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A solid as a universe

 

 

Different phases of quantum matter define different kinds of `universes’ 
as seen by a microbe living inside. 

Example: 

Conventional band insulator

Universe with elementary particles - phonon (gapless) and electron (gapped). 
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Designer universes

Phases of quantum matter with low energy effective field theory corresponding to 
any universe one can imagine? 

Are there phases where the `standard model’ of particle physics emerges? 

Research program:  Volovik, Xiao-gang Wen,  Laughlin,............
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Let there be (artificial) light..... 

 

 

Are there quantum phases with an emergent excitation that behaves like a photon? 

Long distance physics: emergence of Maxwell equations in a quantum spin/boson system with 
short range interactions? 
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Let there be (artificial) light..... 

 

 

Are there quantum phases with an emergent excitation that behaves like a photon? 

Long distance physics: emergence of Maxwell equations in a quantum spin/boson system with 
short range interactions? 

Yes - such phases exist (realization of ``ether”). 

They are particular `quantum spin liquid’ phases of spin/boson systems in three space 
dimensions. 
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Let there be (artificial) light..... 

 

 

Are there quantum phases with an emergent excitation that behaves like a photon? 

Long distance physics: emergence of Maxwell equations in a quantum spin/boson system with 
short range interactions? 

Yes - such phases exist (realization of ``ether”). 

They are `quantum spin liquid’ phases of spin/boson systems in three space dimensions. 

Terminology: U(1) quantum spin liquid (as there is an emergent U(1) gauge field associated 
with the photon). 
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Microscopic models with emergent photons

 

 

1. O. Motrunich and T. Senthil, Phys. Rev. Lett.  (2002)
   (Boson models)
 
2. Michael Hermele, Matthew P. A. Fisher, and Leon Balents, Phys. Rev. B (2004). 
(Quantum spin models)

3. R. Moessner and S. L. Sondhi, Phys. Rev. B (2003) 
 (Quantum dimer models)

Numerical simulations: 
1.  Argha Banerjee, Sergei V. Isakov, Kedar Damle, and Yong Baek Kim
Phys. Rev. Lett. (2008). 

2.  Nic Shannon, Olga Sikora, Frank Pollmann, Karlo Penc, and Peter Fulde
Phys. Rev. Lett. (2012). 
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Possibility of U(1) quantum spin liquids in ``quantum spin ice” materials

Next few slides: borrowed and adapted from L. Balents

Recent revival
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 Classical spin ice 

 

 

Spin ice: Ising spins on 3d pyrochlore lattice with interactions enforcing 2 in - 2 out 
`ice rule’  

H ⇡ Jzz
X

hiji

Sz
i S

z
j

Materials:  Ho2Ti2O7, Dy2Ti2O7
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Classical spin ice: `artificial magnetostatics’

⇥⇥ ·⇥b = 0

⇤S � ⇤b

Defect tetrahedra (3 in - 1 out or 3 out- 1 in) in 
spin ice manifold: `magnetic monopoles’ 

Castelnovo 
et al, 2008
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Quantum spin ice

New spin ice materials where quantum effects on the Ising spins  are clearly 
important.   

Eg: Yb2Ti2O7, Pr2Zr2O7, Pr2Sn2O7...?

Experiment:  (Yb2Ti2O7  Gaulin et al , Pr2Zr2O7  Nakatsuji, Broholm et al) : Many 
deviations from classical spin ice behavior at low-T (eg continuum excitations in 
neutron scattering). 

Eg: Large weight at ω >> T in inelastic neutron scattering in Pr2Zr2O7 (Nakatsuji, 
Broholm et al, Nat. Comm. 2013). 
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classical NN spin ice

+ quantum 
fluctuations

= “quantum spin ice”

+ dipolar

S. Curnoe, 2008
S. Onoda, 2010
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Quantum spin ice Hamiltonian for Yb2Ti2O7

Jzz = 0.17±0.04 meV
J± = 0.05±0.01 meV Jz± = 0.14±0.01 meV J±± = 0.05±0.01 meV

Reliably extracted from fitting spin wave dispersion in high field state. 

