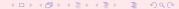
Generalized Thermalization in Integrable Lattice Systems

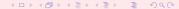
Marcos Rigol

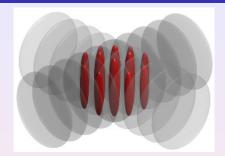
Department of Physics The Pennsylvania State University

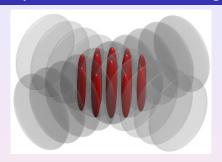
Thermalization, Many body localization and Hydrodynamics Centre for Theoretical Sciences, Bengaluru


November 13, 2019

L. Vidmar and MR, Generalized Gibbs ensemble in integrable lattice models, J. Stat. Mech. 064007 (2016).

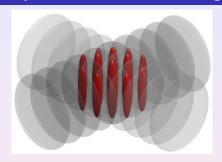

Outline


- Introduction
 - Experiments with ultracold gases in one dimension
 - Absence of thermalization in 1D?
 - Classical and quantum integrability
 - Hard-core bosons in one-dimensional lattices
- 2 Generalized Gibbs Ensemble (GGE)
 - Maximal entropy and the GGE
- Generalized Thermalization
 - GGE vs quantum mechanics
 - Generalized eigenstate thermalization
- 4 Equilibration: Few-body vs local observables
 - Noninteracting fermions & hard-core anyons
- Summary



Outline

- Introduction
 - Experiments with ultracold gases in one dimension
 - Absence of thermalization in 1D?
 - Classical and quantum integrability
 - Hard-core bosons in one-dimensional lattices
- 2 Generalized Gibbs Ensemble (GGE)
 - Maximal entropy and the GGE
- Generalized Thermalization
 - GGE vs quantum mechanics
 - Generalized eigenstate thermalization
- 4 Equilibration: Few-body vs local observables
 - Noninteracting fermions & hard-core anyons
- Summary

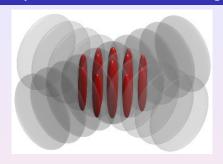


Effective one-dimensional δ potential M. Olshanii, PRL **81**, 938 (1998).

$$U_{1D}(x) = g_{1D}\delta(x)$$

where

$$g_{1D} = \frac{2\hbar a_s \omega_{\perp}}{1 - C a_s \sqrt{\frac{m\omega_{\perp}}{2\hbar}}}$$

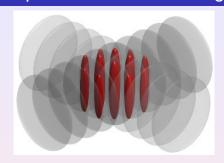

Effective one-dimensional δ potential M. Olshanii, PRL **81**, 938 (1998).

$$U_{1D}(x) = g_{1D}\delta(x)$$

where

$$g_{1D} = \frac{2\hbar a_s \omega_{\perp}}{1 - C a_s \sqrt{\frac{m\omega_{\perp}}{2\hbar}}}$$

Lieb & Liniger '63,


Effective one-dimensional δ potential M. Olshanii, PRL **81**, 938 (1998).

$$U_{1D}(x) = g_{1D}\delta(x)$$

where

$$g_{1D} = \frac{2\hbar a_s \omega_{\perp}}{1 - C a_s \sqrt{\frac{m\omega_{\perp}}{2\hbar}}}$$

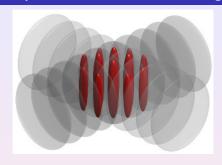
Lieb & Liniger '63, Girardeau '60 ($g_{1D}=\infty$)

T. Kinoshita, T. Wenger, and D. S. Weiss, Science **305**, 1125 (2004).

T. Kinoshita, T. Wenger, and D. S. Weiss, Phys. Rev. Lett. **95**, 190406 (2005).

$$g^{(2)}(x)=rac{\langle \hat{\Psi}^{\dagger 2}(x)\Psi^2(x)
angle}{n_{1D}^2(x)}$$
 and $\gamma=rac{mg_{1D}}{\hbar^2n_{1D}}$ \Leftrightarrow


Effective one-dimensional δ potential M. Olshanii, PRL **81**, 938 (1998).


$$U_{1D}(x) = g_{1D}\delta(x)$$

where

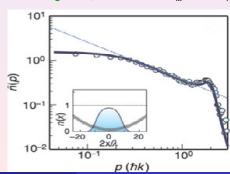
$$g_{1D} = \frac{2\hbar a_s \omega_{\perp}}{1 - C a_s \sqrt{\frac{m\omega_{\perp}}{2\hbar}}}$$

Lieb & Liniger '63, Girardeau '60 ($g_{1D} = \infty$)

Effective one-dimensional δ potential M. Olshanii, PRL 81, 938 (1998).

