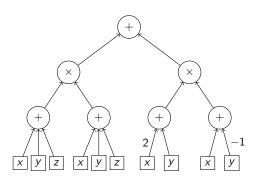
Near-optimal Bootstrapping of Hitting Sets

Mrinal Kumar (University of Toronto) Ramprasad Saptharishi (TIFR, Mumbai)

Anamay Tengse (TIFR, Mumbai)

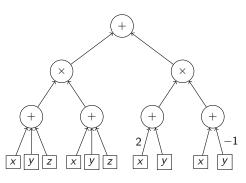
ICTS WACT 2019

Algebraic Models

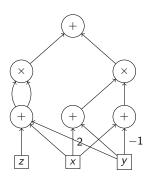


Algebraic Formula

Algebraic Models

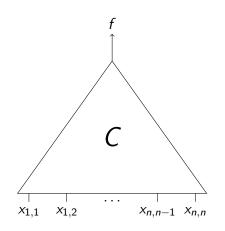


Algebraic Formula

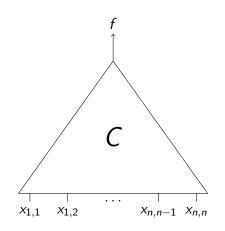


Algebraic Circuit

$$f = \mathsf{Perm} \left(\begin{bmatrix} x_{1,1} & \dots & x_{1,n} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \dots & x_{n,n} \end{bmatrix} \right)$$

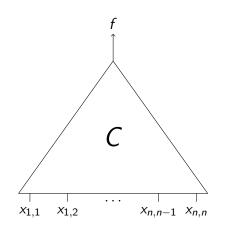


$$f = \mathsf{Perm} \left(\begin{bmatrix} x_{1,1} & \dots & x_{1,n} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \dots & x_{n,n} \end{bmatrix} \right)$$



$$f = \operatorname{Perm} \left(\begin{bmatrix} x_{1,1} & \dots & x_{1,n} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \dots & x_{n,n} \end{bmatrix} \right)$$

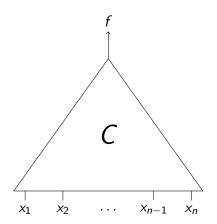
Does C require size $> n^3$?

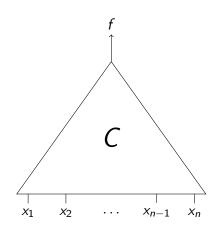


$$f = \mathsf{Perm} \left(\begin{bmatrix} x_{1,1} & \dots & x_{1,n} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \dots & x_{n,n} \end{bmatrix} \right)$$

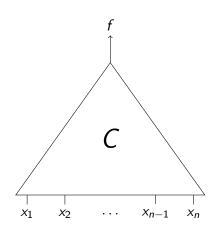
Does C require size $> n^3$?

Find an "explicit" *n*-variate $f(\mathbf{x})$ that requires $n^{\omega(1)}$ sized circuits?



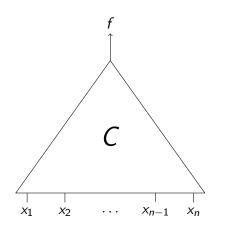


Can we say something about f?



Can we say something about f?

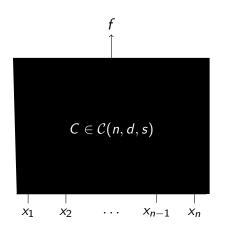
Is
$$f = 0$$
?



Can we say something about f?

Is
$$f = 0$$
?

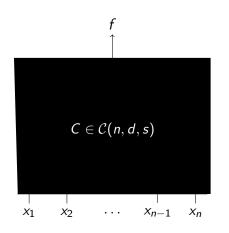
Whitebox: Does the given circuit compute 0?



Can we say something about f?

Is
$$f = 0$$
?

Blackbox: Evaluate C on some points to tell if C = 0.



Can we say something about f?

Is
$$f = 0$$
?

Hitting Set: Find H_C such that C = 0 **iff** it is 0 on every $h \in H_C$.

Counting Argument: There is a non-explicit poly(n, d, s) sized hitting set for the class of all n-variate, degree-d circuits of size s, $\mathcal{C}(n, d, s)$.

Counting Argument: There is a non-explicit poly(n, d, s) sized hitting set for the class of all *n*-variate, degree-*d* circuits of size *s*, C(n, d, s).

Lemma [Ore, DeMillo-Lipton, Schwartz, Zippel]: Any nonzero polynomial of degree d on n variables evaluates to a nonzero value on some point in $[d+1]^n$.

Counting Argument: There is a non-explicit poly(n, d, s) sized hitting set for the class of all *n*-variate, degree-*d* circuits of size *s*, C(n, d, s).

Lemma [Ore, DeMillo-Lipton, Schwartz, Zippel]: Any nonzero polynomial of degree d on n variables evaluates to a nonzero value on some point in $[d+1]^n$.

Corollary: Explicit hitting set of size $d^{O(n)}$ for C(n, d, s).

