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Ideas on strange metal

Strange metal plausibly linked to quantum criticality

Increasing evidence for a quantum critical point 
around xc ≈ 0.19 in ``normal” state: 

1. Termination of pseudogap crossover at T = 0 
(Tallon, Loram 2000)

2. Onset of charge order at T = 0 (Keimer et al, 14). 
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Some (likely) properties of the strange 
metal

 1. Sharp gapless Fermi surface but no Landau quasiparticles

2.  Critical charge order correlations. 
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Some (likely) properties of the strange 
metal

 1. Sharp gapless Fermi surface but no Landau quasiparticles

2.  Critical charge order correlations. 

A (lowly) theoretical challenge: 

Construct examples of such strange metal fixed points at finite 
density. 
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A route to some examples

 Focus on commensurate density x = 1/4 or x = 1/5 and study 
continuous Mott transitions from Fermi liquid to Mott 
insulator. 

?Corresponding critical point - an example strange metal fixed 
point with a critical Fermi surface and critical charge order 
correlations ? 
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Plan of talk

1. Theory of a continuous Mott metal-insulator transition in 
d = 2 at x = 0

Evolution from Fermi liquid to quantum spin liquid insulator:
Predictions for transport experiments

2.  Electronic Mott transition at filling 1/q : Formulation

3. Warm-up: Superfluid-insulator transitions of bosons at 
commensurate filling 1/q (a review) 
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The electronic Mott transition

Difficult old problem in quantum many body physics

How does a metal evolve into a Mott insulator?

Prototype: One band Hubbard model at half-filling on non-bipartite lattice

t/U
Fermi liquid;

Full fermi surface 
AF insulator;

No Fermi surface

?????
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Why hard?

1. No order parameter for the metal-insulator transition

2. Need to deal with gapless Fermi surface on metallic side

3. Complicated interplay between metal-insulator transition and 
magnetic phase transition

Typically in most materials the Mott transition is first order. 

But (at least on frustrated lattices) transition is sometimes only weakly first order
- fluctuation effects visible in approach to Mott insulator from metal. 
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Quantum spin liquid Mott insulators: 

Opportunity for progress on the Mott transition - 
study metal-insulator transition without complications of magnetism. 
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ZnCu3(OH)6Cl2

Some candidate spin liquid materials

2d Kagome lattice (`strong’ Mott insulator)

�� (ET )2Cu2(CN)3

Na4Ir3O8

EtMe3Sb[Pd(dmit)2]2

Quasi-2d, approximately isotropic triangular lattice; best 
studied candidate spin liquids

Three dimensional `hyperkagome’ lattice

Volborthtite, ..........
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ZnCu3(OH)6Cl2

Some candidate materials

2d Kagome lattice (`strong’ Mott insulator)

�� (ET )2Cu2(CN)3

Na4Ir3O8

EtMe3Sb[Pd(dmit)2]2

Quasi-2d, approximately isotropic triangular lattice; best 
studied candidate spin liquids

Three dimensional `hyperkagome’ lattice

Close to pressure driven Mott 
transition: `weak’ Mott insulators

Volborthtite, ..........
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Some phenomena in experiments

14

ALL candidate quantum spin liquid materials:

Gapless excitations down to T << J. 

Most extensively studied in organic spin liquids with J ≈ 250 K. 

exponential decay of the NMR relaxation indicates
inhomogeneous distributions of spin excitations
(22), which may obscure the intrinsic properties
of the QSL. A phase transition possibly associated
with the charge degree of freedom at ~6 K further
complicates the situation (23). Meanwhile, in
EtMe3Sb[Pd(dmit)2]2 (dmit-131) such a transi-
tion is likely to be absent, and a muchmore homo-
geneous QSL state is attained at low temperatures
(4, 5). As a further merit, dmit-131 (Fig. 1B) has
a cousinmaterial Et2Me2Sb[Pd(dmit)2]2 (dmit-221)
with a similar crystal structure (Fig. 1C), which
exhibits a nonmagnetic charge-ordered state with
a large excitation gap below 70 K (24). A com-
parison between these two related materials will
therefore offer us the opportunity to single out
genuine features of the QSL state believed to be
realized in dmit-131.

Measuring thermal transport is highly advan-
tageous for probing the low-lying elementary
excitations in QSLs, because it is free from the
nuclear Schottky contribution that plagues the
heat capacity measurements at low temperatures
(21). Moreover, it is sensitive exclusively to itin-
erant spin excitations that carry entropy, which
provides important information on the nature of the

spin correlation and spin-mediated heat transport.
Indeed, highly unusual transport properties includ-
ing the ballistic energy propagation have been re-
ported in a 1D spin-1/2 Heisenberg system (25).