Parameters => appropriate to call this quantum spin ice. 

Ross, Savary, Gaulin, Balents, 2011
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Quantum spin ice and quantum spin liquids

Quantum fluctuations in spin ice manifold: 

Magnetic field lines quantum fluctuate. 

If field lines have zero tension => quantum spin 
liquid with an emergent U(1) gauge field. 

3d ``U(1) quantum spin liquid”

Excitations: 1. Gapless artificial photon 

2. Gapped `magnetic monopole’ (3 in - 1 out defect 
tetrahedra) - the `m’ particle

3. Other gapped point particles carrying internal `electric’ 
charge  - the `e’ particle

⇥⇥ ·⇥b = 0

⇤S � ⇤b

Many ongoing experiments 
to look for this! 
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Quantum spin ice, quantum spin liquids, and symmetry

Some crucial questions for theory: 

1. What distinct kinds of quantum spin liquids with symmetry are possible for this 
kind of Hamiltonian? 

Note: Only physical symmetry - Time reversal x space group. 

2. How to theoretically access these distinct quantum spin liquids? 

3.  How to distinguish in experiments? 
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Quantum spin ice, quantum spin liquids, and symmetry

 
Some crucial questions for theory: 

1. What distinct kinds of quantum spin liquids with symmetry are possible for this 
kind of Hamiltonian? 

Note: Only physical symmetry - Time reversal x space group. 

2. How to theoretically access these distinct quantum spin liquids? 

3.  How to distinguish in experiments? 

Focus on time reversal alone (leave space group for future). 
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Time reversal symmetric U(1) quantum spin liquids
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Time reversal symmetric U(1) quantum spin liquids

Restrict to phases where only the photon is gapless. 

e and m excitations are gapped. 

To distinguish different phases enough to focus on these e and m particles. 

Claim:  There are precisely 8 distinct such phases which however become 
equivalent if time reversal is broken. 

Very strong connections to recent progress in understanding interacting topological 
insulators. 
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Some trivial observations

 Microscopic Hilbert space: 
All excitations created by local (i.e physical) operators must be bosons. 

Emergent excitations - the e and m particles - are not created by local operators. 

To create, eg,  an electric charge, must also create associated electric field lines.

e (or m) particle may be either boson or fermion. 
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Time reversal (T)

 For spin/boson systems, time reversal acts on physical states in a simple way. 

In particular T2 = + 1  on all physical states. 

Contrast with electronic systems where T2 = -1 and there is a Kramers degeneracy. 
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Time reversal (T) on emergent particles

Electric charge is even under time reversal. 

Magnetic charge is odd under time reversal. 

=> e and Te (its time reversed partner) differ only by a local operator. 

But as e itself is not local it could have  T2 = -1 and the associated  Kramers 
degeneracy. 

m and Tm are not related by a local operator and there is no meaning to whether it 
is Kramers or not (T2 acting on m can be shifted by a gauge transformation). 
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More trivial observations

 e or m may be fermion, and e may be Kramers. 

But composite particles with zero electric and zero magnetic charge are `local’. 
=> Must be bosons, and must transform trivially under time reversal. 
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Time reversal symmetric U(1) quantum spin liquids

Two broad classes:

m is either a boson or a fermion. 

Discuss these separately. 
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Bosonic monopole

Four distinct phases depending on statistics of e particle (boson or fermion), and on 
realization of time reversal (trivial or Kramers). 

Notation:

ebmb,    efmb,  ebTmb,  efTmb

Name e particle m particle

ebmb boson, T2 = 1 boson

efmb fermion, T2 = 1 boson

ebTmb boson, T2 = -1 boson

efTmb fermion, T2 = -1 boson
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Some of these are phases obtained through familiar constructions. 

