Arithmetic Circuit Complexity of $S_{n,k}^*$ and Multilinear Monomial Counting

Joint work with V. Arvind¹ Rajit Datta² Partha Mukhopadhyay²

¹Institute of Mathematical Sciences(HBNI), India ²Chennai Mathematical Institute, India

Workshop on Arithmetic Complexity Theory, 2019

Multilinear Monomial Detection and Counting.

- Multilinear Monomial Detection and Counting.
- Our Approach.

- Multilinear Monomial Detection and Counting.
- Our Approach.
- **3** ABP construction of $S_{n,k}^*$.

- Multilinear Monomial Detection and Counting.
- Our Approach.
- **3** ABP construction of $S_{n,k}^*$.
- Beating the Brute Force.

Koutis and Williams [Kou08, Wi09, KW16] introduced and studied two algorithmic problems on arithmetic circuits.

Koutis and Williams [Kou08, Wi09, KW16] introduced and studied two algorithmic problems on arithmetic circuits.

Definition (k-MMD)

Given as input an arithmetic circuit C computing a polynomial $f \in \mathbb{F}[x_1, x_2, \dots, x_n]$, decide whether f has a non-zero degree-k multilinear monomial.

Koutis and Williams [Kou08, Wi09, KW16] introduced and studied two algorithmic problems on arithmetic circuits.

Definition (k-MMD)

Given as input an arithmetic circuit C computing a polynomial $f \in \mathbb{F}[x_1, x_2, \dots, x_n]$, decide whether f has a non-zero degree-k multilinear monomial.

Definition ((k,n)-MLC)

Given as input an arithmetic circuit C computing a polynomial $f \in \mathbb{F}[x_1, x_2, \dots, x_n]$, compute the sum of the coefficients of all degree-k multilinear monomials in the polynomial f.

 k-path: Given a graph G, does there exist a path of length k?

- k-path: Given a graph G, does there exist a path of length k?
- k-Tree: Given a graph G and tree T of size k, does there exist a copy of T in G?

- k-path: Given a graph G, does there exist a path of length k?
- *k*-Tree: Given a graph *G* and tree *T* of size *k*, does there exist a copy of *T* in *G*?
- *t*-Dominating Set: Given graph *G*, does there exist a set of size *k* that dominates at least *t* nodes in *G*?

- k-path: Given a graph G, does there exist a path of length k?
- *k*-Tree: Given a graph *G* and tree *T* of size *k*, does there exist a copy of *T* in *G*?
- *t*-Dominating Set: Given graph *G*, does there exist a set of size *k* that dominates at least *t* nodes in *G*?
- m-Dimensional k-Matching: Given mutually disjoint sets
 U_i, i ∈ [m] and a collection C of m-tuples from
 U₁ × · · · × U_m, does there exist a sub-collection of k
 mutually disjoint m-tuples in C?

- k-path: Given a graph G, does there exist a path of length k?
- *k*-Tree: Given a graph *G* and tree *T* of size *k*, does there exist a copy of *T* in *G*?
- *t*-Dominating Set: Given graph *G*, does there exist a set of size *k* that dominates at least *t* nodes in *G*?
- m-Dimensional k-Matching: Given mutually disjoint sets
 U_i, i ∈ [m] and a collection C of m-tuples from
 U₁ × · · · × U_m, does there exist a sub-collection of k
 mutually disjoint m-tuples in C?

Koutis and Williams [KW16] obtain a randomized $O^*(2^k)$ algorithm for $k\text{-}\mathrm{MmD}$ and reduce all these combinatorial problems to $k\text{-}\mathrm{MmD}$.

However, for (k,n)-MLC, nothing better than $\binom{n}{k}$ was known. Alon and Gutner [**AG10**] have shown that, using color-coding technique, one can not obtain better than $O^*(n^{k/2})$.

However, for (k,n)-MLC, nothing better than $\binom{n}{k}$ was known. Alon and Gutner [**AG10**] have shown that, using color-coding technique, one can not obtain better than $O^*(n^{k/2})$. **Challenge.** To solve (k,n)-MLC beating the brute force.

However, for (k,n)-MLC, nothing better than $\binom{n}{k}$ was known. Alon and Gutner [**AG10**] have shown that, using color-coding technique, one can not obtain better than $O^*(n^{k/2})$. **Challenge.** To solve (k,n)-MLC beating the brute force. It will improve the counting version of all these problems in one shot!