Counting Argument: There is a non-explicit poly(n, d, s) sized hitting set for the class of all *n*-variate, degree-*d* circuits of size *s*, C(n, d, s).

Lemma [Ore, DeMillo-Lipton, Schwartz, Zippel]: Any nonzero polynomial of degree d on n variables evaluates to a nonzero value on some point in $[d+1]^n$.

Corollary: Explicit hitting set of size $d^{O(n)}$ for C(n, d, s).

OPEN: Find an explicit hitting set of size $d^{o(n)}$ for C(n, d, s).

Theorem [Agrawal, Ghosh, Saxena 2018]

Suppose for a large constant n and all $s \ge n$, there is an explicit hitting set of size

```
s^{n^{0.49}} for C(n, s, s).
```

Theorem [Agrawal, Ghosh, Saxena 2018]

Suppose for a large constant n and all $s \ge n$, there is an explicit hitting set of size

$$s^{n^{0.49}}$$
 for $C(n, s, s)$.

Then for all large s, there is an explicit hitting set of size

$$s^{\text{tiny}(s)}$$
 for $C(s, s, s)$.

Theorem [Agrawal, Ghosh, Saxena 2018]

Suppose for a large constant n and all $s \ge n$, there is an explicit hitting set of size

$$s^{n^{0.49}}$$
 for $C(n, s, s)$.

Then for all large s, there is an explicit hitting set of size

$$s^{\text{tiny}(s)}$$
 for $C(s, s, s)$.

$$tiny(s) = \exp(\exp(O(\log^* s)))$$

Theorem [Agrawal, Ghosh, Saxena 2018]

Suppose for a large constant n and all $s \ge n$, there is an explicit hitting set of size

$$s^{n^{0.49}}$$
 for $C(n, s, s)$.

Then for all large s, there is an explicit hitting set of size

$$s^{\text{tiny}(s)}$$
 for $C(s, s, s)$.

Theorem [Kumar, Saptharishi, T]

Suppose for a large constant n and all $s \ge n$, there is an explicit hitting set of size

$$s^{n^{0.49}}$$
 for $C(n, s, s)$.

Then for all large s, there is an explicit hitting set of size $s^{tiny(s)}$ for C(s, s, s).

Theorem [Kumar, Saptharishi, T]

Suppose for a constant $n \ge 2$ and all $s \ge n$, there is an explicit hitting set of size

$$s^{n^{0.49}}$$
 for $C(n, s, s)$.

Then for all large s, there is an explicit hitting set of size $s^{tiny(s)}$ for C(s, s, s).

Theorem [Kumar, Saptharishi, T]

Suppose for a constant $n \ge 2$, some $\epsilon > 0$ and all $s \ge n$, there is an explicit hitting set of size

$$s^{n-\epsilon}$$
 for $C(n, s, s)$.

Then for all large s, there is an explicit hitting set of size $s^{tiny(s)}$ for C(s, s, s).

Theorem [Kumar, Saptharishi, T]

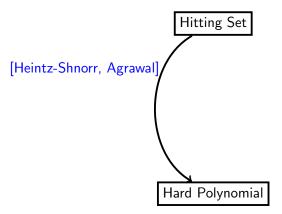
Suppose for a constant $n \ge 2$, some $\epsilon > 0$ and all $s \ge n$, there is an explicit hitting set of size

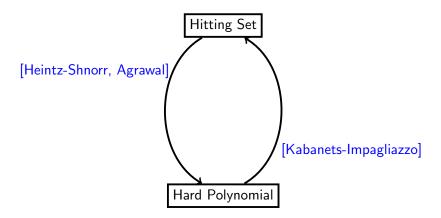
$$s^{n-\epsilon}$$
 for $\mathcal{F}(n,s,s)$.

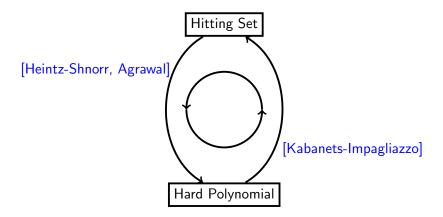
Then for all large s, there is an explicit hitting set of size $s^{tiny(s)}$ for $\mathcal{F}(s, s, s)$.

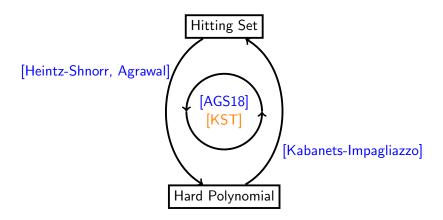
Hitting Set

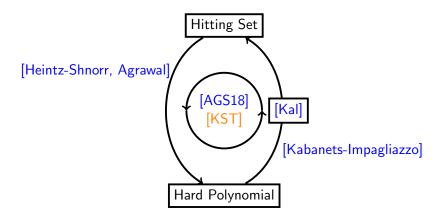
Hard Polynomial

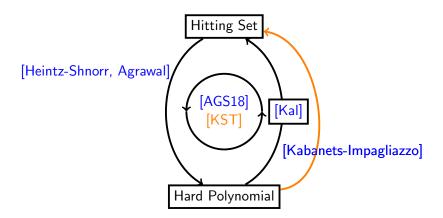












Hardness from Hitting Sets

Theorem [Heitnz-Schnorr, Agrawal] (Informal)

Suppose H is a hitting set for C(n, d, s).