The temperature dependence of the thermal
conductivity kxx divided by Tof a dmit-131 single
crystal displays a steep increase followed by a
rapid decrease after showing a pronounced maxi-
mum at Tg ~ 1 K (Fig. 2A). The heat is carried
primarily by phonons (kxx

ph) and spin-mediated
contributions (kxx

spin). The phonon contribution
can be estimated from the data of the nonmagnetic
state in a dmit-221 crystal with similar dimensions,
which should have a negligibly small kxx

spin. In
dmit-221, kxx

ph/T exhibits a broad peak at around
1 K, which appears when the phonon conduction
grows rapidly and is limited by the sample bound-
aries. On the other hand, kxx/Tof dmit-131, which
well exceeds kxx

ph/T of dmit-221, indicates a sub-
stantial contribution of spin-mediated heat con-
duction below 10K. This observation is reinforced
by the large magnetic field dependence of kxx of
dmit-131, as discussed below (Fig. 3A). Figure
2B shows a peak in the kxx versus T plot for dmit-
131, which is absent in dmit-221. We therefore
conclude that kxx

spin and kxx
spin/T in dmit-131 have

a peak structure at Tg ~ 1 K, which characterizes
the excitation spectrum.

The low-energy excitation spectrum can be
inferred from the thermal conductivity in the low-
temperature regime. In dmit-131, kxx/T at low
temperatures is well fitted by kxx/T= k00/T + bT2

(Fig. 2C), where b is a constant. The presence of a
residual value in kxx/T at T→0 K, k00/T, is clearly
resolved. The distinct presence of a nonzero k00/T
term is also confirmed by plotting kxx/T versus T
(Fig. 2D). In sharp contrast, in dmit-221, a corre-
sponding residual k00/T is absent and only a pho-
non contribution is observed (26). The residual
thermal conductivity in the zero-temperature limit
immediately implies that the excitation from the
ground state is gapless, and the associated correla-
tion function has a long-range algebraic (power-law)
dependence. We note that the temperature depen-
dence of kxx/T in dmit-131 is markedly different
from that in k-(BEDT-TTF)2Cu2(CN)3, in which
the exponential behavior of kxx/Tassociated with
the formation of excitation gap is observed (18).

Key information on the nature of elementary
excitations is further provided by the field depen-
dence of kxx. Because it is expected that kxx

ph is
hardly influenced by the magnetic field, particu-
larly at very low temperatures, the field depen-
dence is governed by kxx

spin(H) (26). The obtained
H-dependence, kxx(H), at low temperatures is
quite unusual (Fig. 3A). At the lowest temperature,
kxx(H) at low fields is insensitive toH but displays
a steep increase above a characteristic magnetic
fieldHg ~ 2 T. At higher temperatures close to Tg,
this behavior is less pronounced, and at 1K kxx(H)
increases with H nearly linearly. The observed
field dependence implies that some spin-gap–like
excitations are also present at low temperatures,
along with the gapless excitations inferred from
the residual k00/T. The energy scale of the gap is
characterized by mBHg, which is comparable to
kBTg. Thus, it is natural to associate the observed
zero-field peak in kxx(T)/Tat Tgwith the excitation
gap formation.

Next we examined a dynamical aspect of the
spin-mediated heat transport. An important ques-
tion is whether the observed energy transfer via
elementary excitations is diffusive or ballistic. In
the 1D spin-1/2 Heisenberg system, the ballistic
energy propagation occurs as a result of the con-
servation of energy current (25). Assuming the
kinetic approximation, the thermal conductivity
is written as kxx

spin = Csvs‘s /3, where Cs is the spe-
cific heat, vs is the velocity, and ‘s is themean free
path of the quasiparticles responsible for the ele-
mentary excitations. We tried to estimate ‘s sim-
ply by assuming that the linear term in the thermal
conductivity arises from the fermionic excitations,
in analogy with excitations near the Fermi surface
in metals. The residual term is written as k00/T ~
(kB

2/daħ)‘s, where d (~3 nm) and a (~1 nm) are
interlayer and nearest-neighbor spin distance. We
assumed the linear energy dispersion e(k)= ħvsk,
a 2D density of states and a Fermi energy com-
parable to J (26). From the observed k00/T, we
find that ‘s reaches as long as ~1 mm, indicating
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Fig. 2. The temperature dependence of kxx(T)/T (A) and kxx(T) (B) of dmit-131 (pink) and dmit-221
(green) below 10 K in zero field [kxx(T) is the thermal conductivity]. A clear peak in kxx/T is observed in
dmit-131 at Tg ~ 1 K, which is also seen as a hump in kxx. Lower temperature plot of kxx(T)/T as a function
of T2 (C) and T (D) of dmit-131, dmit-221, and k-(BEDT-TTF)2Cu2(CN)3 (black) (18). A clear residual of
kxx(T)/T is resolved in dmit-131 in the zero-temperature limit.

Fig. 3. (A) Field dependence of
thermal conductivity normalized
by the zero field value, [kxx(H) –
kxx(0)]/kxx(0) of dmit-131 at low
temperatures. (Inset) The heat cur-
rent Q was applied within the 2D
plane, and the magnetic field H was
perpendicular to the plane. kxx and
kxy were determined by diagonal
and off-diagonal temperature gra-
dients, DTx and DTy, respectively.
(B) Thermal-Hall angle tanq(H) =
kxy/(kxx – kxxph)as a function ofH at
0.23 K (blue), 0.70 K (green), and
1.0 K (red).
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Example: Thermal transport in dmit SL. 