However, for (k,n)-MLC, nothing better than $\binom{n}{k}$ was known. Alon and Gutner [**AG10**] have shown that, using color-coding technique, one can not obtain better than $O^*(n^{k/2})$. **Challenge.** To solve (k,n)-MLC beating the brute force. It will improve the counting version of all these problems in one shot!

Theorem

(k,n)-MLC can be solved in deterministic $O^*(n^{k/2+c \log k})$ time for some constant c.

Definition (Elementary Symmetric Polynomial)

Elementary symmetric polynomial over $\{x_1, \ldots, x_n\}$ of degree k, denoted by $S_{n,k}$, is defined as,

$$S_{n,k}(x_1,\ldots,x_n) = \sum_{\{i_1,\ldots,i_k\}\subseteq [n]} \prod_{j=1}^k x_{i_j}.$$

Definition (Elementary Symmetric Polynomial)

Elementary symmetric polynomial over $\{x_1, \ldots, x_n\}$ of degree k, denoted by $S_{n,k}$, is defined as,

$$S_{n,k}(x_1,\ldots,x_n) = \sum_{\{i_1,\ldots,i_k\}\subseteq[n]} \prod_{j=1}^k x_{i_j}.$$

Definition (Hadamard Product)

Hadamard product of two polynomials $f, g \in \mathbb{F}[x_1, \dots, x_n]$ of degree at most d is defined as,

$$f \circ g(x_1,\ldots,x_n) = \sum_m [m]f \cdot [m]g \cdot m.$$

• Note that, taking Hadamard product of a polynomial with $S_{n,k}$ filtrates the degree-k multilinear part of that polynomial.

- Note that, taking Hadamard product of a polynomial with $S_{n,k}$ filtrates the degree-k multilinear part of that polynomial.
- Given a circuit C, (k,n)-MLC(C) reduces to evaluating $(C \circ S_{n,k})(\vec{1})$.

- Note that, taking Hadamard product of a polynomial with $S_{n,k}$ filtrates the degree-k multilinear part of that polynomial.
- Given a circuit C, (k,n)-MLC(C) reduces to evaluating $(C \circ S_{n,k})(\vec{1})$.
- However, it is 'hard' to compute even when C is given by a 'small' circuit. For example, given graph G = (V, E), evaluating

$$\left(\sum_{(i,j)\in E} x_i x_j\right)^k \circ S_{n,2k}$$

at $\vec{1}$, yields the number of k-matchings in G.

Definition (Non-commutative Polynomial Ring)

- Let X be the set of n indeterminates $\{x_1, x_2, \dots, x_n\}$ and \mathbb{F} be any arbitrary field.
- The non-commutative polynomial ring $\mathbb{F}\langle X \rangle$ is identified with the monoid algebra over \mathbb{F} of the free monoid X^* generated by X.
- So for each ring element $p \in \mathbb{F}\langle X \rangle$, we may write, $p = \sum_{w \in X^*} c_w w$ where each $c_w \in \mathbb{F}$.

Definition (Algebraic Branching Program)

- Directed layered acyclic graph.
- One in-degree-0 vertex called source, and one out-degree-0 vertex called sink.
- Edges only go between consecutive layers i and i + 1.
- ullet Each edge is labeled by a linear form over variables X.
- The polynomial computed by the ABP is the sum over all source-to-sink directed paths of the product of linear forms that label the edges of the path.

 Arvind et al.[AJS09] show that non-commutative Hadamard product is 'easy' to compute when one of the polynomials is given by an ABP.

- Arvind et al.[AJS09] show that non-commutative Hadamard product is 'easy' to compute when one of the polynomials is given by an ABP.
- Idea. Can we reduce the computation of commutative Hadamard product to non-commutative computations?

- Arvind et al.[AJS09] show that non-commutative Hadamard product is 'easy' to compute when one of the polynomials is given by an ABP.
- **Idea.** Can we reduce the computation of commutative Hadamard product to non-commutative computations?
- Let us denote $X = \{x_1, \ldots, x_n\}$ to be a set of n commuting variables and $Y = \{y_1, \ldots, y_n\}$ to be a set of n non-commuting variables.

