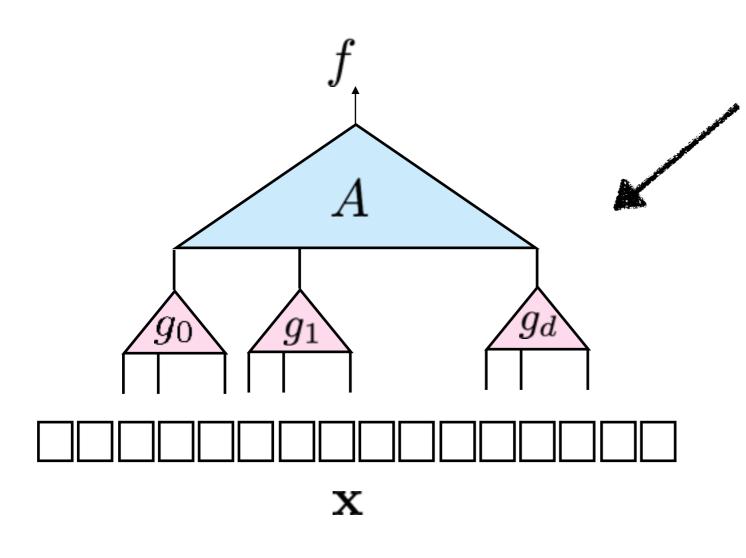
[CKS18]



Depth reduction [GKKS13]

- size s
- degree d

[**C**KS18]

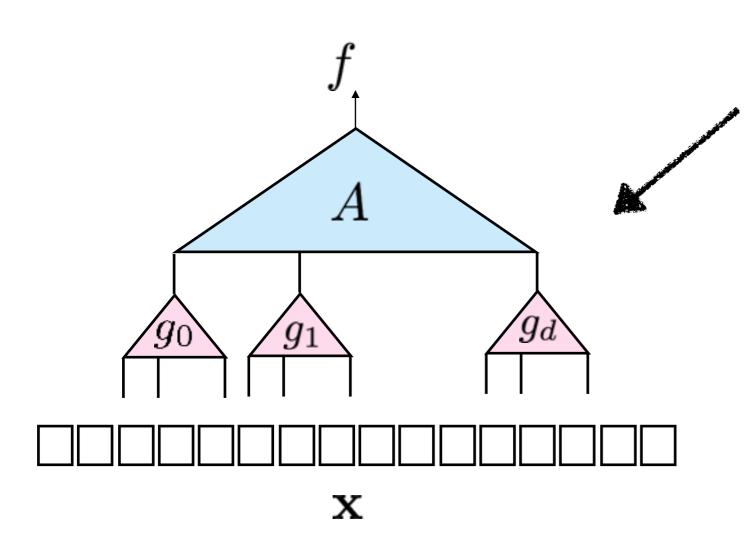


Depth reduction [GKKS13]

- size s
- degree d

- size $(snd)^{O(\sqrt{d})}$
- depth 3, *i.e.*, $\Sigma\Pi\Sigma$

[**C**KS18]

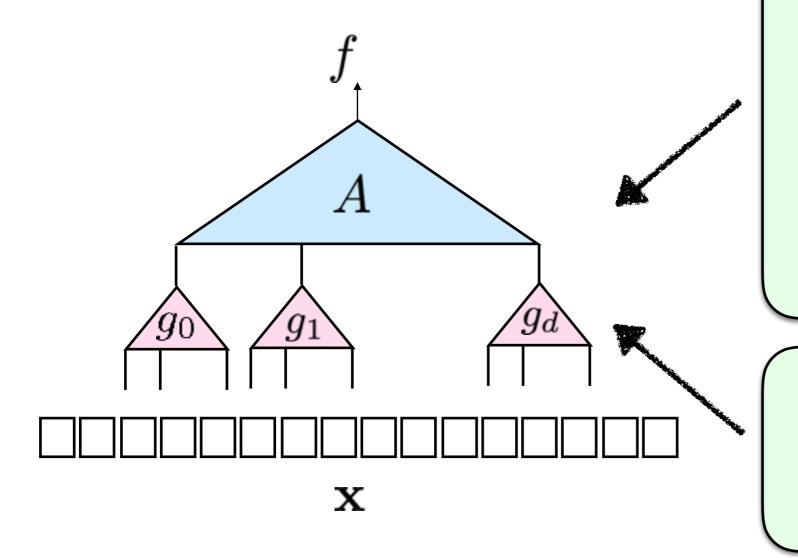


Depth reduction [AV08, Koi12, Tav15]