Eg: ebmb   - constructed in all existing microscopic models for the spin liquid

(realized for instance by XXZ spin-1/2 model on pyrochlore lattice). 

ebTmb,  efTmb: constructed by Schwinger boson/Schwinger fermion representation 
of physical spins. 
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Understanding the 4 phases: wavefunctions

Useful to think in terms of fluctuating electric/
magnetic field lines. 

 
ebmb:  Electric picture.

E-field lines form oriented loops at low 
energies. 

Ground state - superposition of oriented 
electric loops with positive weights. 

 

+

+ .........
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Kramers e-particle: Haldane loops

 If in addition e is a Kramers doublet (ebTmb), then 
E-field lines are stuffed with Haldane spin-1 chains. 

e-particle: Open end of E-field line 

Haldane chain: gapped in bulk but at open end there 
is a Kramers doublet

=> achieve Kramers e-particle. 

+

+ .........spin-1/2

spin-1

spin singlet 
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Fermionic e-particle (efmb or efTmb  )   

Electric field loops are 
ribbons. 

Phase (-1) for self-linking of  
any ribbon. 

Open end point of such a 
ribbon is a fermion. 

2

FIG. 1: The wave function of the 3d bosonic SPT discussed in
this paper is a superposition of all the configurations of vortex
ribbons with factor (−1) associated with each self-linking.

spin chain. These results are obtained by analysing both
the sigma model effective field theory and the topological
“BF” effective field theories proposed in Ref. 14 for these
phases.
In 2d a result with a similar flavor has been derived

by Levin and Gu15 for an SPT phase with Ising, i.e Z2,
symmetry in terms of a domain wall loop gas with phase
factors. In Sec. IV we reproduce this result using our
methods. We also discuss the ground state wavefunc-
tion structure of the 2d boson topological insulator with
U(1)× ZT

2 symmetry. We use this to obtain a dual vor-
tex description of this state, and show that the physics
is correctly captured.

II. WAVE FUNCTION OF TRIVIAL 3D BOSE
MOTT INSULATOR

Let us start with briefly reviewing the trivial Mott in-
sulating phase of bosons. This is conveniently modeled
by a quantum disordered phase of interacting U(1) ro-
tors on a 3d lattice, which is described by the Hamilto-
nian H =

∑

<i,j> −t cos(θi − θj) + U(n̂i)2. The boson

creation operator bi = eiθi and ni is the corresponding
U(1) charge at site i. θi and ni are canonically con-
jugate. The quantum disordered phase of the rotors is
equivalent to the familiar Mott insulator phase and oc-
curs when t/U # 1. In the strong coupling limit t → 0,
the ground state wave function is a trivial direct product
state:

|Ψ〉 =
∏

i

|n̂i = 0〉 ∼
∏

i

∫ 2π

0
dθi|θi〉. (1)

The wave function of the quantum disordered phase with
finite but small t/U can be derived through perturbation
on wave function Eq. 1. For our purposes it is useful to
consider a simple approximate form of the wave function

that captures the physics of the Mott phase :

|Ψ〉 ∼

∫ 2π

0

∏

dθ exp[
∑

<i,j>

−K cos(θi − θj)]
∏

l

|θl〉, (2)

where K ∼ t/U # 1. This wave function is a superposi-
tion of configurations of θi with a weight that is the same
as the Boltzman weight of the 3d classical rotor model.
The standard duality formalism of the 3d classical ro-
tor model leads to the dual representation of this wave
function:

|Ψ〉 ∼

∫

D "A
∑

#J

exp[−

∫

d3x
1

2K
("∇× "A)2 + i2π "A · "J ]

× | "A(x), "J(x)〉, (3)