• Given a commutative circuit C computing a polynomial in $\mathbb{F}[X]$, the noncommutative version of C, C^{nc} as the noncommutative circuit obtained from C by fixing an ordering of the inputs to each product gate in C and replacing x_i by $y_i, 1 \le i \le n$.

- Given a commutative circuit C computing a polynomial in $\mathbb{F}[X]$, the *noncommutative version* of C, C^{nc} as the noncommutative circuit obtained from C by fixing an ordering of the inputs to each product gate in C and replacing x_i by $y_i, 1 \le i \le n$.
- For a homogeneous degree-k commutative polynomial $f \in \mathbb{F}[X]$ given by circuit C, the symmetrized polynomial of f, f^* , is degree-k homogeneous polynomial

$$f^* = \sum_{\sigma \in S_k} \hat{f}^{\sigma},$$

where $\hat{f} \in \mathbb{F}\langle Y \rangle$ computed by C^{nc} .

Transformation Theorem

• For each monomial $m \in X_k$ and each word $m' \in Y^k$ such that $m' \to m$, we have: $[m']f^* = [m]f$.

Transformation Theorem

- For each monomial $m \in X_k$ and each word $m' \in Y^k$ such that $m' \to m$, we have: $[m']f^* = [m]f$.
- Notice that $[m]f = \sum_{\hat{m} \to m} [\hat{m}]\hat{f}$.

$$[m']f^* = \sum_{\hat{m}^{\sigma}} [\hat{m}^{\sigma}]\hat{f} = \sum_{\hat{m} \to m} [\hat{m}]\hat{f} = [m]f.$$

Transformation Theorem

• Let C_1 , C_2 be two circuits for a homogeneous degree-k polynomial $f, g \in \mathbb{F}[X]$. Given any $\vec{a} \in \mathbb{F}^n$,

$$(f^* \circ C_2^{nc})(\vec{a}) = \sum_{m'} [m'] f^* \cdot [m'] C_2^{nc} \cdot m'(\vec{a})$$

$$= \sum_{m} \sum_{m' \to m} [m'] f^* \cdot [m'] C_2^{nc} \cdot m'(\vec{a})$$

$$= \sum_{m} [m] f \sum_{m' \to m} [m'] C_2^{nc} \cdot m'(\vec{a})$$

$$= \sum_{m} [m] f \cdot m(\vec{a}) \sum_{m' \to m} [m'] C_2^{nc}$$

$$= (C_1 \circ C_2)(\vec{a}).$$

 $(k,n) ext{-}\mathrm{M}_{ ext{ iny LC}}$ and Arithmetic Complexity of $\mathcal{S}^*_{n,k}$.

Nisan [Ni91] defined

$$S_{n,k}^* = \sum_{\{i_1,\ldots,i_k\}\subseteq[n]} \sum_{\sigma\in\mathcal{S}_k} \prod_{j=1}^k x_{i_{\sigma(j)}}.$$

Nisan [Ni91] defined

$$S_{n,k}^* = \sum_{\{i_1,...,i_k\}\subseteq [n]} \sum_{\sigma\in S_k} \prod_{j=1}^k x_{i_{\sigma(j)}}.$$

• Recall that, given a circuit C, (k,n)-MLC(C) reduces to evaluating $(C \circ S_{n,k})(\vec{1})$.

Nisan [Ni91] defined

$$S_{n,k}^* = \sum_{\{i_1,...,i_k\}\subseteq [n]} \sum_{\sigma\in S_k} \prod_{j=1}^k x_{i_{\sigma(j)}}.$$

- Recall that, given a circuit C, (k,n)-MLC(C) reduces to evaluating $(C \circ S_{n,k})(\vec{1})$.
- Given a circuit C, (k,n)- $\mathrm{MLC}(C)$ reduces to evaluating $(C^{nc} \circ S_{n,k}^*)(\vec{1})$.

Nisan [Ni91] defined

$$S_{n,k}^* = \sum_{\{i_1,\ldots,i_k\}\subseteq[n]} \sum_{\sigma\in\mathcal{S}_k} \prod_{j=1}^k x_{i_{\sigma(j)}}.$$

- Recall that, given a circuit C, (k,n)-MLC(C) reduces to evaluating $(C \circ S_{n,k})(\vec{1})$.
- Given a circuit C, (k,n)- $\mathrm{MLC}(C)$ reduces to evaluating $(C^{nc} \circ S_{n,k}^*)(\vec{1})$.
- Using the result of Arvind et al.[AJS09], it now reduces to 'explicit' ABP construction of $S_{n,k}^*$.