Hardness from Hitting Sets

```
Theorem [Heitnz-Schnorr, Agrawal] (Informal) 
Suppose H is a hitting set for \mathcal{C}(n,d,s). 
Then for any k \leq n and \delta satisfying \delta^k > |H| and k\delta \leq d
```

Hardness from Hitting Sets

Theorem [Heitnz-Schnorr, Agrawal] (Informal)

Suppose H is a hitting set for C(n, d, s).

Then for any $k \leq n$ and δ satisfying

$$\delta^k > |H|$$
 and $k\delta \le d$

there is a k-variate polynomial Q_k of <u>individual</u> degree δ , that is hard for C(n, d, s).

Hardness from Hitting Sets

Theorem [Heitnz-Schnorr, Agrawal] (Informal)

Suppose H is a hitting set for C(n, d, s).

Then for any $k \leq n$ and δ satisfying

$$\delta^k > |H|$$
 and $k\delta \le d$

there is a k-variate polynomial Q_k of <u>individual</u> degree δ , that is hard for C(n, d, s).

Proof Idea: Use interpolation to get a Q_k that vanishes on H.

Theorem [Kabanets-Impagliazzo] (Informal)

Suppose Q_k has individual degree δ and requires large circuits.

Theorem [Kabanets-Impagliazzo] (Informal)

Suppose Q_k has individual degree δ and requires large circuits.

Then for any nonzero $P \in C(m, d, s)$,

$$P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m))$$
 is nonzero

when y_1, \ldots, y_m are nearly disjoint.

Theorem [Kabanets-Impagliazzo] (Informal)

Suppose Q_k has individual degree δ and requires large circuits.

Then for any nonzero $P \in C(m, d, s)$,

$$P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m))$$
 is nonzero

when $y_1, ..., y_m \subseteq \{y_1, ..., y_{k^2}\}.$

```
Theorem [Kabanets-Impagliazzo] (Informal)
```

Suppose Q_k has individual degree δ and requires large circuits.

Then for any nonzero $P \in \mathcal{C}(m, d, s)$ with $m \sim \exp(\sqrt{k})$,

$$P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m))$$
 is nonzero

when $\mathbf{y}_1, \dots, \mathbf{y}_m \subseteq \{y_1, \dots, y_{k^2}\}.$

Theorem [Kabanets-Impagliazzo] (Informal)

Suppose Q_k has individual degree δ and requires large circuits.

Then for any nonzero $P \in \mathcal{C}(m, d, s)$ with $m \sim \exp(\sqrt{k})$,

$$P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m))$$
 is nonzero

when $\mathbf{y}_1, \dots, \mathbf{y}_m \subseteq \{y_1, \dots, y_{k^2}\}.$

Outcome: PIT(m, d, s) reduces to $PIT(k^2, d', s')$, for slightly larger d', s' and $k \sim polylog(m)$.

Theorem [Kabanets-Impagliazzo] (Informal)

Suppose Q_k has individual degree δ and requires large circuits.

Then for any nonzero $P \in C(m, d, s)$ with $m \sim \exp(\sqrt{k})$,

$$P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m))$$
 is nonzero

when $\mathbf{y}_1, \ldots, \mathbf{y}_m \subseteq \{y_1, \ldots, y_{k^2}\}.$

Outcome: PIT(m, d, s) reduces to $PIT(k^2, d', s')$, for slightly larger d', s' and $k \sim polylog(m)$.

Requires closure under factoring!

Lemma [Kumar-Saptharishi-T] (Informal)

Suppose Q_k has individual degree δ and requires large formulas,

Lemma [Kumar-Saptharishi-T] (Informal)

Suppose Q_k has individual degree δ and requires large formulas, because it vanishes on some hitting set.

Lemma [Kumar-Saptharishi-T] (Informal)

Suppose Q_k has individual degree δ and requires large formulas, because it vanishes on some hitting set.

Then for any nonzero $P \in \mathcal{F}(m,d,s)$ with $m \sim \exp(\sqrt{k})$,

$$P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m))$$
 is nonzero

when
$$\mathbf{y}_1, \dots, \mathbf{y}_m \subseteq \{y_1, \dots, y_{k^2}\}.$$

Lemma [Kumar-Saptharishi-T] (Informal)

Suppose Q_k has individual degree δ and requires large formulas, because it vanishes on some hitting set.