Electrical Mott insulator but thermal 
metal!
 

M. Yamashita 
et al, Science 
2010.
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Possible experimental realization of a second 
order(?) Mott transition
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Quantum spin liquids and the Mott transition

16

Some questions:

1. Can the Mott transition be continuous? 

2. Fate of the electronic Fermi surface? 

t/U

Fermi liquid;
Full fermi surface 

Spin liquid insulator;
No Fermi surface

?????
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Killing the Fermi surface

t/U

Fermi liquid;
Full fermi surface 

Spin liquid insulator;
No Fermi surface

?????

At half-filling, through out metallic phase, 
Luttinger theorem => size of Fermi surface is fixed. 

Approach to Mott insulator: entire Fermi surface must 
die while maintaining size (cannot shrink to zero). 

If Mott transition is second order, critical point necessarily very unusual. 

``Fermi surface on brink of disappearing” - expect non-Fermi liquid physics. 

Similar ``killing of Fermi surface” also at Kondo breakdown transition 
in heavy fermion metals, and may be also around optimal doping in cuprates. 
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How can a Fermi surface die continuously?

Continuous disappearance of Fermi 
surface if quasiparticle weight Z 
vanishes continuously everywhere on 
the Fermi surface (Brinkman, Rice, 
1970). 

Metal

Mott insulator

Mott critical point

Concrete examples:  DMFT in infinite d (Vollhardt, Metzner, Kotliar, Georges 
1990s), slave particle theories in d = 2, d = 3 (TS, Vojta, Sachdev 2003, TS 
2008)
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Basic question for theory

Crucial question: Nature of electronic excitations right at 
quantum critical point when Z = 0. 

Claim: At critical point, Fermi surface remains sharply 
defined even though there is no Landau quasiparticle.  

                                                             TS, 2008 

``Critical Fermi surface”. 
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What is gap �(K) to add electron at momentum K?

Fermi liquid: �(K) 2 FS = 0.

Mott insulator: Sharp gap �(K) 6= 0 for all K

Why a critical Fermi surface? 

20

Mott – no 
fermi surface

 Metal- 
sharp 
Fermi 
surface

QCP?
t/U
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Approach from Mott:
Second order transition to metal => �(K) will close continuously.

Match to Fermi surface (FS) in metal => �(K) ! 0 for all K 2 FS.

=> Fermi surface sharp at critical point.
But as Z = 0 no sharp quasiparticle.

Non-fermi liquid with sharp critical Fermi surface.

Evolution of single particle gap 

21
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Why a critical Fermi surface?
Evolution of momentum distribution 
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Quantum spin liquids and the Mott transition

23

Some questions:

1. Can the Mott transition be continuous at T = 0? 

2. Fate of the electronic Fermi surface? 

t/U

Fermi liquid;
Full fermi surface 

Spin liquid insulator;
No Fermi surface

?????

Only currently available theoretical framework to answer these questions is slave particle gauge theory. 

(Mean field: Florens, Georges 2005; 
Spin liquid phase: Motrunich, 05, S.S. Lee, P.A. Lee, 05)
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Slave particle framework

Split electron operator

cr� = brfr↵

Fermi liquid: hbi 6= 0

Mott insulator: br gapped

Mott transition: br critical

In all three cases fr↵ form a Fermi surface.

Low energy e↵ective theory: Couple b, f to fluctuating U(1) gauge field.
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Picture of Mott transition

25

Metal

Mott spin liquid
near metal

Electrons swimming in 
sea of +vely charged 
ions

Electron charge gets 
pinned to ionic lattice 
while spins continue to 
swim freely.
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Quantum spin liquids and the Mott transition

26

1. Can the Mott transition be continuous? 

2. Fate of the electronic Fermi surface? 

Analyse fluctuations: Concrete tractable theory of a continuous Mott transition (TS 2008); 
demonstrate critical Fermi surface at Mott transition; 

Definite predictions for many quantities (TS, 2008,    Witczak-Krempa, Ghaemi, Kim, TS, 2012). 

-   Universal jump of residual resistivity on approaching from metal
-  Log divergent effective mass
-   Two diverging time/length scales near transition
-  Emergence of marginal fermi liquids
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 Finite-T crossovers: emergence of a Marginal Fermi Liquid

 

TS, 2008
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Structure of critical theory

Field theory for critical point

S = S[b, a] + S[f↵, a]

Gauge fluctuations are Landau damped by spinon Fermi surface:

Seff [a] =

Z

q,!

✓
KF

|!|
|q| + ..

◆
|a(q,!)|2

=> at low energies gauge field decouples from critical b fluctuations.

Charge sector is described by S[b] = critical D = 2+1 XY model
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Structure of critical theory (cont’d)

 

Though boson criticality is not a ↵ ected by the gauge fields, the gauge fields

are a ↵ ected by the bosonic criticality.

E ↵ ective gauge dynamics

Seff [ a ] =

Z

q,!

✓
KF

|!|
|q| + �0

p
!2

+ q2
◆
|a ( q,! ) |2

S econd term: resp onse of critical boson to the gauge field.