A key ingredient to our algorithm for (k,n)-MLC is new explicit circuit upper bound for $S_{n,k}^*$.

A key ingredient to our algorithm for (k,n)-MLC is new explicit circuit upper bound for $S_{n,k}^*$.

Definition (Explicit Circuit Upper Bound)

A family $\{f_n\}_{n>0}$ of degree-k polynomials has q(n,k)-explicit upper bounds if there is an $O^*(q(n,k))$ time-bounded algorithm \mathcal{A} that on input $\langle 0^n, k \rangle$ outputs a circuit C_n of size at most q(n,k) computing f_n .

A key ingredient to our algorithm for (k,n)-MLC is new explicit circuit upper bound for $S_{n,k}^*$.

Definition (Explicit Circuit Upper Bound)

A family $\{f_n\}_{n>0}$ of degree-k polynomials has q(n,k)-explicit upper bounds if there is an $O^*(q(n,k))$ time-bounded algorithm \mathcal{A} that on input $\langle 0^n, k \rangle$ outputs a circuit \mathcal{C}_n of size at most q(n,k) computing f_n .

Hence, if $\{f_n\}$ has q(n, k)-explicit upper bounds then f_n can be evaluated in time $O^*(q(n, k))$.

Theorem

The family of symmetrized elementary polynomials $\{S_{n,k}\}_{n>0}$ has $\binom{n}{\lfloor k/2 \rfloor}$ -explicit upper bounds over rationals and finite fields.

We use $\binom{n}{\downarrow r}$ to denote $\sum_{i=0}^{r} \binom{n}{i}$.

Nisan's result [Ni91] only assures the existence of an ABP for $S_{n,k}^*$ with $\binom{n}{\downarrow k/2}$ many nodes.

• Let us denote F as the family of subsets of [n] of size exactly k/2 and $\downarrow \mathbb{F}$ as the family of subsets of [n] of size at most k/2.

- Let us denote F as the family of subsets of [n] of size exactly k/2 and $\downarrow \mathbb{F}$ as the family of subsets of [n] of size at most k/2.
- For a subset $S \subset [n]$, we define $m_S = \prod_{j \in S} x_j$. Define

$$f_A = \sum_{\sigma \in S_{k/2}} \prod_{j=1}^{k/2} x_{i_{\sigma(j)}}$$

where $A \in F$ and $A = \{i_1, i_2, \dots, i_{k/2}\}$, otherwise for subsets $S \notin F$, we define $f_S = 0$.

- Let us denote F as the family of subsets of [n] of size exactly k/2 and $\downarrow \mathbb{F}$ as the family of subsets of [n] of size at most k/2.
- For a subset $S \subset [n]$, we define $m_S = \prod_{j \in S} x_j$. Define

$$f_A = \sum_{\sigma \in S_{k/2}} \prod_{j=1}^{k/2} x_{i_{\sigma(j)}}$$

where $A \in F$ and $A = \{i_1, i_2, \dots, i_{k/2}\}$, otherwise for subsets $S \notin F$, we define $f_S = 0$.

• For each $S \in \downarrow \mathbb{F}$, let us define $\hat{f}_S = \sum_{S \subseteq A} f_A$ where $A \in F$.

ABP construction for $\overline{S_{n,k}^*}$

Lemma

$$S_{n,k}^* = \sum_{S \in \downarrow \mathbb{F}} (-1)^{|S|} \hat{f}_S^2.$$

Lemma

$$S_{n,k}^* = \sum_{S \in \mathbb{JF}} (-1)^{|S|} \hat{f}_S^2.$$

Proof.

$$S_{n,k}^* = \sum_{A \in F} \sum_{B \in F} [A \cap B = \emptyset] f_A f_B$$

$$= \sum_{A \in F} \sum_{B \in F} \sum_{S \in \downarrow \mathbb{F}} (-1)^{|S|} [S \subseteq A \cap B] f_A f_B$$

$$= \sum_{S \in \downarrow \mathbb{F}} (-1)^{|S|} \left(\sum_{A \in F} [S \subseteq A] f_A \right)^2 = \sum_{S \in \downarrow \mathbb{F}} (-1)^{|S|} \hat{f}_S^2.$$

Lemma

There is an $\binom{n}{\lfloor k/2 \rfloor}$ -explicit multi-output ABP B_1 that outputs the collection $\{f_A\}$ for each $A \in F$.