Then for any nonzero
$$P \in \mathcal{F}(m,d,s)$$
 with $m \sim \exp(\sqrt{k})$, $P(Q_k(\mathbf{y}_1),Q_k(\mathbf{y}_2),\ldots,Q_k(\mathbf{y}_m))$ is nonzero when $\mathbf{y}_1,\ldots,\mathbf{y}_m\subseteq\{y_1,\ldots,y_{k^2}\}$.

Outcome: PIT(m, d, s) reduces to $PIT(k^2, d', s')$, for slightly larger d', s' and $k \sim polylog(m)$.

Lemma [Kumar-Saptharishi-T] (Informal)

Suppose Q_k has individual degree δ and requires large formulas, because it vanishes on some hitting set.

Then for any nonzero $P \in \mathcal{F}(m, d, s)$ with $m \sim \exp(\sqrt{k})$, $P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m))$ is nonzero when $\mathbf{y}_1, \dots, \mathbf{y}_m \subseteq \{y_1, \dots, y_{k^2}\}$.

Outcome: PIT(m, d, s) reduces to $PIT(k^2, d', s')$, for slightly larger d', s' and $k \sim polylog(m)$.

Proof: On the board.

Hyp.: Q_k of ind. deg. < d vanishes on $\mathcal{H}(k^2, s^{10}, s^{10})$.

Goal: Hitting set for $\mathcal{F}(m, s, s)$, for $m = 2^{\sqrt{k}}$, all s.

Hyp.: Q_k of ind. deg. < d vanishes on $\mathcal{H}(k^2, s^{10}, s^{10})$.

Goal: Hitting set for $\mathcal{F}(m, s, s)$, for $m = 2^{\sqrt{k}}$, all s.

► Variable reduction:

```
Obtain \mathbf{y}_1, \dots, \mathbf{y}_m \subseteq \{y_1, \dots, y_{k^2}\}.
```

Hyp.: Q_k of ind. deg. < d vanishes on $\mathcal{H}(k^2, s^{10}, s^{10})$.

Goal: Hitting set for $\mathcal{F}(m, s, s)$, for $m = 2^{\sqrt{k}}$, all s.

► Variable reduction:

Obtain
$$\mathbf{y}_1, \dots, \mathbf{y}_m \subseteq \{y_1, \dots, y_{k^2}\}$$
. Nonzero $P \in \mathcal{F}(m, s, s)$, $P' = P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m)) \neq 0$.

Hyp.: Q_k of ind. deg. < d vanishes on $\mathcal{H}(k^2, s^{10}, s^{10})$.

Goal: Hitting set for $\mathcal{F}(m, s, s)$, for $m = 2^{\sqrt{k}}$, all s.

Variable reduction:

Obtain
$$\mathbf{y}_1, \dots, \mathbf{y}_m \subseteq \{y_1, \dots, y_{k^2}\}$$
. Nonzero $P \in \mathcal{F}(m, s, s)$, $P' = P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m)) \neq 0$.

Hyp.: Q_k of ind. deg. < d vanishes on $\mathcal{H}(k^2, s^{10}, s^{10})$.

Goal: Hitting set for $\mathcal{F}(m, s, s)$, for $m = 2^{\sqrt{k}}$, all s.

Variable reduction:

Obtain
$$\mathbf{y}_1, \dots, \mathbf{y}_m \subseteq \{y_1, \dots, y_{k^2}\}$$
. Nonzero $P \in \mathcal{F}(m, s, s)$, $P' = P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m)) \neq 0$.

$$size(P') = size(P) \cdot size(Q_k) = s'.$$

Hyp.: Q_k of ind. deg. < d vanishes on $\mathcal{H}(k^2, s^{10}, s^{10})$.

Goal: Hitting set for $\mathcal{F}(m, s, s)$, for $m = 2^{\sqrt{k}}$, all s.

Variable reduction:

Obtain
$$\mathbf{y}_1, \dots, \mathbf{y}_m \subseteq \{y_1, \dots, y_{k^2}\}$$
. Nonzero $P \in \mathcal{F}(m, s, s)$, $P' = P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m)) \neq 0$.

$$size(P') = size(P) \cdot size(Q_k) = s'.$$

 $deg(P') \le deg(P) \cdot k \cdot d = d' < s'.$

Hyp.: Q_k of ind. deg. < d vanishes on $\mathcal{H}(k^2, s^{10}, s^{10})$.

Goal: Hitting set for $\mathcal{F}(m, s, s)$, for $m = 2^{\sqrt{k}}$, all s.

Variable reduction:

Obtain
$$\mathbf{y}_1, \dots, \mathbf{y}_m \subseteq \{y_1, \dots, y_{k^2}\}$$
. Nonzero $P \in \mathcal{F}(m, s, s)$, $P' = P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m)) \neq 0$.

$$\operatorname{size}(P') = \operatorname{size}(P) \cdot \operatorname{size}(Q_k) = s'.$$

 $\operatorname{deg}(P') \leq \operatorname{deg}(P) \cdot k \cdot d = d' < s'.$
 $P' \in \mathcal{C}(k^2, s', s'), \text{ hitting set of size } (s')^{k^2}.$

Hyp.: Q_k of ind. deg. < d vanishes on $\mathcal{H}(k^2, s^{10}, s^{10})$.