Vector field "J takes only integer values on the dual lattice,
and it represents the vortex loop in the phase θ. In order
to guarantee the gauge invariance of "A, "J must have no
source in the bulk: "∇ · "J = 0. The vortex loop "J can only
end at the boundary, which corresponds to a 2d vortex.
The U(1) gauge field "A induces long range interactions
between vortex loops with coupling strength K. In the
limit K → 0, i.e. the strong coupling limit of the original
rotor, the wave function Eq. 3 for quantum disordered
lattice bosons becomes a equal weight superposition of
all vortex loop configurations, with a weak long range
interaction.
Quite generally the Mott insulating phase is obtained

when the vortex loops have proliferated. Consequently
the ground state wave function can be described as a loop
gas of oriented interacting vortex loops. The discussion
above provides a derivation of this loop gas wave function
starting from a simple but approximate microsopic boson
wave function. A crucial point about the structure of the
loop gas wave function for the trivial Mott insulator is
that it has positive weight for all loop configurations.

III. WAVE FUNCTION OF 3D BOSONIC SPT
PHASES

A 3d SPT phase with U(1) symmetry is also a quantum
disordered phase of rotor θi, thus it is expected that its
wave function is still a superposition of vortex loop con-
figurations. However, more physics needs to be added
to the vortex loops in order to capture the novel physics
of the SPT phase. One of the central results of this pa-
per is to determine the structure of this vortex loop gas
wave function for the 3d SPT phases with U(1) and time-
reversal symmetry discussed in Ref. 14. We first focus
on one example which occurs for both U(1)×ZT

2 and for
U(1)! ZT

2 . We show that the ground state is described
by a superposition of vortex loop configurations |Cv〉, but
each vortex loop should be viewed as a “ribbon” rather
than a line, and a self-linking of this ribbon contributes

4

FIG. 2: (a). When the symmetry is U(1)×U(1) the bulk wave
function is a superposition of two flavors of vortex loops with
factor (−1) attached to each linking. (b−f), braiding between
two flavors of vortices at the boundary effectively creates one
extra linking to the bulk vortex loops, which according to
the bulk wave function would contributes factor (−1). This
implies that the two flavors of vortices at the boundary have
mutual semion statistics.

factor −1 each time the vortex loops of the two boson
species link17. Thus this two species boson Mott insu-
lator has a wave function which is a superposition of all
vortex loops of the two species with a crucial factor of
(−1)L where L is the total number of linked opposite
species vortex loops. In contrast for the trivial Mott in-
sulator of the two boson species system, the weight for all
vortex loop configurations can be taken to be positive.

It is implicit in the discussion in terms of a four com-
ponent unit vector !φ that classical configurations of the
b1,2 fields are always such that b1,2 cannot simultane-
ously vanish. As the amplitude of either of these fields
vanishes in their vortex core this implies that the vortex
loops of the two species cannot intersect. Thus a config-
uration with a linking of the two vortex loops cannot be
deformed to one without a linking.

This bulk wave function Eq. 9 also implies that at the
2d boundary, the vortex of b1 and vortex of b2 (sources
of vortex loops) have a mutual semion statistics, because
when one flavor of vortex encircles another flavor through
a full circle, the bulk vortex loops effectively acquire one
extra linking (Fig. 2), which according to the bulk wave
function would contribute factor (−1).

Let us now provide an alternate derivation of this result
using the bulk topological BF theory for the SPT phase

also proposed in Ref. 14. This theory takes the form

2πL3D =
∑

I

εµνλσBI
µν∂λa

I
σ +Θ

∑

I,J

KIJ

4π
εµνλσ∂µa

I
ν∂λa

J
σ

(10)
Here BI

µν is a rank-2 antisymmetric tensor that is re-
lated to the current of boson of species I = 1, 2 through
jIµ = 1

2π εµνλσ∂νB
I
λσ. a

I
µ is a 1-form gauge field which de-

scribes the vortices of the bosons. Specifically the mag-
netic field lines of aI are identified with the vortex lines
of the boson of species I. For the SPT state of interest
the K matrix is simply σx. The parameter Θ = π (not to
be confused with the theta parameter in the sigma model
description). The crucial difference with the trivial Mott
insulator is the second Θ term. To get the ground state
wavefunction we again evaluate the Euclidean path inte-
gral with open temporal boundary conditions. Using the
well known fact that the Θ term is the derivative of a
Chern-Simons term we end up with the following ground
state wave functional:

ψ
[

aIi , B
IJ
jk

]

∼ ei
Θ

8π2

∫
d3xεijkK

IJaI
i ∂ja

J
kψ0

[

aIi , B
IJ
jk

]

(11)

Here ψ0 is the wave functional for the trivial Mott insu-
lator. The wave functional for the SPT insulator is thus
modified by a phase factor given by a 3 + 0 dimensional
Chern-Simons term. As is well known the Chern-Simons
term is related to a counting of the total linking num-
ber of the configuration of the magnetic flux lines of the
gauge fields. Specializing to the case at hand we see that
in the presence of a 2π flux line of a1, there is a phase
factor Θ = π whenever a 2π flux line of a2 links with
it. Thus we reproduce the result that there is a phase of
π associated with each linking of opposite species vortex
lines.
Finally if the U(1)×U(1) symmetry is broken down to

diagonal U(1), then the vortex loops of the two species
will be confined to each other. The resulting common
vortex loop of the rotor b ∼ b1 ∼ b2 becomes a ribbon,
whose two edges are the vortex loops of b1 and b2. Fur-
ther for simplicity we assume that there is an energetic
constraint at short distances that prevent two vortex lines
of the same species from approaching each other. In par-
ticular we assume that the binding length scale of the
opposite species vortex loops is smaller than the allowed
separation between same species vortex loops. Then
the vortex ribbons cannot intersect each other. Such
a “hard-core” constraint on the short distance physics
should not affect the universal long distance behavior of
the wavefunction24. Note that the binding of the two
species of vortex loops gives a physical implementation
of the mathematical concept of ‘framing’ used to describe
the topology of knots. The linking between the two fla-
vors of vortex loops becomes a self-linking of the ribbon.
Thus wave function Eq. 9 reduces to wave function Eq. 4.
As we mentioned before, this bulk wave function Eq. 4
implies that the end point of a vortex ribbon at a 2d
boundary is a fermion. Similarly bulk external sources
for vortex ribbons will also be fermions.
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Aside: relationship between these phases

Interesting point of view: 

Monopoles are gapped - regard as time reversal symmetric monopole insulators. 

 

These distinct T-reversal symmetric U(1) spin liquids  correspond to distinct 
``interacting bosonic topological” insulators formed by the monopoles (Wang, TS, 
13)
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A fifth phase: the ``topological Mott insulator”

 Start with efTmb

 
Put the Kramers fermion e-particle in a topological band insulator (Pesin, Balents, 
2010). 

=> new T-reversal symmetric U(1) quantum spin liquid. 

(Proposed originally for the pyrochlore iridate Y2Ir2O7.)

Notation:  (efTmb)θ

Key consequences:  1. Surface Dirac cone of the e-particle. 

2. m-particle has internal electric charge-1/2 (see next slide)
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Witten effect in topological band insulators

Response of a topological band insulator to a U(1) gauge field includes a ✓
term:

L✓ =

✓

4⇡2
~E. ~B

with ✓ = ⇡.
✓ term => monopole has electric charge 1/2 (the “Witten e↵ect”)

L✓ =

✓

4⇡2
~E. ~B

= � ✓

4⇡2
~rA0. ~B + . . . .

=

✓

4⇡2
A0

~r. ~B

Qi, Highes, Zhang 09
Essin, Moore, Vanderbilt, 10
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A remarkably simple wavefunction

 Simplest in terms of magnetic field lines. 

Below monopole gap,  magnetic field lines form closed loops. 

Electric charge-1/2 of monopole => when 2 magnetic loops link there is a (-1) 
phase. 