A nticip ate that f or f ermions |!| ⌧ |q|, rep lace by

Seff [ a ] =

Z

q,!

✓
KF

|!|
|q| + �0|q|

◆
|a ( q,! ) |2

S p inon F ermi surf ace coup led to L andau damp ed gauge field w ith zb = 2 ( a w ell

understood theory) .

Friday, January 23, 15



Critical theory

E↵ective critical action

Seff = S[b] + S[f, a]

S[b]: critical D = 2+1 XY model

S[f ]: spinon Fermi surface + Landau damped gauge field with zb = 2

Both individually understood.
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Non-zero temperature transport/dynamics

 

Seff [a] =

Z

q

1

�

X

�n

✓
KF

|⇤n|
|q| + ..

◆
|a(q,⇤n)|2

Static gauge fluctuations (⇤n = 0) escape Landau damping, and do not

decouple from critical bosons.

Universal transport in a large-N approximation (Witzcak-Krempa, Ghaemi,

TS, Y.B. Kim, 2012):

Gauge scattering reduces universal conductivity by factor of � 8 from 3D
XY result (Damle, Sachdev ’97).

Electronic Mott transition: Net resistivity ⇥ = ⇥b + ⇥f
Universal resistivity jump = ⇥b enhanced by factor of � 8.
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Non-zero temperature transport
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FIG. 3. Sketch of low temperature behaviour of the resistivity near the quantum critical (QC) Mott transition.
Panel c) shows the resistivity vs T for di�erent values of the onsite repulsion over the bandwidth (tuned by �),
with the corresponding cuts shown in the phase diagram in a). Panel d) shows the resistivity vs � at di�erent
temperatures, with the corresponding cuts shown in the phase diagram in b). In c) and d), the markers
correspond to the location of the resistivity jump upon entering the QC state from the FL. The value of the
jump is universal: R~/e2. Our calculations yield R = 49.8, which translates to a jump of � 8h/e2.

the SL, in which the electron is fractionalized into spin and charge carrying “partons”:

cr⇧ = ⌥⇧rbr . (4)

The fermionic spinons, ⌥⇧r, carry the spin, while the bosonic rotors, br = e�i⇤r , the charge of the
original electron. The projection from the enlarged Hilbert space to the physical one is obtained from
the operator identity relating the rotor charge or “angular momentum”, lb, to the fermion number, nf :
lb = 1� nf , which is enforced at each site, where nf = n is the actual electronic occupation number
(because |b| = 1). By virtue of Pauli exclusion, the charge relative to half-filling at each site can
only be �1 (double occupancy), +1 (hole) and 0 (single occupancy). Hence, the positive (holon) and
negative (doublon) charge excitations encoded in the rotors relate to the holes and doubly-occupied
sites of the half-filled Hubbard model, see Fig. 4. Moreover, since the system is at half-filling, there is
a low-energy particle-hole symmetry between these positive and negative charge excitations.

In the long-wavelength limit, a U(1) gauge structure emerges.3 The temporal component of the
gauge field results from the above constraint necessary to recover the physical Hilbert space, while
the spatial components derive from the fluctuations of spinon bilinears about their saddle-point con-
figuration. After coarse-graining, the low-energy e�ective action for the Hubbard model in terms of
the fractionalized degrees of freedom can be written as

S = Sb,a + Sf,a + Sa , (5)

Sb,a =
1

2g

⇧

x

�
|(⌦⌅ � ia⌅)b|2 + i⌅(|b|2 � 1)

⇥
, (6)

Sf,a =

⇧

x
⌥̄⇧

⇤
⌦⌃ � µ� ia0 +

(r� ia)2

2mf

⌅
⌥⇧ , (7)

Sa =
1

e20

⇧

x
(⇤⌅⇥�⌦⇥a�)

2 . (8)

We work in units where the rotor velocity, c, is set to one, unless otherwise specified. The complex
boson field b is constrained to lie on the unit circle via the Lagrange multiplier field ⌅. The indices
⌃, ⇥,� run over imaginary time and the two spatial dimensions; µ is the electronic chemical potential.