- size s
- degree d

- size $(snd)^{O(d^{1/k})}$
- depth 2k

[**C**KS18]



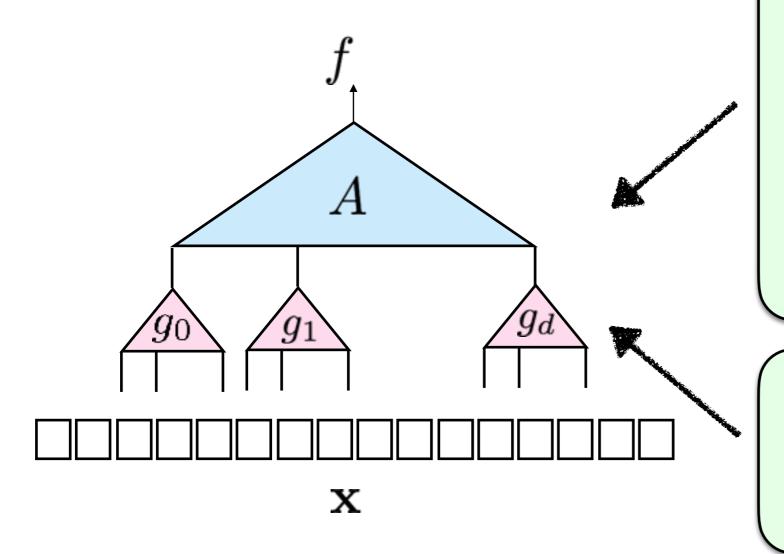
Depth reduction [AV08, Koi12, Tav15]

- size s
- degree d

- size $(snd)^{O(d^{1/k})}$
- depth 2k

Interpolation

[**C**KS18]



Depth reduction [AV08, Koi12, Tav15]

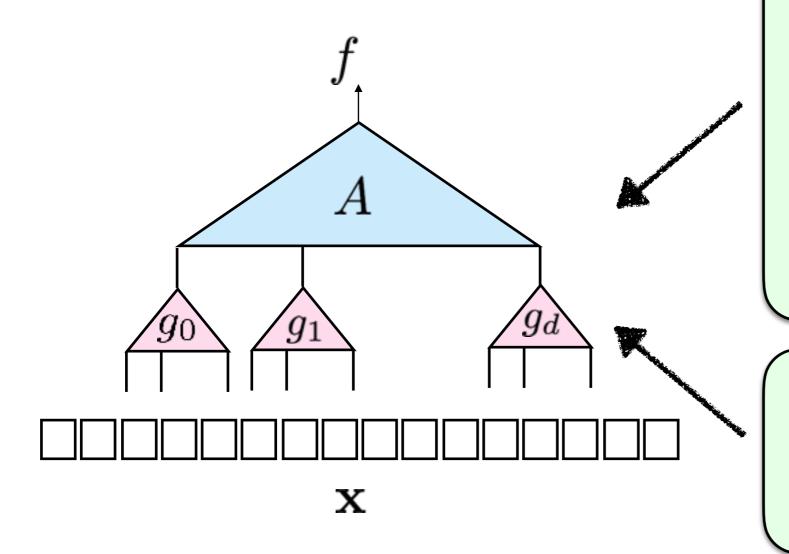
- size s
- degree d

- size $(snd)^{O(d^{1/k})}$
- depth 2k

Interpolation

- size has polynomial blowup
- depth has O(1) blowup

[**C**KS18]



Depth reduction [AV08, Koi12, Tav15]

- size s
- degree d

- size $(snd)^{O(d^{1/k})}$
- depth 2k

Interpolation

- size has polynomial blowup
- depth has O(1) blowup

The factor f has a small bounded depth circuit!

Definition (VNP): We say $f \in VNP$ if $\exists Q \in VP$ s.t.

