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Abstract

In the sol±gel phase transitions of polymeric systems, gelation is generally being monitored against time t during
in situ ¯uorescence experiments where the relation between bond formation probability p and t is unknown and has

to be determined. In this study, the critical exponents b, g and r of power law relations of the degree of
polymerization (DPw), the gel fraction (G ) and the radius of gyration (R ) were obtained, using Monte Carlo
simulations in two dimension, respectively. A new critical point, pm, was de®ned in order to calculate the critical
exponents more accurately. The relation between p and t for four functional crosslinkers was examined and found

to be linear at the critical region. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Two classes of polymers can be obtained if a small

amount of crosslinker is used in the synthesis of pol-

ymerization. If the reaction time t is relatively short

and below, but close to a characteristic time tc then we

obtain branched polymers in the solution, usually

called a sol, that forms a viscous solution. These

branched polymers are large but ®nite clusters of

monomers. On the other hand, if the reaction time is

larger than tc, a very large solid network of connected

monomers appears, that is usually called a gel.

Gelation is the phase transition from the sol phase to

the gel phase. Critical phenomena are those which

occur exactly in the phase transition or asymptotically

close to it.

Percolation o�ers a particularly simple and yet

detailed picture in terms of which one may seek to

understand gelation [1,2]. In the language of percola-

tion, one may think of monomers as occupying the

sites of a periodic lattice, and the chemical bonds as

corresponding to the edges joining these sites randomly

with some probability p. The conversion factor p is the

ratio of actual number of bonds that have been formed

between the monomers, to the total possible number

of such bonds. The gel point can be identi®ed with the

percolation threshold pc, where, in the thermodynamic

limit, the incipient in®nite cluster starts to form; and

the system behaves viscoelastically [3,4]. The percola-

tion theory can predict critical exponents of b, g and r
for the gel fraction, G, weight average degree of pol-

ymerization, DPw, and radius of gyration, R, respect-

ively, near the gel point [1]. The scaling behavior of

these and related quantities is de®ned as a function of

jpÿ pcj:
The conversion factor p is clearly a function of time.

However, it can also depend on the temperature, the

concentration of monomers or the concentration of
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crosslinking agents necessary for bond formation, ex-
perimentally one usually starts with a ®xed compo-

sition and monitors the process in time.
Recently in situ ¯uorescence technique was used to

monitor the sol±gel phase transition in free radical

crosslinking copolymerization [5±9] of methyl metha-
crylate (MMA) and ethylene glycol dimethacrylate
(EGDM). Gelation was monitored in real time t with

the variation of ¯uorescence intensity I of the pyrene
molecules against time. b and g exponents were deter-
mined from log I versus logjtÿ tcj plots of these data.

However, the time dependence of bond formation
probability, p, is always in question and has to be
known.
In this work, our aim is to study the linearity

between bond formation probability p and time t for
the region near the gel point. Thus gelation is studied
by employing percolation approach and the time

dependence of bond formation probability p, is deter-
mined using Monte Carlo simulations on a square lat-
tice of various lattice sizes. A new critical point, pm,

will be determined rather than pc, which provides bet-
ter accuracy in calculating the critical exponents b, g
and r especially while studying with smaller lattice

sizes.

2. Theoretical considerations

The linkage process for polymerization can be

described by percolation and Fig. 1 may be most
instructive in bond percolation problems. For p � 0,
no bonds have been formed and all monomers remain

isolated from each other. However, at the other
extreme, i.e., for p � 1, all the possible bonds have
been formed and all the monomers of the system have
clustered into one in®nite network and no sol phase

left. Usually, there is a sharp phase transition at some
critical point p � pc, where a percolating cluster
appears. Thus, for p < pc only a sol exists, but for p >
pc both sol and gel are present together [2].
During the initial period of reaction, crosslinkers

and monomers start to react and form clusters of aver-

age size S, which can be de®ned by a size distribution
function ns,

S �

X
s

s2nsX
s

sns
�1�

where the average number ns of s-clusters (normalized

as number per f-functional monomer) de®nes the criti-
cal exponent t at the gel point and the critical ampli-
tude q0 by [1]

Fig. 1. Sample square lattices of size L � 10� 10 showing

Monte Carlo simulations: (a) p < pc, (b) p � pc and (c)

p > pc:
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ns�p � pc � � q0 � sÿt s41 �2�

The weight average degree of polymerization DPw (or
weight average molecular weight Mw) is given by,

DPw � B�pc ÿ p�ÿg p4pÿc �3�

where g and B are the critical exponent and the ampli-
tude of this power law relation, respectively. The quan-
tity DPw is the analog of S, the average size of the

percolation clusters de®ned by Eq. (1).
The correlation or connectivity length x of branched

polymers diverges as pc is approached. Above pc the

correlation length of polymers can be interpreted as
the mesh size of the gel network. Below pc the corre-
lation length is the typical radius of the clusters in the
sol phase.

