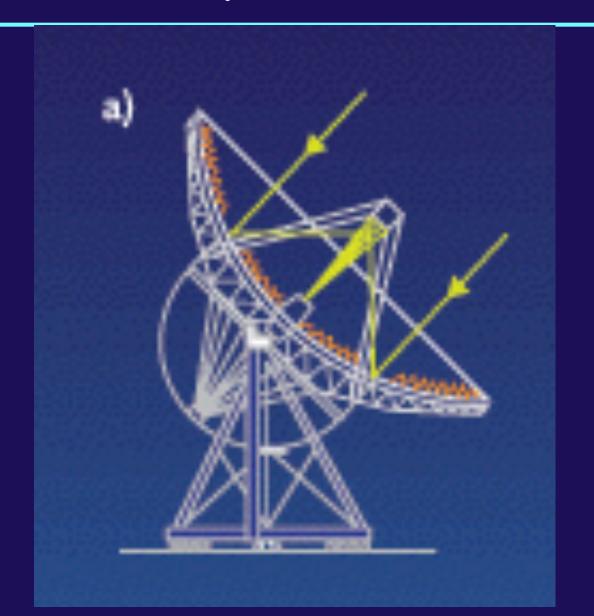


Tutorial Schedule

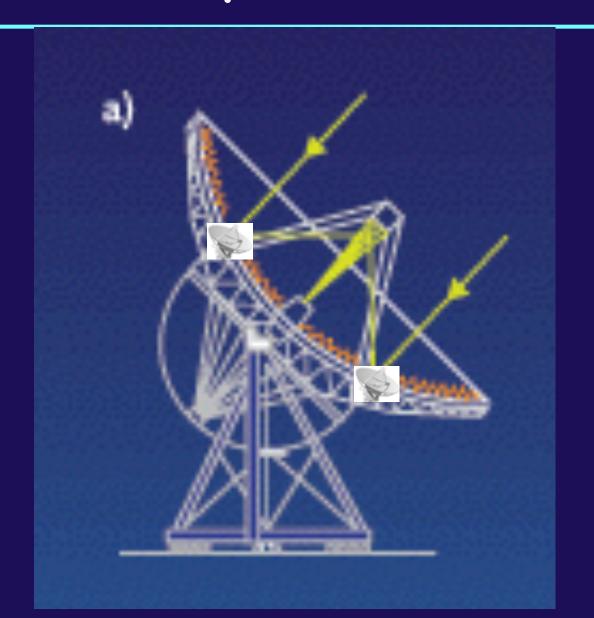
19 October 2015

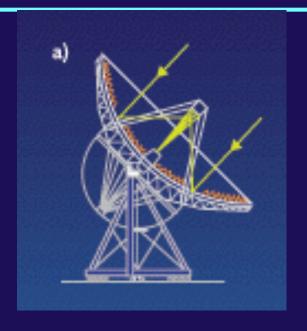
Start at 10:00 am - Introduction to **CASA** for ALMA, EVLA, and GMRT data-reduction

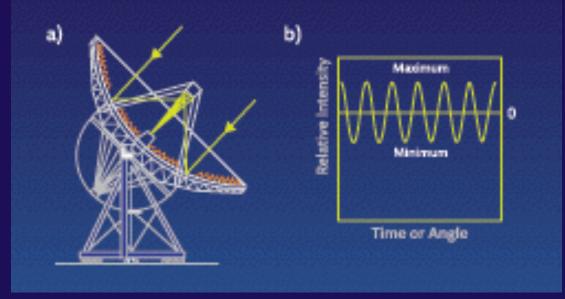

Instructors:

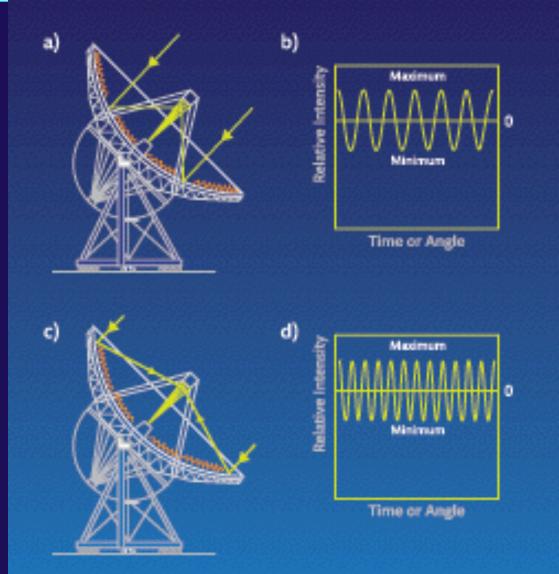
- D. Lal (NCRA-TIFR)
- P. Muralimohan (IIA)
- R. Khatun (IIA)

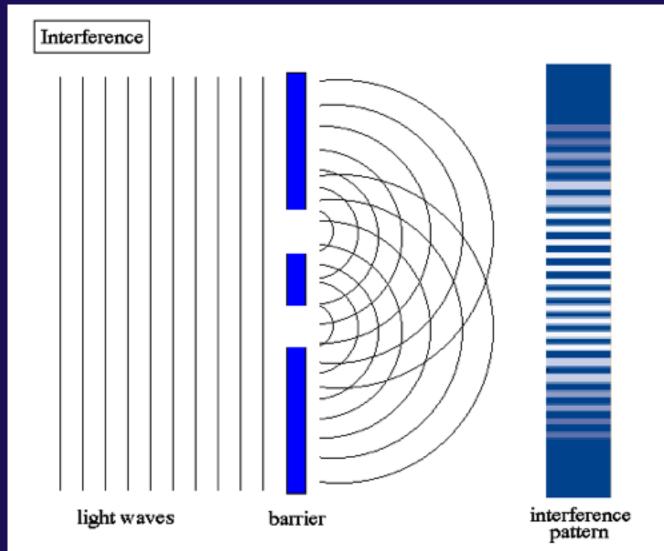
Dharam Vir Lal (NCRA-TIFR)