Ground state = superposition of (oriented) magnetic loops with this linking phase: 

Wang, TS, 15
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Contrast with ebmb:

 In magnetic field representation, ebmb: is superposition of (oriented) magnetic 
loops with positive weights. 

The different (-) sign linking phase changes the state dramatically: 
e-particle becomes a Kramers fermion with topological band structure. 

Friday, January 23, 15



A better understanding of the linking phase

 

 

Why exactly does (-) sign linking phase of magnetic loops have these effects? 

 (-) linking phase => monopoles are ``dyons” with charge ±1/2. 

Consider bound state of charge-1/2  ``dyon” with charge-1/2 ``antidyon”. 

Bound state carries electric charge-1 and magnetic charge-0 => identify with e-particle. 

What are its time reversal properties? 
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A better understanding of the linking phase (cont’d)  

These two see each other as relative monopoles. 

=> In bound state, EM field angular momentum is 
half-integer. 

Under T2 action, this `orbital’ part leads to T2 = -1. 

=> Bound state (= e-particle) must be Kramers doublet, and 
must be a fermion. 

End of proof. 

``Dyon” and  ``Anti-dyon” with same electric charge 
transform into each other. 

T �1d(1,1/2)T = d(�1,1/2) (1)

T �1d(�1,1/2)T = d(1,1/2)

d(qm,qe) is dyon operator with magnetic charge qm and electric charge qe.
4

of an SPT in (d+ 1) dimensions) must admit a physical
edge to the vacuum. We will show that time reversal
symmetric electronic systems with a fermionic monopole
are not edgable.

First we construct a bulk state with the desired prop-
erties. Consider a Bose-Fermi mixture, with both the
boson b and the electron c carrying charge-1. Now put
the electron into a trivial band insulator, and the bo-
son into a boson SPT state (labelled by its surface topo-
logical order eCmC). Then the charge-neutral external
monopole source becomes a fermion12,14. We initially
consider such a system in a geometry with no bound-
aries. We then tune the boson charge gap to infinity, so
that the charged bosons disappear from the spectrum,
and we are left with a purely electronic theory. But since
the fermionic monopole does not carry any boson charge,
it survives as the only charge-neutral monopole. Now the
bulk theory is exactly what we were looking for, but we
need to examine its boundary and see if it is consistent
with a time-reversal invariant electronic system.

As the electrons are in a trivial insulator they do not
contribute anything special on the boundary, so we only
have to worry about surface states of the eCmC boson
SPT. We first consider a symmetric surface state with
topological order. It is known10 that one of the possible
surface states of the eCmC boson SPT is described by
a Z

2

gauge theory with both e and m carrying charge-
1/2 and the ✏ fermion being charge-neutral. By setting
the boson charge-gap to infinity, the e and m particles
disapppear from the spectrum, but the neutral ✏ fermion
survives as a gauge-invariant local object, which is not al-
lowed in a system purely made of charged fermions. An-
other way to see the inconsistency of the surface is to look
at the surface state without topological order in which
time-reversal symmetry is broken. The boson topologi-
cal insulator leads to a surface electrical quantum hall
conductance �

xy

= ±1 and thermal hall conductance

xy

= 0.10 The di↵erence of �
xy

,
xy

between the two
time-reversal broken states should correspond to an elec-
tronic state in two dimensions without topological order.
Here we have ��

xy

= 2 and �
xy

= 0, which cannot be
realized from a purely electronic system without topo-
logical order. Hence the boundary as a purely electronic
theory is not consistent with time-reversal symmetry, and
the bulk theory cannot be realized in strict three dimen-
sions, although it may be realizable at the surface of a
four dimensional system.