•

Definition (VNP): We say $f \in VNP$ if $\exists Q \in VP$ s.t.

$$f(\mathbf{x}) = \sum_{\mathbf{c} \in \{0,1\}^{|\mathbf{y}|}} Q(\mathbf{x},\mathbf{c})$$
. Exponential sum

Definition (VNP): We say $f \in VNP$ if $\exists Q \in VP$ s.t.

$$f(\mathbf{x}) = \sum_{\mathbf{c} \in \{0,1\}^{|\mathbf{y}|}} Q(\mathbf{x},\mathbf{c})$$
Exponential sum

Theorem (Valiant): For every f having circuit of size s and degree d, there's **formula** Q of size **poly**(s, d) s.t.

$$f(\mathbf{x}) = \sum_{\mathbf{c} \in \{0,1\}^{|\mathbf{y}|}} Q(\mathbf{x}, \mathbf{c})$$

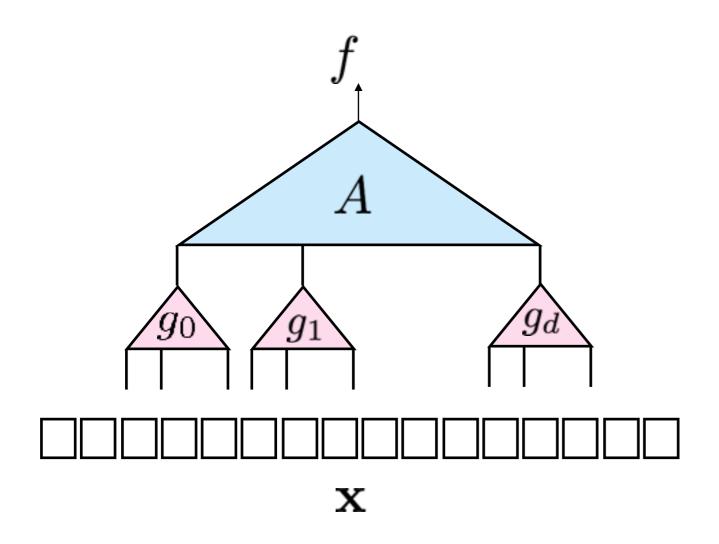
Definition (VNP): We say $f \in VNP$ if $\exists Q \in VP$ s.t.

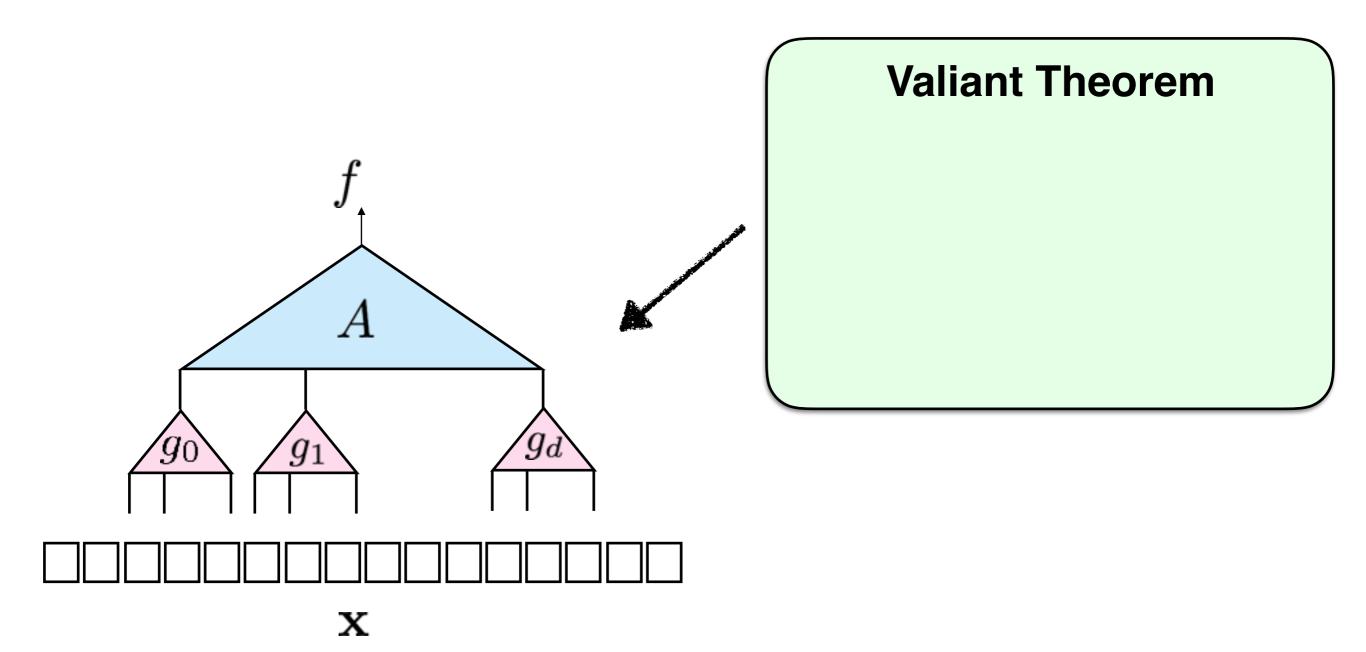
$$f(\mathbf{x}) = \sum_{\mathbf{c} \in \{0,1\}^{|\mathbf{y}|}} Q(\mathbf{x}, \mathbf{c})$$
Exponential sum