4

the Fermi liquid (pink/light shading), and the quantum critical state bridging the two (blue/dark
shading). The latter state is a non-FL where the Landau quasiparticle has been destroyed, yet a
sharp Fermi surface persists: an instance of a “critical Fermi surface”. In exiting the QC region, one
enters two intermediate phases: a marginal spinon liquid (MSL) or a marginal Fermi liquid (MFL).
These are similar to their low temperature counterparts, the SL and FL, except that the spinons and
gauge bosons still behave as in the QC region. As these correspond to fluctuations in the spin degrees
of freedom, the two crossovers may be interpreted as corresponding to spin and charge degrees of
freedom exiting criticality at parametrically di⇥erent temperatures. At su⇧ciently low temperature
they crossover to the usual SL and FL states. The behavior of the electric resistivity as one tunes
across the phase diagram is illustrated in Fig. 3. Panels a) and c) correspond to the T -dependent
behaviour at fixed � (i.e. pressure), and vice-versa for b) and d). The important crossovers for low
temperature transport are the boundaries of the QC region: there, the charge degree of freedom either
localizes (SL) or condenses (FL). At the former crossover the resistivity becomes thermally activated,
⇥ e�+/T , because of the finite Mott charge gap �+. This can be seen in curves 1-2 in Fig. 3(c). At
the crossover to the FL, it abruptly drops to its residual metallic value ⌅m (curves 4-5 in Fig. 3(c)).
The regime of interest for transport corresponds to the QC non-FL, where the resistivity relative to
its residual value in the metal, ⌅m, is purely universal: ⌅ � ⌅m ⇤ (~/e2)R, where R is a universal
dimensionless constant. Our controlled calculation of R in a large-N approximation gives the estimate
R = 49.8. R sets the size of the jump shown in Fig. 1, which is reproduced in Fig. 3(d), curve 1.
At finite temperature, this jump becomes a steep increase, as shown in curves 2-3 of Fig. 3(d). We
emphasize that the low temperature resistivity above the QCP, � = 0, is T -independent and takes the
value ⌅ = ⌅m + (~/e2)R.

The diverse behavior shown in Fig. 3 can be obtained from a single-variable function. Indeed, the
temperature and pressure dependent resistivity (relative to its constant residual value in the FL) can
be collapsed by a universal scaling function G associated with the Mott QCP:

⌅� ⌅m =
~
e2

G

�
�z�

T

⇥
, (2)

where the dynamical and correlation length exponents correspond to those of the 3D XY universality
class: z = 1 and ⇤ ⇤ 0.672. Indeed, the critical charge degrees of freedom can be e⇥ectively described
by a Bose-Hubbard model at half-filling near its insulator-superfluid transition, which belongs to that
universality class. We show that although the spin fluctuations encoded in the emergent gauge field
associated with the electron fractionalization do not alter these exponents, they have strong e⇥ects
on the scaling function, and thus on the value of the universal jump, (~/e2)R.

We predict that thermal transport also shows signatures of the critical Fermi surface. In particular,
the thermal conductivity divided by temperature, ⇥/T , has a universal jump at criticality, by an
amount (k2B/~)K, where K is a dimensionless number just like R. As we explain in section VII, the
emergent gauge fluctuations play an important role by breaking the conformal invariance present in
their absence, thus reducing ⇥/T from a formally infinite value to a finite, universal one. Finally,
combining the electric resistivity and thermal conductivity jumps, we predict that the QC non-FL
violates the Wiedemann-Franz law by a universal amount: the Lorentz number di⇥ers from its usual
value in the FL by (kB/e)2RK, as shown in Fig. 1.

III. MOTT TRANSITION IN THE HUBBARD MODEL: A SLAVE-ROTOR
FORMULATION

To set the stage we briefly review the description of the insulating quantum spin liquid with a spinon
Fermi surface,3 and the continuous bandwidth-tuned Mott transition5 to it from a Fermi liquid. We
consider a single-band Hubbard model at half-filling on a 2D non-bipartite lattice (for e.g. triangular):

H = �t
⇤

�rr�⇥

(c†⇥rc⇥r� + h.c.) + U
⇤

r

(nr � 1)2, (3)

where c⇥r annihilates an electron with spin ⇧ at site r, and nr = c†⇥rc⇥r. In the small U/t limit,
the ground state is a Fermi liquid metal, while in the opposite limit a Mott insulator results. The
interplay of frustration and strong charge fluctuations can lead to a quantum spin liquid ground state
instead of a conventional antiferromagnetic Mott insulator. We shall focus on the transition to such
a state.

The slave-rotor construction2 is tailor-made to describe the spin-charge separation that occurs as
the charge localizes when the electronic repulsion becomes su⇧ciently large, yet weak enough for the
spins to remain disordered, even at T = 0. At the level of the microscopic Hubbard model, Eq. (3),
the slave-rotor construction is a change of variables to degrees of freedom better suited to describe

z = 1, � ⇡ 0.672

Friday, January 23, 15



Plan of talk

1. Theory of a continuous Mott metal-insulator transition in 
d = 2 at x = 0

Evolution from Fermi liquid to quantum spin liquid insulator:
Predictions for transport experiments

2.  Electronic Mott transition at filling 1/q : Formulation

3. Warm-up: Superfluid-insulator transitions of bosons at 
commensurate filling 1/q (a review) 
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  Mott transitions at commensurate 
filling on square lattice

Consider filling ⌫ = 1� 1
q for electrons on a square lattice.

Can drive a transition from a uniform Fermi liquid to a translation broken

Mott insulator.

Address using slave bosons:

c↵ = b

†
f↵

b is at filling x =

1
q and f↵ at 1� x.

As before hbi 6= 0 (and f↵ form Fermi surface) yields the Fermi liquid.

To get Mott insulator put b in a boson Mott insulator.

For q > 1 this insulator will typically break translation symmetry.
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  Mott transitions at commensurate 
filling on square lattice

In this framework, the slave boson undergoes a transition from 
superfluid to a charge ordered insulator. 

Such a transition could be second order,  described by a deconfined 
quantum critical point. 