Kramers fermions and ✓ = ⇡ topological insula-

tors: We now discuss the role of the Kramers structure
of the electron. For the free fermion topological insula-
tor it is well known that the Kramers structure is what
allows the topological insulator in the first place. Here
we wish to address the role of the Kramers structure
non-perturbatively directly from the electromagnetic re-
sponse. What precise role, beyond free fermion band
theory, does the Kramers structure of the electron play
in enabling a ✓ = ⇡ response? On the face of it it appears
that ✓ = ⇡ is still an acceptable response in a time re-

 

 

FIG. 1. For ✓ = ⇡, a monopole and anti-monopole become
charge- e2 dyons. Acting twice with T is equivalent to rotating
the pair by 2⇡, which gives Berry-phase �1 due to the half-
angular momentum of the EM field of the dyon-pair.

versal invariant insulator of non-Kramers (integer spin)
fermions. However we now give a general argument show-
ing that any gapped insulator with a ✓ = ⇡ response and
no intrinsic topological order necessarily has charge car-
riers that are fermionic and are Kramers doublet.
Consider the fate of the state when the global U(1)

symmetry is gauged. The ✓ value of ⇡ now implies
that the monopoles of the resulting U(1) gauge field are
‘dyons’ (in the Witten sense) and have electric charge
shifted from integer by 1

2

. Let us examine these dyons
carefully.
For convenience we label particles by (q

m

, q
e

), where
q
m

is the magnetic charge (monopole strength) and q
e

is the electric charge. Consider a strength-1 monopole
(dyon) which carries charge-1/2 due to ✓ = ⇡, labeled
as (1, 1/2), which under time-reversal transforms to the
(�1, 1/2) dyon, since electric charge is even while mag-
netic charge is odd under time-reversal. More precisely,
we have

T �1d
(1,1/2)

T = ei↵d
(�1,1/2)

(5)

T �1d
(�1,1/2)

T = ei�d
(1,1/2)

where d
(qm,qe)

denotes the corresponding dyon operator.

The exact value of the phase factor ei(↵��) is not mean-
ingful since it is not gauge-invariant (see Ref. 12 for a
discussion).
Now let’s consider the bound state of d

(1,1/2)

and
d
(�1,1/2)

, it has q
m

= 0 and q
e

= 1, which is nothing
but the fundamental charge of the system. The crucial
point here is that the two dyons see each other as an ef-
fective monopole. A quick way to see this is to view the
(�1, 1/2) dyon as the bound state of the electric charge
(0, 1) and (�1,�1/2) which is the anti-particle of (1, 1/2),
hence the Berry phase seen by the (�1, 1/2) dyon is the
same as that seen by a charge from a monopole. Hence
their bound state will carry half-integer orbital angular
momentum and fermionic statistics. The half-integer an-
gular momentum can also be obtained by calculating the
angular momentum of the gauge field24 which is given by

L =
q
e,1

q
m,2

� q
e,2

q
m,1

2
= 1/2. (6)

Hence we have established that the fundamental charge
is a fermion. To determine whether or not the fermion
is a Kramers doublet, we need to consider contributions

Wang, Potter, TS, 13
Metlitski, Kane, Fisher, 13
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A prediction for numerics

At interface with vacuum (or with a state with no linking phase) this state will have 
powerlaw correlations characteristic of a fermion surface Dirac cone. 
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T-reversal symmetric U(1) spin liquids with a bosonic 
monopole

Total of 5 distinct phases

Name e particle m particle

ebmb boson, T2 = 1 boson

efmb fermion, T2 = 1 boson

ebTmb boson, T2 = -1 boson

efTmb fermion, T2 = -1 boson

(efTmb)θ
fermion, T2 = -1 boson, `electric’ 

charge 1/2
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Fermionic monopole

 Can e also be a fermion? 

No!!

`All-fermion’ U(1) gauge theory with fermion statistics for both e and m 
forbidden in strict 3+1-d (*):      a non-emergeable field theory. 

Proof (biproduct of recent classification of interacting electronic topological insulators): Wang, Potter, 
TS, Science 2014 (Appendix). 

Key idea: Can think of such a phase as a (gauged) putative topological insulator of fermionic e 
particles. 

Show such a putative topological insulator does not have a consistent surface in the right Hilbert 
space. 