Goal: Hitting set for $\mathcal{F}(m, s, s)$, for $m = 2^{\sqrt{k}}$, all s.

Variable reduction:

Obtain
$$\mathbf{y}_1, \dots, \mathbf{y}_m \subseteq \{y_1, \dots, y_{k^2}\}$$
. Nonzero $P \in \mathcal{F}(m, s, s)$, $P' = P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m)) \neq 0$.

"Better" hitting set:

$$\operatorname{size}(P') = \operatorname{size}(P) \cdot \operatorname{size}(Q_k) = s'.$$

 $\operatorname{deg}(P') \leq \operatorname{deg}(P) \cdot k \cdot d = d' < s'.$
 $P' \in \mathcal{C}(k^2, s', s'), \text{ hitting set of size } (s')^{k^2}.$

Q. What if we have a non-trivial hitting set for $C(k^2, s, s)$?

Hyp.: Q_k of ind. deg. < d vanishes on $\mathcal{H}(k^2, s^{10}, s^{10})$.

Goal: Hitting set for $\mathcal{F}(m, s, s)$, for $m = 2^{\sqrt{k}}$, all s.

Variable reduction:

Obtain
$$\mathbf{y}_1, \dots, \mathbf{y}_m \subseteq \{y_1, \dots, y_{k^2}\}$$
. Nonzero $P \in \mathcal{F}(m, s, s)$, $P' = P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m)) \neq 0$.

"Better" hitting set:

$$\begin{aligned} \operatorname{size}(P') &= \operatorname{size}(P) \cdot \operatorname{size}(Q_k) = s'. \\ \operatorname{deg}(P') &\leq \operatorname{deg}(P) \cdot k \cdot d = d' < s'. \\ P' &\in \mathcal{C}(k^2, s', s'), \text{ hitting set of size } (s')^{k^2}. \end{aligned}$$

Hyp.: Hitting set H for $\mathcal{F}(k^2, s, s)$ of size $s^{g(k)}$, for all s.

Goal: Hitting set for $\mathcal{F}(m, s, s)$, for $m = 2^{\sqrt{k}}$, all s.

Variable reduction:

Obtain
$$\mathbf{y}_1, \dots, \mathbf{y}_m \subseteq \{y_1, \dots, y_{k^2}\}$$
. Nonzero $P \in \mathcal{F}(m, s, s)$, $P' = P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m)) \neq 0$.

"Better" hitting set:

$$\begin{aligned} &\operatorname{size}(P') = \operatorname{size}(P) \cdot \operatorname{size}(Q_k) = s'. \\ &\operatorname{deg}(P') \leq \operatorname{deg}(P) \cdot k \cdot d = d' < s'. \\ &P' \in \mathcal{C}(k^2, s', s'), \text{ hitting set of size } (s')^{k^2}. \end{aligned}$$

Hyp.: Hitting set H for $\mathcal{F}(k^2, s, s)$ of size $s^{g(k)}$, for all s.

Goal: Hitting set for $\mathcal{F}(m, s, s)$, for $m = 2^{\sqrt{k}}$, all s.

- ▶ Hard poly: Q_k of ind. deg. $|H|^{1/k}$, size $(Q_k) \leq |H|^2$ (for s^{10}).
- ► Variable reduction:

Obtain
$$\mathbf{y}_1, \dots, \mathbf{y}_m \subseteq \{y_1, \dots, y_{k^2}\}$$
. Nonzero $P \in \mathcal{F}(m, s, s)$, $P' = P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m)) \neq 0$.

"Better" hitting set:

$$\begin{split} \operatorname{size}(P') &= \operatorname{size}(P) \cdot \operatorname{size}(Q_k) = s'. \\ \operatorname{deg}(P') &\leq \operatorname{deg}(P) \cdot k \cdot d = d' < s'. \\ P' &\in \mathcal{C}(k^2, s', s'), \text{ hitting set of size } (s')^{k^2}. \end{split}$$

Hyp.: Hitting set H for $\mathcal{F}(k^2, s, s)$ of size $s^{g(k)}$, for all s.

Goal: Hitting set for $\mathcal{F}(m, s, s)$, for $m = 2^{\sqrt{k}}$, all s.

- ▶ Hard poly: Q_k of ind. deg. $|H|^{1/k}$, size $(Q_k) \leq |H|^2$ (for s^{10}).
- ► Variable reduction:

Obtain
$$\mathbf{y}_1, \dots, \mathbf{y}_m \subseteq \{y_1, \dots, y_{k^2}\}$$
. Nonzero $P \in \mathcal{F}(m, s, s)$, $P' = P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m)) \neq 0$.