Eg: q = 2

Insulator could be a period-2 stripe. 

This has both stripe and `nematic’ 
order (i.e break lattice rotation
symmetry). 
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  ?? Continuous Mott transitions at 
commensurate filling ??  

Strategy: 

1. Understand theory of possible continuous superfluid - charge 
ordered Mott insulator transition of bosons at commensurate filling. 

2. Couple this theory to spinon Fermi surface. 

Many important couplings

- gauge fields of the slave boson decomposition (same as at x = 0)
- energy-energy coupling (same as at x = 0)
- charge order and nematic fluctuations
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  ?? Continuous Mott transitions at 
commensurate filling ??  

If the SF- charge ordered insulator transition of bosons is second order, it

will be characterized by some critical exponents ⌫, z, ⌘, ⌘CO, ⌘Nem.

⌫: correlation length exponent

z: dynamical critical exponent (expect = 1; see later)

⌘: anomalous dimension of b
⌘CO: anamolous dimension of charge order.

⌘Nem: anamolous dimension of nematic order.

Easy to derive criteria for when  coupling to spinons does not 
change the bosonic criticality (as at x = 0). 
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Coupling to spinon Fermi surface
1. Gauge field coupling: Similar to x = 0 so long as boson sector is described

by relativistic critical theory.

Gauge field decouples from boson but is a↵ected by it.

2. Energy- energy coupling Z

!,q

|!|
q
|b|2

Irrelevant if ⌫ > 2
3 .

3. Charge order fluctuations

Z

!,q
|!||⇢CO|2

Irrelevant if ⌘CO > 1.

4. Nematic fluctuations Z

!,q

|!|
q
|N |2

Irrelevant if ⌘Nem > 2.
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Possible critical theory

E↵ective critical action

Seff = S[b] + S[f, a]

S[b]: possible non-Landau critical theory for SF- CO insulator of bosons at
filling 1/q.

S[f ]: spinon Fermi surface + Landau damped gauge field with zb = 2
Need boson sector to be relativistic with ⌫ > 2

3 , ⌘CO > 1, ⌘Nem > 2.
If these are not satisfied critical theory will be more complicated.
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Plan of talk

1. Theory of a continuous Mott metal-insulator transition in 
d = 2 at x = 0

Evolution from Fermi liquid to quantum spin liquid insulator:
Predictions for transport experiments

2.  Electronic Mott transition at filling 1/q : Formulation

3. Warm-up: Superfluid-insulator transitions of bosons at 
commensurate filling 1/q (a review) 
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Dual vortex theory of bosons at filling 
1/q

q = 2:  Lannert, Fisher, TS, 2000
General q:  Balents, Bartosch, Burkov, Sachdev, Sengupta,2005. 

Dual description in terms of vortices very convenient to 
incorporate Berry phase effects of lattice filling. 
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Conventional 2d bosons: charge-vortex duality 

Ld = L[�, aµ] +
1

2⇡
✏µ⌫�@⌫a�Aµ (1)

Dasgupta, Halperin, ’80
Peskin, Stone, ’80
Fisher, Lee, ’89
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Conventional 2d bosons: charge-vortex duality 

Bosonic vortex

Ld = L[�, aµ] +
1

2⇡
✏µ⌫�@⌫a�Aµ (1)

Dasgupta, Halperin, ’80
Peskin, Stone, ’80
Fisher, Lee, ’89
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Conventional 2d bosons: charge-vortex duality 

Bosonic vortex

Ld = L[�, aµ] +
1

2⇡
✏µ⌫�@⌫a�Aµ (1)

Physical  boson current

Dasgupta, Halperin, ’80
Peskin, Stone, ’80
Fisher, Lee, ’89
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Conventional 2d bosons: charge-vortex duality 

Boson superfluid = vortex insulator 

Mott insulator = vortex condensate

 

Bosonic vortex

Ld = L[�, aµ] +
1

2⇡
✏µ⌫�@⌫a�Aµ (1)

Physical  boson current
external probe 

gauge field

Dasgupta, Halperin, ’80
Peskin, Stone, ’80
Fisher, Lee, ’89
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Dual vortex theory of bosons at filling 
1/q

Bosons at filling 1/q => Vortices see an average flux

2⇡
q .

Non-zero flux: translations realized projectively for the vortices.

“Magnetic translations”: Vortex band structure q-fold degenerate.

Natural dual Landau-Ginzburg theory: q-species of vortex fields all coupled

to same non-compact U(1) gauge field.
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Dual (possibly critical) field theory

Ty:!!kx,ky" → !!kx,ky"e−iky ,

Tx:!!kx,ky" → !!kx,ky − 2"f"e−ikx,

R"/2
dual:!!kx,ky" →

1
q #

m,n=0

q−1

!!ky + 2"nf ,− kx − 2"mf"#−mn.