The spatial extent of a cluster is conveniently de®ned
by the radius Rs of gyration,

R2
s �

1

s

Xs
i�1

r2i , s41, p fixed �4�

for p above, at and below pc, this sum runs over all s

monomers in the macromolecule where ri is the dis-
tance of each monomer center from the center-of-mass
of the macromolecule. Rs is also given by a power law

relation

Rs � C � sr, p � pc, s41 �5�
where s is de®ned as the number of monomers in the

in®nite cluster at p � pc: Here, r is the critical expo-
nent which refers to the reciprocal of fractal dimen-
sion, Df , and C is its critical amplitude.

The in®nite cluster is believed to be a self-similar
object since all structural elements, i.e., single connect-
ing bonds, loops, dangling ends etc., are critical quan-
tities. Their numbers diverge at pc, so that they appear

on all scales of observation [10].
The probability that an f-functional monomer

belongs to the in®nite network is equal to the gel frac-

tion and is non-zero only for p above pc

G � A�pÿ pc �b, p4
ÿ
p�c
� �6�

with a critical exponent b, and the asymptotic propor-
tionality factor A which is referred to as the critical

amplitude [1].
The values of the quantities Df , b, t, g in two- and

three-dimensions are summarized in Table 1.

3. Monte Carlo simulations

In Monte Carlo simulations on square lattices a
method which is similar to Hoshen±Kopelman algor-

ithm [11] is used. In the algorithm, all monomers in
the percolation lattice are labeled in such a way that
monomers with the same label belong to the same clus-
ter and di�erent labels are assigned to di�erent clus-

ters. When a bond is formed randomly between the
two monomers, both monomers form a cluster with
the same label. Addition of bonds to this cluster uses

the same label. The larger cluster formed by the com-
bination of two smaller clusters with di�erent labels
uses one of the labels of the forming smaller clusters.

If the same label happened to be at opposite sides of
the lattice, a percolating cluster is formed at which pc
is determined.

3.1. Critical point and critical exponents

In the simulations the critical point pc is determined

for a lattice of sizes L� L from 50� 50 to 600� 600
and it is observed that pc approaches to a value smaller
than that of the theoretical value [12,13], pc � 0:5, as

Fig. 2. Plot of the average critical point, pc values versus lat-

tice size, L for square lattices of various sizes, where pc
approaches to its theoretical value, 0.5.

Table 1

Values of the critical exponents and fractal dimension for two

and three dimensional system [2]

d � 2 d � 3

Df 91/48 2.52

b 5/36 0.41

t 187/91 2.18

g 43/18 1.80
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shown in Fig. 2. This di�erence is due to the selection
of the boundary conditions in the lattice used. In our

lattice all the sites, including the ones at the bound-
aries, are capable of making four bonds. Since the con-
tribution of the bonds at the boundaries to the in®nite

cluster is smaller than their contribution to the maxi-
mum number of bonds, this boundary condition,
which is more realistic for polymerization, causes a

smaller pc value.
Here, at least two hundred runs of simulations have

been performed for each lattice size from which the
average pc value is determined. Error bars in Fig. 2 are

calculated using the typical standard deviation for-
mula:

Dpc �

����������������������������XN
i�1
�pc ÿ �pc �2

N

vuuuut �7�

In order to test the correctness of the model Monte

Carlo simulation, the radius of gyration, Rs of the in®-
nite cluster was determined at the percolation

threshold for all lattice sizes. A critical exponent, r
was produced using the log±log plot of Eq. (5) which
was plotted in Fig. 3. The slope of the linear curve in

Fig. 3 provides r � 0:53 which is quite similar to the
theoretical value of 48/91. Since the reciprocal of r is
known as the fractal dimension Df , the relation r �
Dÿ1f was used to produce Df value and found to be
1.89 which is quite familiar by the reader of this sub-
ject.

The relation between G and p obtained from Monte
Carlo simulations is shown in Fig. 4 for the lattice size
of 600� 600 which was obtained from the simulations
of more than hundred runs. The exponent b can be

produced using the logarithmic form of Eq. (6) as

log�G� � log�A� � b � log�pÿ pm � �8�

However, one must consider the importance of deter-
mining the exact place of the critical point besides the
fact that all pc values are the averages obtained using

many simulations having quite low percentage of
errors. Here it is important to note that during the de-
termination of values b, a small shift in pc results in a

large shift in b, which must be taken into account. In
other words there are many straight lines which all ®t
well to Eq. (8) to produce the exponent b: In order to

overcome this di�culty a new critical point, pm, is
de®ned which produces b values very close to its theor-
etical value. The chosen pm point then can be tested by
measuring the other critical exponent, g which is

de®ned in Eq. (3). The relation between DPw and p is
shown in Fig. 5 and the logarithmic form of Eq. (3) is
given below

log�DPw � � log�B� ÿ g � log�pm ÿ p� �9�

from which the critical exponent g can be determined.