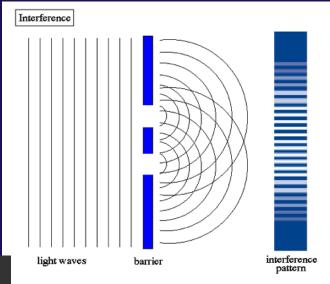

Radio telescope/dish

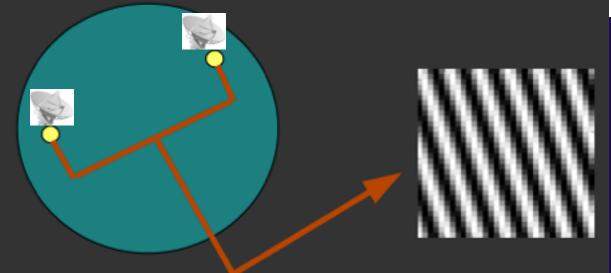

Radio telescope/dish


Radio telescope/dish

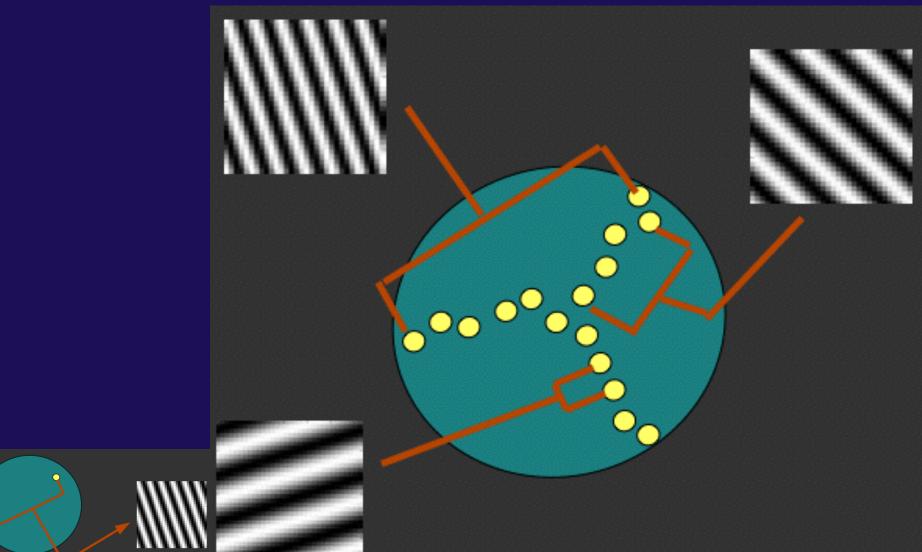

Radio interferometry


Radio interferometry


Young's Double-slit Expt

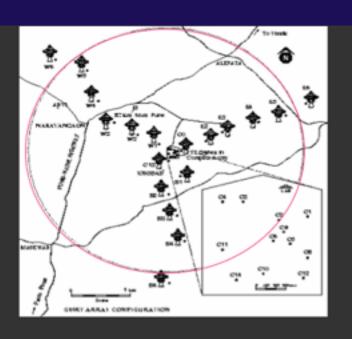


Young's Double-slit Expt



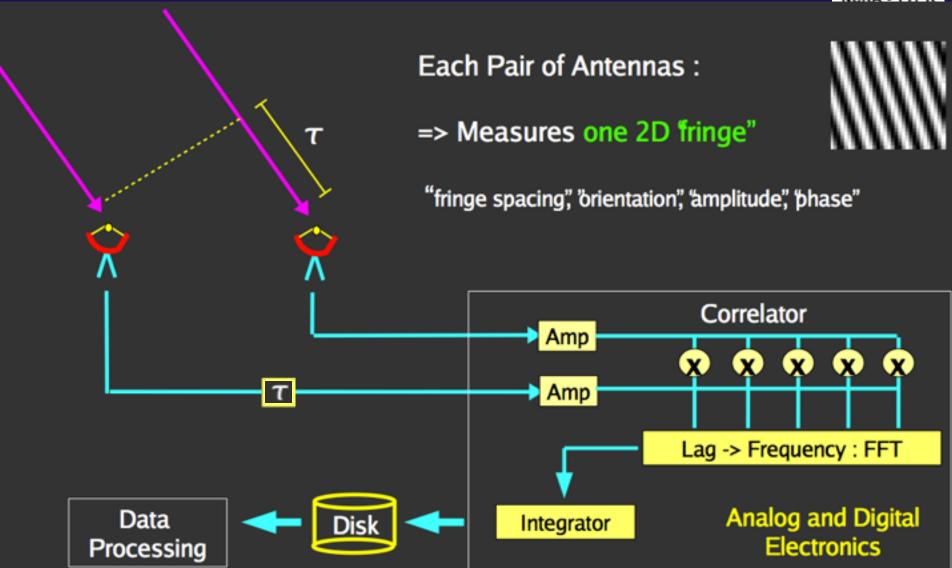

Fourier synthesis

Fourier synthesis



Earth rotation aperture synthesis

Very Large Array

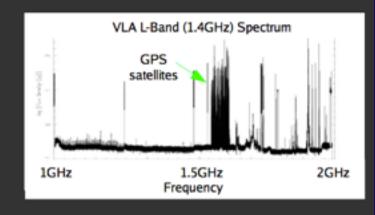


Giant Meterwave Radio Telescope

... this is called 'Aperture Synthesis '

Signal processing

Data processing

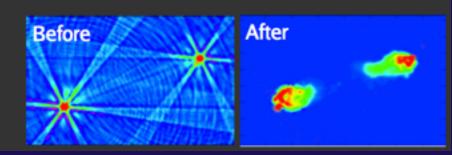


(1) Editing:

Some data are corrupted by man-made signals

=> Need to identify and remove bad data

(2) Calibration:


Fourier Optics applies only under ideal conditions

=> Need to model instrumental effects and apply corrections.