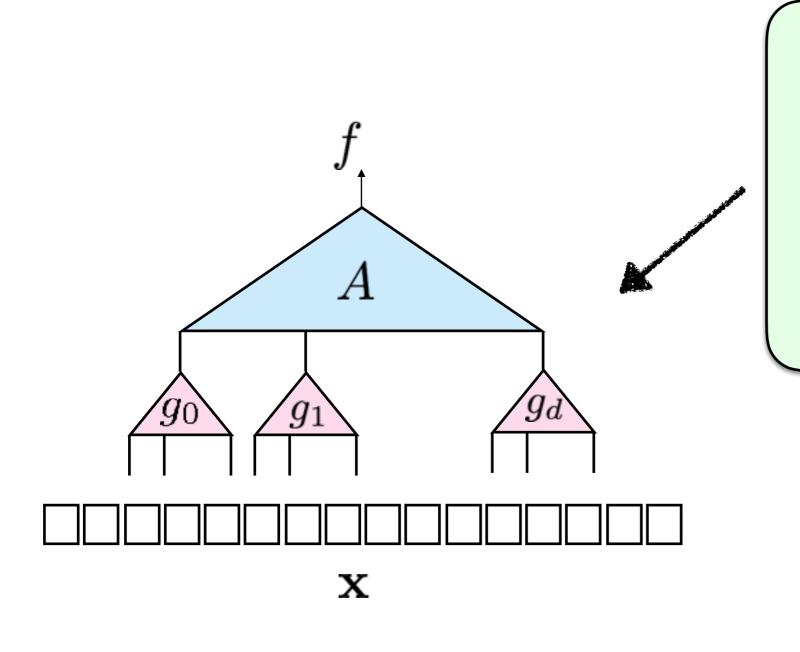
Theorem (Valiant): For every f having circuit of size s and degree d, there's **formula** Q of size **poly**(s, d) s.t.

$$f(\mathbf{x}) = \sum_{\mathbf{c} \in \{0,1\}^{|\mathbf{y}|}} Q(\mathbf{x}, \mathbf{c})$$

Formula is useful for composing exponential sum!