!2.11"

The most important !a fluctuations will be at momenta at
which the spectrum has minima. It is not difficult to show
from the above symmetry relations that any such minimum is
at least q-fold degenerate: Let $$% be a state at a minimum of
the spectrum. Because the operator Ty commutes with the
Hamiltonian, this state can always be chosen to be an eigen-
state of Ty, with eigenvalue e−iky

*
. Now the above relations

imply immediately that Tx$$% is also an eigenstate of the
Hamiltonian with Ty eigenvalue e−iky

*
#−1. Also, because the

Ty eigenvalue is distinct from that of $$%, this state is an
orthogonal eigenstate of the Hamiltonian. By repeated appli-
cation of this argument, we obtain q orthogonal eigenstates
of the Hamiltonian whose Ty eigenvalues are e−iky

*
times in-

teger powers of #−1. Because we are working with the gauge
of Eq. !2.9", our Hamiltonian couples momenta !kx ,ky" to
momenta !kx±2"f , ky". It is therefore advantageous to look
at the spectrum in the reduced Brillouin zone with −" /q
%kx%" /q and −"%ky %". For the nearest-neighbor model
under consideration here, the minima of the spectrum are
then at the q wave vectors!0, 2"!p /q" with !=0,… ,q−1.
Let us label the eigenmodes at these wave vectors &!. We
therefore have to write down the field theory in terms of
these q complex fields &!.
It is useful, especially when analyzing the influence of

R"/2
dual, to make the above symmetry considerations explicit. In
the extended Brillouin zone, for the nearest-neighbor model
under consideration here, let us label the q2 states at the wave
vectors !2"mp /q, 2"np /q" by $m ,n%. Then one of the
minima of the spectrum corresponds to the state

$&0% = #
m=0

q−1

cm$m,0% , !2.12"

where the cm are some complex numbers. Then, by operation
of Tx on $&0% we obtain the q degenerate eigenstates as

$&!% = #
m=0

q−0

cm#−!m$m,!% . !2.13"

Now let us consider the action of R"/2
dual on the states in Eq.

!2.13". Using Eq. !2.11" and after some simple changes of
variables, we obtain

R"/2
dual$&!% =

1
q #

m,m!,!!=0

q−1

cm#−!m!!!+!!!−mm!"$m!,!!% .

!2.14"

Now, because R"/2
dual commutes with H, the right-hand

side of Eq. !2.14" must be a linear combination of the
$&!% states in Eq. !2.13". The matrix elements of the rotation

operator are then given by &&!!$R"/2
dual$&!%=c#−!!!, where

c= !1/q"#cm!
* cm#mm! is independent of ! and !!. For the

nearest-neighbor model under consideration here, it can
be easily checked that the cm’s are invariant under a
Fourier transform such that c=1/'q. Hence we find

R"/2
dual$&!% =

1
'q

#
!!=0

q−1

#−!!!$&!!% . !2.15"

Our discussion above has now established that the low-
energy vortex fields must have an action invariant under the
transformations in Eqs. !1.12" and !1.13". In a similar man-
ner we can also determine the transformations associated
with the remaining elements of the square-lattice space
group. These involve the operations Ix

dual and Iy
dual which are

reflections about the x and y axes of the dual lattice. Under
these operations we find

Ix
dual:&! → &!

*,

Iy
dual:&! → &−!

* . !2.16"

Finally it is interesting to consider the point inversion opera-
tor Ip

dual(!R"/2
dual"2, with

Ip
dual:&! → &−!. !2.17"

As in the ordinary space group we have

Ip
dual = Ix

dualIy
dual = Iy

dualIx
dual. !2.18"

C. Continuum-field theories

We have established that fluctuations of the vortex fields
about the saddle point of Eq. !2.8" in Eq. !2.9" transform
under a projective representation of the square-lattice space
group which is defined by Eqs. !1.12", !1.13", and !2.16". In
this section we will write down the most general continuum
theory of the &! fields which is invariant under these projec-
tive transformations. The action should include fluctuations
in Aa' about A a'—this will be represented by the continuum
noncompact U!1" gauge field aA' / !2"", where a is the lat-
tice spacing.
First, we consider quadratic order terms about the saddle

point of Eq. !2.8". The most general action has the familiar
terms of scalar electrodynamics

S0 =) d2rd(*#
!=0

q−1

+$!!' − iA'"&!$2 + s$&!$2,

+
1
2e2

!)'*+!*A+"2- . !2.19"

We have rescaled the coupling e here by a factor of 2" from
Eq. !2.8".
Next, we consider terms which are quartic in the &!, but

which contain no spatial or temporal derivatives. These will
be contained in the action S1. We discuss two approaches to
obtaining the most general quartic invariants. The first is the
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most physically transparent, but turns out to be eventually
inconvenient for explicit computations. In this approach we
use density operators defined in Eq. !1.15", and their simple
transformation properties in Eq. !1.16", to build up quartic
invariants. In particular, the quartic invariants are only qua-
dratic in the !mn, and we need only the most general qua-
dratic term invariant under Eq. !1.16". This has the form

S1 =# d2rd"$%
n=0

q/2

%
m=0

n

#nm&'!nm'2 + '!n,−m'2 + '!mn'2

+ '!m,−n'2() . !2.20"

However, not all the invariants above are independent, and
there are often linear relations between them—this reduces
the number of independent coupling constants #nm. Deter-
mining the linear relations between the couplings turns out to
be inconvenient, and we found it easier to proceed by the
second method described below.
In the second approach, we first impose only the con-

straints imposed by the translation operations Tx ,Ty. By in-
spection, it is easy to see that the most general quartic term
invariant under these operations has the structure

S1 =
1
4 # d2rd"%

!mn
$mn%!