(3) Image Reconstruction:

Only some Fourier terms are measured.

=> Need to estimate the others...

CASA: Data analyses

- Importing GMRT data into CASA Flexible Image Transport System (FITS) UVFITS (understood by AIPS, MIRIAD)
- importuvfits
 - input UVFITS data file
 - output Measurement Set (MS) understood by CASA

Listobs

- Which sources, how many scans
- Observing frequency, time and duration
- Frequency and time resolution
- Array coordinates

CASA: Loading and viewing

plotuv -useful for plotting u-v coverage plotxy – line plots, fairly general, useful for scripting

plotms – interactive general purpose and versatile, cannot be scripted yet (4.1.0)

viewer (casaviewer) – gray scale/waterfall plots

Examining/exploring the data

CASA: Loading and viewing

U-v coverage

Azimuth vs Elevation

Time series (time vs amp, phase)

Bandshape (freq. vs amp, phase)

Range: X~Y

Time: YYYY/MM/DD/HH:MM:SS

Data selection Time range: Time1~Time2

SYNTAX Antenna: 1~3 = 1,2,3

11,12,15

Baseline: ANT1 (OPERATOR) ANT2

& - only cross-correlations

&& - both auto and cross corr.

&&& - only auto corr.

CASA: Loading and viewing

C1641	Manalas		NCRA • TIFR
Specification	Meaning		
ANT	Select only cross-correlation baselines between all the		
	antennas in ANT and all other available antennas		
ANT&	Select only cross-correlation baselines between antennas		
	in ANT only		
ANT1 & ANT2	Select only cross-correlation baselines between		
	antennas in ANT1 and ANT2	ta co	election
ANT&&		ia st	
	between all the antennas in ANT only		cyntay
ANT&&*	Select cross- and auto-correlation baselines		syntax
	between all the antennas in ANT and all other		
	available antennas		
ANT1 && ANT2	Select cross- and auto-correlation baselines		
	between antennas in ANT1 and ANT2		
ANT&&&	Select only auto-correlation baselines for		
	antennas in ANT		
! ANT	Excludes all baselines involving antennas in ANT.		
	ANT can be any of the above expressions		
ANT1 ; !ANT2	ANT1 and ANT2 can be any of the above expressions.		
	This selects only cross-correlation baselines		
	between all the antennas in ANT1 and all		
	other available antennas except those involving		
	antennas in ANT2.		

CASA: FLAGging

Weeding out the bad data

- Antennas
- Scans
- Time stamps
- Spectral channels
- Baselines
- Radio Frequency Inteference (RFI)

CASA: FLAGging

- Science, but also an ART
- Astronomical sources smoothly varying across physically sensible parameters (time, frequency, uv) (exceptions – variable sources and spectral lines)

Signals which jump in time, frequency

Signals which change with instrumental boundaries – antennas, baselines, scans, spectral channels, ...

The first (and sometimes) the last integration times in every scan

Any exceptionally short scans!

CASA: FLAGging

Amplitudes easiest to catch big issues with

Phases are usually much more sensitive to noise and errors, but looking at phases really works only for high SNR data sets

For identifying what to flag (+ some flagging) plotms viewer (casaviewer)

For actual flagging
Tflagdata

CASA: CALIBration

tget <taskname> - will fill in the CASA trick <keyword>=<value> pairs from the last execution of this task

G's are a function of both frequency and time

Key Assumption - Calibration can be separated into frequency and time dependent parts.