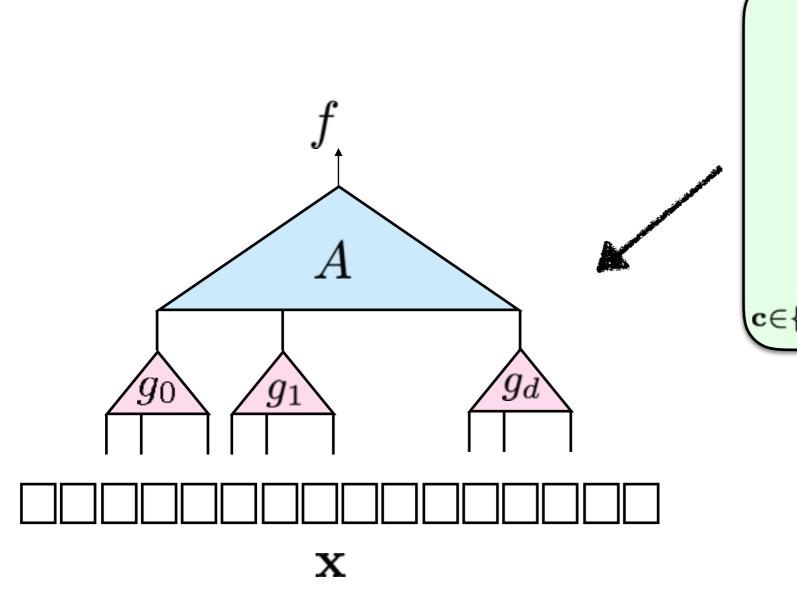


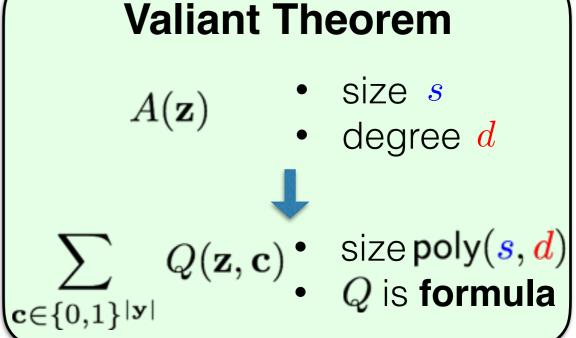


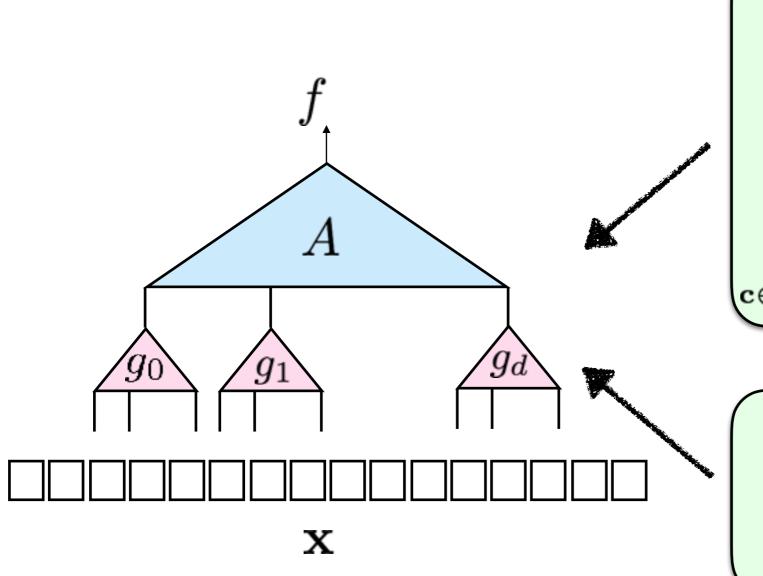


Valiant Theorem

- $A(\mathbf{z})$
- size s
- degree d

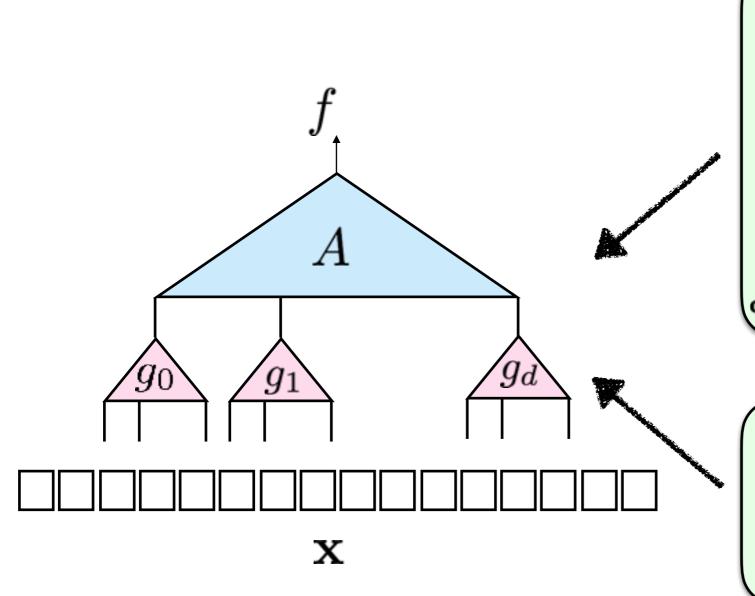






Valiant Theorem

Interpolation for exponential sum



Valiant Theorem

$$A(\mathbf{z}) \quad \text{size } \mathbf{s}$$

$$\cdot \quad \text{degree } \mathbf{d}$$

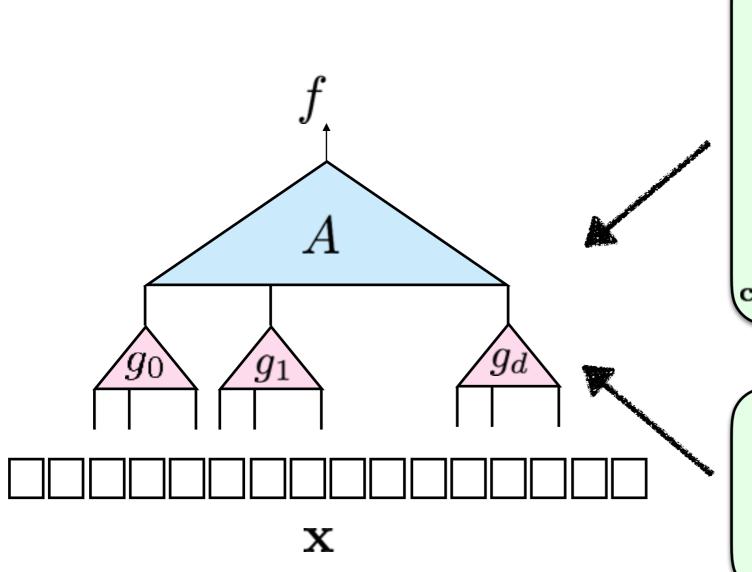
$$\downarrow$$

$$\sum_{\mathbf{c} \in \{0,1\}^{|\mathbf{y}|}} Q(\mathbf{z}, \mathbf{c}) \quad \text{size poly}(\mathbf{s}, \mathbf{d})$$

$$\cdot \quad Q \text{ is formula}$$

Interpolation for exponential sum

size has polynomial blowup



Valiant Theorem

$$A(\mathbf{z}) \quad \text{size } \mathbf{s}$$

$$\cdot \text{ degree } \mathbf{d}$$

$$\downarrow$$

$$\sum_{\mathbf{c} \in \{0,1\}^{|\mathbf{y}|}} Q(\mathbf{z}, \mathbf{c}) \quad \text{size poly}(\mathbf{s}, \mathbf{d})$$

$$\cdot \quad Q \text{ is formula}$$