Lemma

There is an $\binom{n}{\downarrow k/2}$ -explicit multi-output ABP B_1 that outputs the collection $\{f_A\}$ for each $A \in F$.

Proof.

• Note that, for each $A \in F$, f_A is the symmetrized polynomial m_A^* as already defined.

Lemma

There is an $\binom{n}{\lfloor k/2 \rfloor}$ -explicit multi-output ABP B_1 that outputs the collection $\{f_A\}$ for each $A \in F$.

Proof.

- Note that, for each $A \in F$, f_A is the symmetrized polynomial m_A^* as already defined.
- Note that, $m_S^* = \sum_{j \in S} m_{S \setminus \{j\}}^* \cdot x_j$. Now, the construction of the ABP is obvious.

Lemma

There is an $\binom{n}{\downarrow k/2}$ -explicit multi-output ABP B_2 that outputs the collection $\{\hat{f}_S\}$ for each $S \in \downarrow \mathbb{F}$.

Lemma

There is an $\binom{n}{\downarrow k/2}$ -explicit multi-output ABP B_2 that outputs the collection $\{\hat{f}_S\}$ for each $S \in \downarrow \mathbb{F}$.

Proof.

• Following [**BHKK09**], we define $\hat{f}_{i,S} = \sum_{S \subseteq A} f_A$ where $S \subseteq A$ and $A \cap [i] = S \cap [i]$. Note that, $\hat{f}_{n,S} = f_S$ and $\hat{f}_{0,S} = \hat{f}_S$.

Lemma

There is an $\binom{n}{\downarrow k/2}$ -explicit multi-output ABP B_2 that outputs the collection $\{\hat{f}_S\}$ for each $S \in \downarrow \mathbb{F}$.

Proof.

- Following [**BHKK09**], we define $\hat{f}_{i,S} = \sum_{S \subseteq A} f_A$ where $S \subseteq A$ and $A \cap [i] = S \cap [i]$. Note that, $\hat{f}_{n,S} = f_S$ and $\hat{f}_{0,S} = \hat{f}_S$.
- From the definition, it is clear that $\hat{f}_{i-1,S} = \hat{f}_{i,S} + \hat{f}_{i,S \cup \{i\}}$ if $i \notin S$ and $\hat{f}_{i-1,S} = \hat{f}_{i,S}$ if $i \in S$.

For a noncommutative polynomial $f \in \mathbb{F}\langle X \rangle$ of degree k, such that $f = \sum_{m \in X^k} [m] f \cdot m$, define reverse of $f, f^R = \sum_{m \in X^k} [m] f \cdot m^R$ where m^R is the reverse of the word m.

For a noncommutative polynomial $f \in \mathbb{F}\langle X \rangle$ of degree k, such that $f = \sum_{m \in X^k} [m] f \cdot m$, define reverse of $f, f^R = \sum_{m \in X^k} [m] f \cdot m^R$ where m^R is the reverse of the word m.

Lemma

[Reversing an ABP] Suppose B is a multi-output ABP with r sink nodes where ith sink node computes $f_i \in \mathbb{F}\langle X \rangle$ for each $i \in [r]$. Then one can construct an ABP of twice the size of B that computes the polynomial $\sum_{i=1}^r f_i \cdot L_i \cdot f_i^R$ where L_i are affine linear forms.

For a noncommutative polynomial $f \in \mathbb{F}\langle X \rangle$ of degree k, such that $f = \sum_{m \in X^k} [m] f \cdot m$, define reverse of $f, f^R = \sum_{m \in X^k} [m] f \cdot m^R$ where m^R is the reverse of the word m.

Lemma

[Reversing an ABP] Suppose B is a multi-output ABP with r sink nodes where ith sink node computes $f_i \in \mathbb{F}\langle X \rangle$ for each $i \in [r]$. Then one can construct an ABP of twice the size of B that computes the polynomial $\sum_{i=1}^r f_i \cdot L_i \cdot f_i^R$ where L_i are affine linear forms.

Proof.

Connect the ABP with its mirror image.