(*): Can arise at boundary of a 4+1- d theory (Kravec, McGreevy, Swingle, 14). 
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Fermionic monopole

 

 

 e must be a boson. 

Distinct possibilities generated by endowing the fermionic monopole with 
topological band structure. 
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Topological insulators of the Fermionic monopole

 

 

 
Symmetries: Monopole transforms under Ug(1) x T. 

(Ug(1): magnetic gauge transformation). 

Free fermions with global symmetry U(1) xT can form topological band structure 
classified by Z, i.e, indexed by an integer n.  (Schnyder et al 2009, Kitaev 2009). 

With interactions this collapses to a Z8 classification (Wang, TS, 14). 

Of these n = 4 is protected by T alone. 

=> if the U(1) is gauged, only n = 0, 1, 2 give distinct U(1) spin liquids. 
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T-reversal symmetric U(1) spin liquids with a fermionic 
monopole

 

 

Distinguish different n by effect on e particle.       (Wang, TS, 14)

n = 0:   e is Kramers singlet boson    => ebmf.

n = 1:    θ = π response => `dual Witten effect’

e is boson with magnetic charge 1/2.  (denote (ebmf)θ ). 

n = 2: e is Kramers doublet boson      => ebTmf. 
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T-reversal symmetric U(1) spin liquids with a fermionic 
monopole

 Total of 3 distinct phases. 

Name e particle m particle

ebmf. boson, T2 = 1 fermion

(ebmf)θ
boson, `magnetic 

charge’ 1/2
fermion

ebTmf. boson, T2 = -1 fermion
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T-reversal symmetric U(1) spin liquids: 
Full classification

8 distinct phases.  

Name e particle m particle

ebmb boson, T2 = 1 boson

efmb fermion, T2 = 1 boson

ebTmb boson, T2 = -1 boson

efTmb fermion, T2 = -1 boson

(efTmb)θ fermion, T2 = -1 boson, `electric’ 
charge 1/2

ebmf. boson, T2 = 1 fermion

(ebmf)θ boson, `magnetic 
charge’ 1/2

fermion

ebTmf. boson, T2 = -1 fermion

Wang, TS, 15
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Quantum spin ice

 

 

Presumably monopole will be a boson. 

If the microscopic spin is a Kramers doublet (as in Yb2Ti2O7  ), then ebmb,  ebTmb,  
efTmb, (efTmb)θ are possible candidates. 

Neutrons will see 2 thresholds for continuum scattering - one associated with the 
m gap, and the other associated with the e gap (if e is Kramers). 

If the microscopic spin is a non-Kramers doublet (as in Pr2Zr2O7), then ebmb,  efmb

are candidates (harder to distinguish). 
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Remarks

 View alternately as phase transition between (gauged versions) of trivial insulator and a 
topological insulator of the bosonic monopoles. 

=> Possible route to progress on a highly non-trivial phase transition. 

 

 1. The different T-reversal symmetric U(1) spin liquids are obtained from one 
another by putting either e or m in an interacting topological insulator phase. 

Various U(1) spin liquids = gauged versions of  interacting topological insulators of 
bosons/fermions. 

2.  Statistics changing phase transition, eg 

ebmb efmb
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Remarks (cont’d)
Symmetry and gapped quantum spin liquids

 

 

 Non-trivial symmetry implementations in gapped quantum spin liquids: 

- fractionalization of symmetry quantum numbers (``projective realizations” of 
symmetry)

- symmetry operations may even exchange different topological sectors in a 
topological phase. 

Much recent understanding for d = 2 gapped phases (eg, Essin, Hermele 13, 
Vishwanath, TS 13, Geraedts, Motrunich 13, Lu, Vishwanath, 13, Wang, TS 13, 
Fidkowski et al, 14, Cho et al 14, 
Barkeshli et al, 14); 

Some (incomplete) progress in d = 3 gapped Z2 quantum spin liquids. 
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