Interpolation for exponential sum

size has polynomial blowup

The factor f has a small exponential sum!

Lemma [CKS18]: For each $i = 1, 2, ..., d = \deg(f)$, there exists polynomial A_i of size $O(d^2i)$ such that

$$\mathcal{H}_{\leq i}[f] = \mathcal{H}_{\leq i}[A_i(g_0, g_1, \dots, g_d)]$$

where

$$g_i = \mathcal{H}_{\leq \mathbf{d}} \left[\frac{\partial^i}{\partial y^i} P(\mathbf{z}, \mathcal{H}[f]) \right] - \mathcal{H}_0 \left[\frac{\partial^i}{\partial y^i} P(\mathbf{z}, \mathcal{H}[f]) \right].$$

Lemma [CKS18]: For each $i = 1, 2, ..., d = \deg(f)$, there exists polynomial A_i of size $O(d^2i)$ such that

$$\mathcal{H}_{\leq i}[f] = \mathcal{H}_{\leq i}[A_i(g_0, g_1, \dots, g_d)]$$

where

$$g_i = \mathcal{H}_{\leq \mathbf{d}} \left[\frac{\partial^i}{\partial y^i} P(\mathbf{z}, \mathcal{H}[f]) \right] - \mathcal{H}_0 \left[\frac{\partial^i}{\partial y^i} P(\mathbf{z}, \mathcal{H}[f]) \right].$$

Notation: Let $h_i = A_i(g_0, g_1, \dots, g_d)$.