"Better" hitting set:

$$\begin{aligned} &\operatorname{size}(P') = s \cdot |H|^2 = s'. \\ &\operatorname{deg}(P') \le \operatorname{deg}(P) \cdot k \cdot d = d' < s'. \\ &P' \in \mathcal{C}(k^2, s', s'), \text{ hitting set of size } (s')^{k^2}. \end{aligned}$$

Hyp.: Hitting set H for $\mathcal{F}(k^2, s, s)$ of size $s^{g(k)}$, for all s.

Goal: Hitting set for $\mathcal{F}(m, s, s)$, for $m = 2^{\sqrt{k}}$, all s.

- ▶ Hard poly: Q_k of ind. deg. $|H|^{1/k}$, size $(Q_k) \leq |H|^2$ (for s^{10}).
- ► Variable reduction:

Obtain
$$\mathbf{y}_1, \dots, \mathbf{y}_m \subseteq \{y_1, \dots, y_{k^2}\}$$
. Nonzero $P \in \mathcal{F}(m, s, s)$, $P' = P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m)) \neq 0$.

"Better" hitting set:

$$\begin{aligned} &\operatorname{size}(P') = s \cdot |H|^2 \le |H|^3. \\ &\operatorname{deg}(P') \le \operatorname{deg}(P) \cdot k \cdot d = d' < s'. \\ &P' \in \mathcal{C}(k^2, s', s'), \text{ hitting set of size } (s')^{k^2}. \end{aligned}$$



Hyp.: Hitting set H for $\mathcal{F}(k^2, s, s)$ of size $s^{g(k)}$, for all s.

Goal: Hitting set for $\mathcal{F}(m, s, s)$, for $m = 2^{\sqrt{k}}$, all s.

- ▶ Hard poly: Q_k of ind. deg. $|H|^{1/k}$, size $(Q_k) \leq |H|^2$ (for s^{10}).
- ► Variable reduction:

Obtain
$$\mathbf{y}_1, \dots, \mathbf{y}_m \subseteq \{y_1, \dots, y_{k^2}\}$$
. Nonzero $P \in \mathcal{F}(m, s, s)$, $P' = P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m)) \neq 0$.

"Better" hitting set:

$$\begin{aligned} \operatorname{size}(P') &= s \cdot |H|^2 \le |H|^3. \\ \operatorname{deg}(P') &\le s \cdot k \cdot d < |H|^3. \\ P' &\in \mathcal{C}(k^2, s', s'), \text{ hitting set of size } (s')^{k^2}. \end{aligned}$$

Hyp.: Hitting set H for $\mathcal{F}(k^2, s, s)$ of size $s^{g(k)}$, for all s.

Goal: Hitting set for $\mathcal{F}(m, s, s)$, for $m = 2^{\sqrt{k}}$, all s.

- ▶ Hard poly: Q_k of ind. deg. $|H|^{1/k}$, size $(Q_k) \leq |H|^2$ (for s^{10}).
- ► Variable reduction:

Obtain
$$\mathbf{y}_1, \dots, \mathbf{y}_m \subseteq \{y_1, \dots, y_{k^2}\}$$
. Nonzero $P \in \mathcal{F}(m, s, s)$, $P' = P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m)) \neq 0$.

"Better" hitting set:

$$\begin{aligned} \operatorname{size}(P') &= s \cdot |H|^2 \le |H|^3. \\ \operatorname{deg}(P') &\le s \cdot k \cdot d < |H|^3. \\ P' &\in \mathcal{C}(k^2, |H|^3, |H|^3), \text{ hitting set of size } (s')^{k^2}. \end{aligned}$$

Hyp.: Hitting set H for $\mathcal{F}(k^2, s, s)$ of size $s^{g(k)}$, for all s.

Goal: Hitting set for $\mathcal{F}(m, s, s)$, for $m = 2^{\sqrt{k}}$, all s.

- ▶ Hard poly: Q_k of ind. deg. $|H|^{1/k}$, size $(Q_k) \leq |H|^2$ (for s^{10}).
- ► Variable reduction:

Obtain
$$\mathbf{y}_1, \dots, \mathbf{y}_m \subseteq \{y_1, \dots, y_{k^2}\}$$
. Nonzero $P \in \mathcal{F}(m, s, s)$, $P' = P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m)) \neq 0$.

"Better" hitting set:

$$\begin{aligned} &\operatorname{size}(P') = s \cdot |H|^2 \le |H|^3. \\ &\operatorname{deg}(P') \le s \cdot k \cdot d < |H|^3. \\ &P' \in \mathcal{C}(k^2, |H|^3, |H|^3), \text{ hitting set of size } |H|^{3k^2}. \end{aligned}$$

Hyp.: Hitting set H for $\mathcal{F}(k^2, s, s)$ of size $s^{g(k)}$, for all s.

Goal: Hitting set for $\mathcal{F}(m, s, s)$, for $m = 2^{\sqrt{k}}$, all s.