Bandpass calibration – Calibration of the frequency dependent part of G's

Approach – use a strong source with no spectral lines in the band of interest.

bandpass - 3C286

Calibration

CASA: CALIBration

Flagging

3C223.1_240MHz.MS

- > Spw='0:0~22'
- Spw='0:44~63'
- Antenna='1'; timerange='22:37:48~25:10:08'
- Antenna='3'; timerange='23:40:33~25:14:53'
 - THREE data columns

Structure of a MS - Observed data Vi(obs)

- Corrected data $G_{i}^{1}G_{i}^{1}$ V_{i} (obs)
- Model data V_i(model)

Approach – observe a source of known strength,

Primary Flux calibrators - 3C48, 3C286, 3C147

setjy

CASA: STEPs

Gain calibration – Calibration of time dependent part of G's.

Objective

Approach – Use a strong source known to be nonvariable over the time scale of observations

gaincal - 3C286

Flux calibration

setjy on the primary flux calibrator(s)

- Do it on one flux calibrator at a time
- Also known as amplitude calibration

Bandpass calibration

bandpass on the primary flux calibrators(s)

- To remove the variations in the gains across the band
- Can be done on both the flux calibrators in a single run
- Will create a 'caltable', you choose the name

CASA: STEPs

Applycal -

plotms, viewer - plot and compare 'data'. 'model', 'corrected' data and 'residual' columns to examine and understand what flux calibration has done.

Calibration

- Clearcal
- Tflagdata (scan='2')
- Setjy (field='0'; field='3')
- Bandpass (only flux calibrators)
 - Plotcal to verify
- Gaincal (on flux and phase calibrators)
 - Plotcal to verify
- Fluxscale (to get the flux of phase cal 8.88+/- $0.13 \, \mathrm{Jy})$

Plotting

plotcal – plots antenna based solutions – Plotcal to verify

Channel no. Vs amp/phase

CASA: STEPs

- Applycal (to the entire dataset)
- Clean image a calibrator source
 - Examine the PSF
 - Examine the Image

```
# setjy :: Fills the model column with the
visibilities of a calibrator

vis = '3C223.1_240MHz_FLAGGED.MS'

field = '0'

usescratch = True

Setjy
```

REPEAT WITH field='3'

CASA: STEPS

```
vis = '3C223.1_240MHz_FLAGGED.MS'
```

caltable= '3C223.1_240MHz_FLAGGED.BPASS'

Field = '0,3'

Refant = '10'

bandpass

```
vis = '3C223.1_240MHz_FLAGGED.MS'
```

caltable= '3C223.1_240MHz_FLAGGED.GCAL'

Field = '0,1,3'

Refant = '10'

Calmode = 'ap'

gaincal

CASA: STEPS


```
vis = '3C223.1_240MHz_FLAGGED.MS'
```

caltable ='3C223.1_240MHz_FLAGGED.GCAL'

Fluxtable='3C223.1_240MHz_FLAGGED.FLUX'

Reference = '0,3'

Transfer = '1'

incremental=False

fluxscale

```
vis = '3C223.1_240MHz_FLAGGED.MS'
field = " applycal
```

Gaintable=['3C223.1_240MHz_FLAGGED.BPAS S','3C223.1_240MHz_FLAGGED.FLUX']

Approach: AIPS/CASA

Exiting data:

AIPS

CASA

Imaging:

CASA

AIPS

•••

Acknowledgements

key papers:

http://www.aoc.nrao.edu/~rurvashi/HTMLfiles/Research.html#TALKS

http://www.aoc.nrao.edu/~sbhatnag/

Synthesis imaging summer school notes/lectures:

http://ncra.tifr.res.in/ncra/ncra1/students/External%20students/ras-2015

https://science.nrao.edu/science/meetings/2014/14th-synthesis-imaging-workshop

Urvashi R.V., Divya Oberoi, Nissim Kanekar, Ruta Kale, Students and postdoctoral-students,