Lemma [CKS18]: For each $i = 1, 2, ..., d = \deg(f)$, there exists polynomial A_i of size $O(d^2i)$ such that

$$\mathcal{H}_{\leq i}[f] = \mathcal{H}_{\leq i}[A_i(g_0, g_1, \dots, g_d)]$$

where

$$g_i = \mathcal{H}_{\leq \mathbf{d}} \left[\frac{\partial^i}{\partial y^i} P(\mathbf{z}, \mathcal{H}[f]) \right] - \mathcal{H}_0 \left[\frac{\partial^i}{\partial y^i} P(\mathbf{z}, \mathcal{H}[f]) \right].$$

Notation: Let $h_i = A_i(g_0, g_1, \dots, g_d)$.

Goal: Show that A_i is small and $\mathcal{H}_{\leq i}[h_i] = \mathcal{H}_{\leq i}[f]$.

Lemma [CKS18]: For each $i = 1, 2, ..., d = \deg(f)$, there exists polynomial A_i of size $O(d^2i)$ such that

$$\mathcal{H}_{\leq i}[f] = \mathcal{H}_{\leq i}[A_i(g_0, g_1, \dots, g_d)]$$

where

$$g_i = \mathcal{H}_{\leq \mathbf{d}} \left[\frac{\partial^i}{\partial y^i} P(\mathbf{z}, \mathcal{H}[f]) \right] - \mathcal{H}_0 \left[\frac{\partial^i}{\partial y^i} P(\mathbf{z}, \mathcal{H}[f]) \right].$$

Notation: Let $h_i = A_i(g_0, g_1, \dots, g_d)$.

Goal: Show that A_i is small and $\mathcal{H}_{\leq i}[h_i] = \mathcal{H}_{\leq i}[f]$.

Induction step:
$$\mathcal{H}_{\leq i}[f] = \mathcal{H}_{\leq i}\left[h_{i-1} - \frac{P(h_{i-1})}{\delta}\right]$$

Notation: Let $h_i = A_i(g_0, g_1, \dots, g_d)$.

Induction step:
$$\mathcal{H}_{\leq i}[f] = \mathcal{H}_{\leq i}\left[h_{i-1} - \frac{P(h_{i-1})}{\delta}\right]$$
.

Notation: Let $h_i = A_i(g_0, g_1, \dots, g_d)$.

Induction step:
$$\mathcal{H}_{\leq i}[f] = \mathcal{H}_{\leq i}\left[h_{i-1} - \frac{P(h_{i-1})}{\delta}\right]$$

1. Write $h_{i-1}=f_0+\tilde{h}$ and apply Taylor's expansion on $P(h_{i-1})$, we have $P(h_{i-1})=f_0+\frac{\partial}{\partial u}P(f_0)\tilde{h}+\cdots+\frac{\partial^i}{\partial u^i}P(f_0)\tilde{h}^i+\cdots.$

Notation: Let $h_i = A_i(g_0, g_1, \dots, g_d)$.

Induction step:
$$\mathcal{H}_{\leq i}[f] = \mathcal{H}_{\leq i}\left[h_{i-1} - \frac{P(h_{i-1})}{\delta}\right]$$
.

1. Write $h_{i-1} = f_0 + \tilde{h}$ and apply Taylor's expansion on $P(h_{i-1})$, we have

$$P(h_{i-1}) = f_0 + \frac{\partial}{\partial y} P(f_0)\tilde{h} + \dots + \frac{\partial^i}{\partial y^i} P(f_0)\tilde{h}^i + \dots .$$

2. As $deg(\tilde{h}) \geq 1$, we have

$$\mathcal{H}_{\leq i}[P(h_{i-1})] = \mathcal{H}_{\leq i} \left[f_0 + \mathcal{H}_{\leq d} \left[\frac{\partial}{\partial y} P(f_0) \right] \tilde{h} + \dots + \mathcal{H}_{\leq d} \left[\frac{\partial^i}{\partial y^i} P(f_0) \right] \tilde{h}^i \right].$$

Notation: Let $h_i = A_i(g_0, g_1, \dots, g_d)$.