- ▶ Hard poly: Q_k of ind. deg. $|H|^{1/k}$, size $(Q_k) \leq |H|^2$ (for s^{10}).
- ► Variable reduction:

Obtain
$$\mathbf{y}_1, \dots, \mathbf{y}_m \subseteq \{y_1, \dots, y_{k^2}\}$$
. Nonzero $P \in \mathcal{F}(m, s, s)$, $P' = P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m)) \neq 0$.

"Better" hitting set:

$$\begin{aligned} &\operatorname{size}(P') = s \cdot |H|^2 \le |H|^3. \\ &\operatorname{deg}(P') \le s \cdot k \cdot d < |H|^3. \\ &P' \in \mathcal{C}(k^2, |H|^3, |H|^3), \text{ hitting set of size } |H|^{3g(k)} \le s^{30g(k)^2}. \end{aligned}$$

Hyp.: Hitting set H for $\mathcal{F}(k^2, s, s)$ of size $s^{g(k)}$, for all s.

Goal: Hitting set for $\mathcal{F}(m, s, s)$, for $m = 2^{\sqrt{k}}$, all s.

- ▶ Hard poly: Q_k of ind. deg. $|H|^{1/k}$, size $(Q_k) \leq |H|^2$ (for s^{10}).
- ► Variable reduction:

Obtain
$$\mathbf{y}_1, \dots, \mathbf{y}_m \subseteq \{y_1, \dots, y_{k^2}\}$$
. Nonzero $P \in \mathcal{F}(m, s, s)$, $P' = P(Q_k(\mathbf{y}_1), Q_k(\mathbf{y}_2), \dots, Q_k(\mathbf{y}_m)) \neq 0$.

"Better" hitting set:

$$\begin{aligned} &\operatorname{size}(P') = s \cdot |H|^2 \leq |H|^3. \\ &\operatorname{deg}(P') \leq s \cdot k \cdot d < |H|^3. \\ &P' \in \mathcal{C}(k^2, |H|^3, |H|^3), \text{ hitting set of size } |H|^{3g(k)} \leq s^{30g(k)^2}. \end{aligned}$$

Q. What if we have a $s^{g(k)}$ hitting set for $C(k^2, s, s)$, for all s?

A. We get a $s^{30g(k)^2}$ hitting set for $C(2^{\sqrt{k}}, s, s)$, for all s.

Bootstrapping Procedure:

Bootstrapping Procedure:

Reduce PIT(s, s, s) to $PIT(\log^c(s), s', s')$.

Bootstrapping Procedure:

Reduce PIT(s, s, s) to $PIT(\log^c(s), s', s')$.

Then reduce that to $PIT(loglog^{c}(s), s'', s'')$.

Bootstrapping Procedure:

```
Reduce PIT(s, s, s) to PIT(\log^c(s), s', s').
```

Then reduce that to $PIT(loglog^c(s), s'', s'')$.

:

Reduce to constant variate PIT for size $s^{tiny(s)}$.

Bootstrapping Procedure:

```
Reduce \mathsf{PIT}(s,s,s) to \mathsf{PIT}(\mathsf{log}^c(s),s',s').

Q over k = \mathsf{polylog}(s) variables, s^{\Omega(1)} = \mathsf{exp}(k) hard.

Then reduce that to \mathsf{PIT}(\mathsf{loglog}^c(s),s'',s'').

:

Reduce to constant variate \mathsf{PIT} for size s^{\mathsf{tiny}(s)}.
```

Bootstrapping Procedure:

```
Reduce \operatorname{PIT}(s,s,s) to \operatorname{PIT}(\log^c(s),s',s').

Q over k=\operatorname{polylog}(s) variables, s^{\Omega(1)}=\exp(k) hard.

Then reduce that to \operatorname{PIT}(\operatorname{loglog}^c(s),s'',s'').

Q over k=\operatorname{loglog}^{c'}(s) variables, s^{\Omega(1)}=\exp(\exp(k)) hard.

\vdots

Reduce to constant variate PIT for size s^{\operatorname{tiny}(s)}.
```

Why can we do this repeatedly?

Bootstrapping Procedure:

```
Reduce \operatorname{PIT}(s,s,s) to \operatorname{PIT}(\log^c(s),s',s').

Q over k=\operatorname{polylog}(s) variables, s^{\Omega(1)}=\exp(k) hard.

Then reduce that to \operatorname{PIT}(\operatorname{loglog}^c(s),s'',s'').

Q over k=\operatorname{loglog}^{c'}(s) variables, s^{\Omega(1)}=\exp(\exp(k)) hard.

\vdots

Reduce to constant variate \operatorname{PIT} for size s^{\operatorname{tiny}(s)}.
```

Possible due to freedom in individual degree of Q.

Why can we do this repeatedly?