• Applying the construction of the previous lemma to the multi-output ABP B_2 with $L_S = (-1)^{|S|}$ we obtain an ABP that computes the polynomial $\sum_S (-1)^{|S|} \hat{f}_S \cdot \hat{f}_S^R$.

- Applying the construction of the previous lemma to the multi-output ABP B_2 with $L_S = (-1)^{|S|}$ we obtain an ABP that computes the polynomial $\sum_S (-1)^{|S|} \hat{f}_S \cdot \hat{f}_S^R$.
- Since \hat{f}_S is a symmetrized polynomial, we note that $\hat{f}_S^R = \hat{f}_S$ and we conclude that this ABP computes $S_{n,k}^*$.

ABP construction for $S_{n,k}^*$

- Applying the construction of the previous lemma to the multi-output ABP B_2 with $L_S = (-1)^{|S|}$ we obtain an ABP that computes the polynomial $\sum_S (-1)^{|S|} \hat{f}_S \cdot \hat{f}_S^R$.
- Since \hat{f}_S is a symmetrized polynomial, we note that $\hat{f}_S^R = \hat{f}_S$ and we conclude that this ABP computes $S_{n,k}^*$.
- That yields a $O(k\binom{n}{\lfloor k/2 \rfloor})$ size ABP.

Homogeneity is an Issue

- Note that, our ABP for $S_{n,k}^*$ is not homogeneous.
- Homogenization makes the number of edges quadratic to the number of nodes.
- Hence, we can not use the result of [AJS09] directly.

Definition ($\{0,1\}$ -Homogeneous ABP)

At each layer, the edges are either all 0-edges or all 1-edges.

Lemma

• B_1 be an ABP of width w_1 , ℓ_1 layers and each node has at most d_1 incoming edges.

Lemma

- B_1 be an ABP of width w_1 , ℓ_1 layers and each node has at most d_1 incoming edges.
- B_2 be an ABP of width w_2 , ℓ_2 layers and each node has at most d_2 incoming edges.

Lemma

- B_1 be an ABP of width w_1 , ℓ_1 layers and each node has at most d_1 incoming edges.
- B_2 be an ABP of width w_2 , ℓ_2 layers and each node has at most d_2 incoming edges.
- $B_1 \circ B_2$ can be computed by an ABP B of size at most $w_1w_2(\ell_1 + \ell_2)$ and edges at most $d_1d_2w_1w_2(\ell_1 + \ell_2)$.

Lemma

- B_1 be an ABP of width w_1 , ℓ_1 layers and each node has at most d_1 incoming edges.
- B_2 be an ABP of width w_2 , ℓ_2 layers and each node has at most d_2 incoming edges.
- $B_1 \circ B_2$ can be computed by an ABP B of size at most $w_1w_2(\ell_1 + \ell_2)$ and edges at most $d_1d_2w_1w_2(\ell_1 + \ell_2)$.
- B can be computed in deterministic $O^*(d_1d_2w_1w_2(\ell_1 + \ell_2))$ time.

Proof Idea. Use padding layers so that B_1 , B_2 have same number of layers and for each layer, both compute polynomials of same degree.

$$f_i' \circ g_j' = \left(\sum_{s \in S_{1,i}} f_s \cdot L_{s,i}^{\{1\}}\right) \circ \left(\sum_{s \in S_{2,j}} g_s \cdot L_{s,j}^{\{2\}}\right)$$

$$= \left(\sum_{(s,s') \in S_{1,i} \times S_{2,j}} (f_s \circ g_{s'}) \cdot (L_{s,i}^{\{1\}} \circ L_{s',j}^{\{2\}})\right).$$

• Our ABP solves (k,n)-MLC when the input polynomial is given by an ABP.

- Our ABP solves (k,n)-MLC when the input polynomial is given by an ABP.
- What can we say when the input polynomial is given by the circuits?

- Our ABP solves (k,n)-MLC when the input polynomial is given by an ABP.
- What can we say when the input polynomial is given by the circuits?
- We can not use the result of [AJS09] directly.

- Our ABP solves (k,n)-MLC when the input polynomial is given by an ABP.
- What can we say when the input polynomial is given by the circuits?
- We can not use the result of [AJS09] directly.
- A circuit of size s computing a polynomial of degree k can be converted to an ABP of size $s^{O(\log k)}$.

Thank You