*%!+m
* %!+n%!+m−n. !2.21"

Here the integers ! ,m ,n, … range implicitly from 0 to
q−1 and all additions over these integers are taken modulo
q. Imposing in addition the reflection operations in Eq. !2.16"
and accounting for the internal symmetries in Eq. !2.21", it is
easy to show that the couplings $mn can always be taken to
be real and to obey the relations

$mn = $−m,−n,

$mn = $m,m−n,

$mn = $m−2n,−n. !2.22"

We have so far not yet imposed the constraints implied by
the lattice rotation R&/2

dual. Consequently, Eqs. !2.21" and !2.22"
define the most general quartic terms for a system with rect-
angular symmetry, which may be appropriate in some physi-
cal situations. By explicit solution of the constraints defined
by Eq. !2.22", we found that the quartic terms are determined
by Nrect independent real coupling constants, where

Nrect =
!n + 1"!n + 2"

2
for q = 2n,2n + 1, !2.23"

with n a positive integer. Note that the number of couplings
grows quite rapidly with increasing q :Nrect*q2 /8.
Finally, let us consider the consequences of the R&/2

dual sym-
metry. By applying Eq. !1.13"–!1.17" and !2.1"–!2.21" we
find that S1 remains invariant provided the $mn obey the
relations

$m n =
1
q%

mn
$mn'−&n!m −n "+n !m−n"(. !2.24"

Naively, there are q2 relations implied by Eq. !2.24", but they
are not all independent of each other. By explicitly solving
the relations in Eq. !2.24" for a range of q values we found
that the number of independent quartic coupling constants
for a system with full square-lattice symmetry is

Nsquare = +!n + 1"2 for q = 4n,4n + 1,
!n + 1"!n + 2" for q = 4n + 2,4n + 3,,

!2.25"

with n a positive integer. The additional restrictions of square
relative to rectangular symmetry reduce the number of inde-
pendent coupling constants by roughly half at large
q :Nsquare*q2 /16.

D. Mean-field theory

This section will examine the mean-field phase diagrams
of the general theory S0+S1 proposed in Sec. II C. From the
discussion in Sec. I, it is clear that such a procedure can yield
a direct second-order transition from a superfluid state
!with -%!.=0" to an insulating state with density-wave order
!with -%!.!0". We are interested in determining the possible
configurations of values of the %! and the associated patterns
of density-wave order for a range of q values !in this
subsection, we will simply write -%!. as %! because there
is no distinction between the two quantities in mean-field
theory". After determining the %!, we determined the !mn
by Eq. !1.15" &using a Lorentzian for the form factor
S!Q"=1/ !1+Q2"( and then computed the density-wave order
using

(!!r" = %
m,n=−q

q−1

!mne2&if!mrx+nry". !2.26"

We evaluated Eq. !2.26" at r values corresponding to the
sites, bonds, and plaquettes of the direct lattice and plotted
the results in the square-lattice figures that appear below. In
the formalism of Sec. II, r values with integer coordinates
correspond to the sites of the dual lattice and hence to
plaquettes of the direct lattice. The value of (!!r" on such
plaquette coordinates can be considered a measure of the
ring-exchange amplitude of bosons around the plaquette. By
a similar reasoning, r values with half-odd-integer coordi-
nates represent sites of the direct lattice, and the values of
(!!r" on such sites measure the boson density on these sites.
Finally, r values with rx integer and ry half-odd integer cor-
respond to horizontal links of the square lattice !and vice
versa for vertical links", and the values of (!!r" on the links
are a measure of the mean boson kinetic energy; if the
bosons represent a spin system, this is a measure of the spin-
exchange energy.
Our results appear for a range of q values in the following

subsections.
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⇢nm = '⇤
n'm are gauge invariant charge ordering operators.

Balents, Bartosch, Burkov, 
Sachdev, Sengupta 05
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Status

Unfortunately there seem to currently be no sensible analytic 
ways of deciding whether there may be such a non-Landau 
critical point or not (for q > 2). 

It may be possible in the future to study these theories 
numerically by simulating an SU(q) spin system with suitable 
anisotropies 
(challenge for Ribhu Kaul). 
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Summary

49

 
Quantum spin liquids provide an opportunity for progress on classic old problems: 
Mott and other metal-insulator transitions. 

Half-filling (organics, hyperkagome iridate): 
Continuous Mott transition possible; several predictions for experiment (eg: 
universal resistivity jump in d = 2, resistivity peak in d = 3)

Other commensurate filling: 
Criteria for certain kind of continuous Mott transition accompanied by charge order. 

Other (not discussed in this talk):
Disordered limit (doped semiconductors Si:P, Si:B).
Do electrical and thermal metal-insulator transitions occur simultaneously? 
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