Induction step:
$$\mathcal{H}_{\leq i}[f] = \mathcal{H}_{\leq i}\left[h_{i-1} - \frac{P(h_{i-1})}{\delta}\right]$$
.

1. Write $h_{i-1} = f_0 + \tilde{h}$ and apply Taylor's expansion on $P(h_{i-1})$, we have

$$P(h_{i-1}) = f_0 + \frac{\partial}{\partial y} P(f_0)\tilde{h} + \dots + \frac{\partial^i}{\partial y^i} P(f_0)\tilde{h}^i + \dots.$$

2. As $deg(\tilde{h}) \geq 1$, we have

$$\mathcal{H}_{\leq i}[P(h_{i-1})] = \mathcal{H}_{\leq i} \left[f_0 + \mathcal{H}_{\leq d} \left[\frac{\partial}{\partial y} P(f_0) \right] \tilde{h} + \dots + \mathcal{H}_{\leq d} \left[\frac{\partial^i}{\partial y^i} P(f_0) \right] \tilde{h}^i \right].$$

3. Thus, A_i can be written as circuit over $\{A_{i-1}, g_0, \ldots, g_i\}$ of size $O(d^2)$.

Notation: Let $h_i = A_i(g_0, g_1, \dots, g_d)$.

Induction step:
$$\mathcal{H}_{\leq i}[f] = \mathcal{H}_{\leq i}\left[h_{i-1} - \frac{P(h_{i-1})}{\delta}\right]$$
.

1. Write $h_{i-1} = f_0 + \tilde{h}$ and apply Taylor's expansion on $P(h_{i-1})$, we have

$$P(h_{i-1}) = f_0 + \frac{\partial}{\partial y} P(f_0) \tilde{h} + \dots + \frac{\partial^i}{\partial y^i} P(f_0) \tilde{h}^i + \dots .$$

2. As $deg(\tilde{h}) \geq 1$, we have

$$\mathcal{H}_{\leq i}[P(h_{i-1})] = \mathcal{H}_{\leq i} \left[f_0 + \mathcal{H}_{\leq d} \left[\frac{\partial}{\partial y} P(f_0) \right] \tilde{h} + \dots + \mathcal{H}_{\leq d} \left[\frac{\partial^i}{\partial y^i} P(f_0) \right] \tilde{h}^i \right] .$$

- 3. Thus, A_i can be written as circuit over $\{A_{i-1}, g_0, \ldots, g_i\}$ of size $O(d^2)$.
- 4. As the size blow-up from A_{i-1} is additive, A_i has circuit of size $O(d^2i)$.

- Closure for bounded depth poly-log degree circuit
 - New hardness versus randomness connection.

Closure for bounded depth poly-log degree circuit

New hardness versus randomness connection.

Closure for VNP

 Note that if VNP is not closed under factoring, then VP ≠ VNP.

Closure for bounded depth poly-log degree circuit

New hardness versus randomness connection.

Closure for VNP

 Note that if VNP is not closed under factoring, then VP ≠ VNP.

Key technique

◆ A more efficient generator lemma.

Bounded depth circuits

→ Remove the degree conditions in [DSY09, CKS18]?

Bounded depth circuits

→ Remove the degree conditions in [DSY09, CKS18]?

Formulas and Branching programs

◆ Remove the quasi-poly blow up in [DSS18]?

Bounded depth circuits

◆ Remove the degree conditions in [DSY09, CKS18]?

Formulas and Branching programs

◆ Remove the quasi-poly blow up in [DSS18]?

High-degree regime

* Factoring conjecture [Bürgisser 00]: Let f = gh have poly(n) size circuit, does its **low-degree** factor also have small circuit too?

Thank you!

Bounded depth circuits

◆ Remove the degree conditions in [DSY09, CKS18]?

Formulas and Branching programs

* Remove the quasi-poly blow up in [DSS18]?

High-degree regime

* Factoring conjecture [Bürgisser 00]: Let f = gh have poly(n) size circuit, does its **low-degree** factor also have small circuit too?