Fig. 3. The log±log plot of Rs versus s obtained for square

lattices of various sizes. The slope of the line produces the

value of r:

Fig. 4. The plot of average G versus p for square lattice of

size 600� 600:
Fig. 5. Plot of the average DPw versus p obtained from square

lattice of size 600� 600:
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Now using Eqs. (8) and (9) one can determine the
pm which gives both critical exponents very close to

their theoretical values. The log±log plot of Eqs. (8)
and (9) are shown in Figs. 6 and 7, respectively. As
seen from Fig. 6, there exists a di�erence between the

slopes obtained using the two points pc and pm.
Similarly the exponent g was obtained from the slope
of the line in Fig. 7. The values of b and g calculated

using the above graphs are listed in Table 2 which are
comparable to the theoretical b and g values. From
these values we concluded that one should take pm as

the critical point instead of using the critical point pc,
to obtain meaningful b and g values. The critical expo-
nents calculated using pm, approach their theoretical
values as the lattice size increases (see Figs. 8 and 9).

In order to determine the exact place of the critical
point, a second method, which is easier than the pre-

vious one, can be used. The ®rst derivative of the G
versus p is plotted in Fig. 10 which provides further in-
formation about the critical point. As seen from Fig.

10, the point pm is at the maximum of the dG/dp
curve. Thus, the point pc falls into the left-hand side of
the maximum curve where the phase transition has not
yet started.

3.2. Relation between p and t

As stated before, polymerization is monitored
against time, t during in situ ¯uorescence experiments.
In order to model the sol±gel phase transition using

the power law relations expressed in Eqs. (3), (5) and
(6), the relation between p and t must be known. This
relation is determined by using a time-dependent algor-

ithm in the Monte Carlo simulations. Instead of using
the built-in clock of the computer, which is not accu-
rate enough for these simulations, a time counter is
used. After each successful bond formation this coun-

ter increments one step and therefore the time elapsed
during the reaction increases by one step. Eventually
the number of bonds also increases by one step. When

both the number of bonds and the time increase by
one step, nothing is unusual. If a bond is not formed
successfully between two neighboring monomers, the

time counter increments one step while the number of
bonds remain the same. Above the percolation

Fig. 6. The log±log plot of G versus p obtained from square

lattices of size 600� 600: The two slopes correspond to the

values of b obtained using pc and pm.

Fig. 7. The log±log plot of DPw versus p obtained from

square lattices of size 600� 600: The slope of the line corre-

sponds to the value of g obtained using pm.

Table 2

The critical exponents b and g calculated at the points pc and

pm for lattice of size L � 600� 600

Critical point b g

pc � 0:492184 0.519544 2.110911

pm � 0:497700 0.139704 2.371851

Fig. 8. Plot of b versus L.
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threshold the counter time increases rapidly, however
the number of bonds increase at a much slower rate.

The relation between p and t for a lattice of size
600� 600 is given in Fig. 11. By knowing that the
critical exponents are calculated below and above pc in

the critical region (see Fig. 11) which is de®ned as [14]

10ÿ2 < j1ÿ p

pc

j < 10ÿ1 �10�

Thus, it is su�cient to calculate the function, p(t ) in
this critical region. Here, polynomial ®tting can be

used to determine the linearity between p and t. The
p(t ) function normalized in the critical region is given
by

p�t� � a � t2 � b � t �11�
where 0RtR1 and 0RpR0:55: Polynomial ®tting pro-
duces the a � ÿ0:05420:032 and b � 0:60420:032
values which present the linearity of p(t ) at the critical

region.
Although the above relation is obtained from a lat-

tice of size 600� 600, the slight di�erences in the p(t )

functions for di�erent lattice sizes are found within the

error limits. The function does not di�er when the size
increases. Error percentage is very small because of the
accuracy of the time-dependence algorithm. Thus, the

function p(t ) can be expected as linear in the critical
region.
It is very di�cult to make a connection between the

counter time and real time. However, one can perform
Monte Carlo simulations using this time algorithm and
calculate the critical exponents using t instead of p.
Gel fraction, G versus reaction time produced with

Monte Carlo simulations is shown in Fig. 12. Here one
has to notice the similarities between Figs. 4 and 12.
From here we conclude that the linear relation between

p and t which was assumed and used in our early real
time ¯uorescence experiments [5±9], can be acceptable
in the critical region, where b and g exponents are

obtained.

Fig. 9. Plot of g versus L.

Fig. 10. Plot of dG/dp versus p for lattice of size 600� 600:

Fig. 11. The relation between p and t for a lattice of size

600� 600: Both p and the reaction time, t are normalized.

Dark line indicates the critical region around pc as

10ÿ2 < j1ÿ p
pc
j < 10ÿ1:

Fig. 12. The plot of G versus time for a lattice of size

600� 600:
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