Bootstrapping Procedure:

```
Reduce \operatorname{PIT}(s,s,s) to \operatorname{PIT}(\log^c(s),s',s').

Q over k=\operatorname{polylog}(s) variables, s^{\Omega(1)}=\exp(k) hard.

Then reduce that to \operatorname{PIT}(\operatorname{loglog}^c(s),s'',s'').

Q over k=\operatorname{loglog}^{c'}(s) variables, s^{\Omega(1)}=\exp(\exp(k)) hard.

\vdots

Reduce to constant variate PIT for size s^{\operatorname{tiny}(s)}.
```

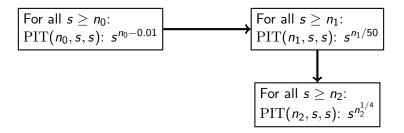
Possible due to freedom in individual degree of Q. Unlike the boolean case, nothing stops us.

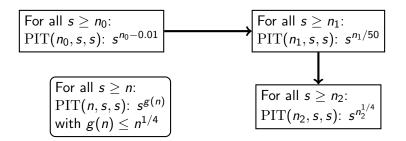
For all $s \ge n_0$: $PIT(n_0, s, s)$: $s^{n_0-0.01}$

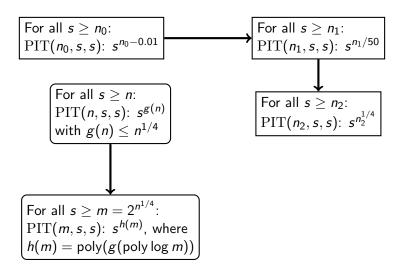
```
For all s \ge n_0:

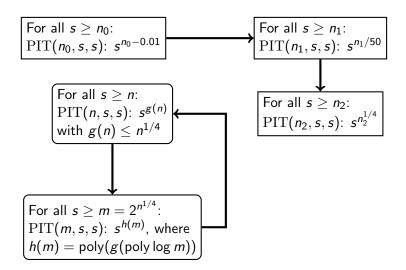
\operatorname{PIT}(n_0, s, s): s^{n_0-0.01}
For all s \ge n_1:

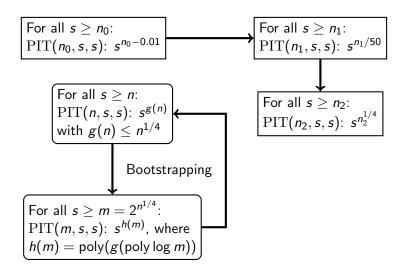
\operatorname{PIT}(n_1, s, s): s^{n_1/50}
```

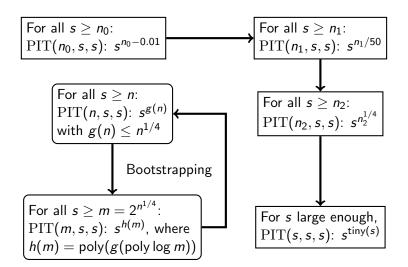












Theorem [Kumar, Saptharishi, T]

Suppose for a constant $n \ge 2$, some $\epsilon > 0$ and all $s \ge n$, there is an explicit hitting set of size

$$s^{n-\epsilon}$$
 for $\mathcal{F}(n,s,s)$.

Then for all large s, there is an explicit hitting set of size $s^{tiny(s)}$ for $\mathcal{F}(s, s, s)$.

Theorem [Kumar, Saptharishi, T]

Suppose for a constant $n \ge 2$, some $\epsilon > 0$ and all $s \ge n$, there is an explicit hitting set of size

$$s^{n-\epsilon}$$
 for $\mathcal{F}(n,s,s)$.

Then for all large s, there is an explicit hitting set of size $s^{tiny(s)}$ for $\mathcal{F}(s, s, s)$.

Open Questions

Theorem [Kumar, Saptharishi, T]

Suppose for a constant $n \ge 2$, some $\epsilon > 0$ and all $s \ge n$, there is an explicit hitting set of size

$$s^{n-\epsilon}$$
 for $\mathcal{F}(n,s,s)$.

Then for all large s, there is an explicit hitting set of size $s^{tiny(s)}$ for $\mathcal{F}(s,s,s)$.

Open Questions

► Can we get to hitting sets of size poly(s)?

Theorem [Kumar, Saptharishi, T]

Suppose for a constant $n \ge 2$, some $\epsilon > 0$ and all $s \ge n$, there is an explicit hitting set of size

$$s^{n-\epsilon}$$
 for $\mathcal{F}(n,s,s)$.

Then for all large s, there is an explicit hitting set of size $s^{tiny(s)}$ for $\mathcal{F}(s,s,s)$.

Open Questions

- ▶ Can we get to hitting sets of size poly(s)?
- ► Can we bootstrap lower bounds? Similar to [CILM18].

Theorem [Kumar, Saptharishi, T]

Suppose for a constant $n \ge 2$, some $\epsilon > 0$ and all $s \ge n$, there is an explicit hitting set of size

$$s^{n-\epsilon}$$
 for $\mathcal{F}(n,s,s)$.

Then for all large s, there is an explicit hitting set of size $s^{tiny(s)}$ for $\mathcal{F}(s,s,s)$.

Open Questions

- ▶ Can we get to hitting sets of size poly(s)?
- ► Can we bootstrap lower bounds? Similar to [CILM18].

Thank You!