$$U_{1D}(x) = g_{1D}\delta(x)$$

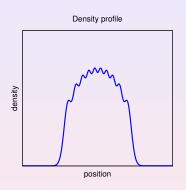
where

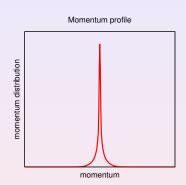

$$g_{1D} = \frac{2\hbar a_s \omega_{\perp}}{1 - C a_s \sqrt{\frac{m\omega_{\perp}}{2\hbar}}}$$

Lieb & Liniger '63, Girardeau '60 ($g_{1D} = \infty$)

Lieb, Schulz, and Mattis '61 ($U/J = \infty$)

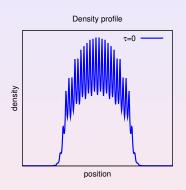
B. Paredes et al.. Nature (London) 429, 277 (2004).

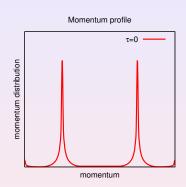

> n(p): Momentum distribution \Leftrightarrow n(x): Density distribution \Leftrightarrow



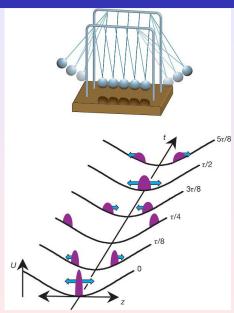
Outline

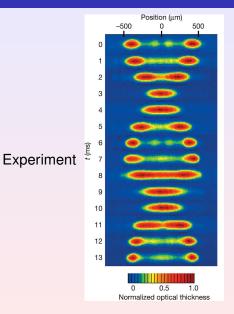
- Introduction
 - Experiments with ultracold gases in one dimension
 - Absence of thermalization in 1D?
 - Classical and quantum integrability
 - Hard-core bosons in one-dimensional lattices
- 2 Generalized Gibbs Ensemble (GGE)
 - Maximal entropy and the GGE
- Generalized Thermalization
 - GGE vs quantum mechanics
 - Generalized eigenstate thermalization
- 4 Equilibration: Few-body vs local observables
 - Noninteracting fermions & hard-core anyons
- Summary

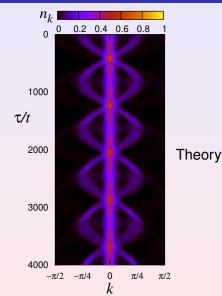




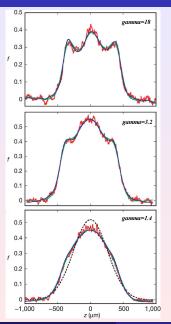
Numerical experiment similar to:


T. Kinoshita, T. Wenger, and D. S. Weiss, Nature 440, 900 (2006).





Numerical experiment similar to:


T. Kinoshita, T. Wenger, and D. S. Weiss, Nature 440, 900 (2006).

Absence of thermalization with contact interactions?

T. Kinoshita, T. Wenger, and D. S. Weiss, Nature **440**, 900 (2006).

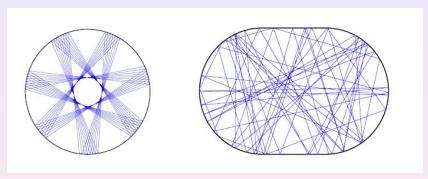
$$\gamma = \frac{mg_{1D}}{\hbar^2 n_{1D}}$$

 g_{1D} : Contact interaction strength n_{1D} : One-dimensional density

If $\gamma\gg 1$ the system is in the strongly correlated Tonks-Girardeau regime

If $\gamma \ll 1$ the system is in the weakly interacting regime

Review of related work in atom chips: T. Langen, T. Gasenzer, and J. Schmiedmayer, J. Stat. Mech. 064009 (2016).


Outline

- Introduction
 - Experiments with ultracold gases in one dimension
 - Absence of thermalization in 1D?
 - Classical and quantum integrability
 - Hard-core bosons in one-dimensional lattices
- 2 Generalized Gibbs Ensemble (GGE)
 - Maximal entropy and the GGE
- Generalized Thermalization
 - GGE vs quantum mechanics
 - Generalized eigenstate thermalization
- 4 Equilibration: Few-body vs local observables
 - Noninteracting fermions & hard-core anyons
- Summary

Classical chaos and integrability

Particle trajectories in a circular cavity and a Bunimovich stadium (scholarpedia)

- Integrability: A system is said to be integrable if it has as many constants of motion as degrees of freedom
- Chaos: exponential sensitivity of the trajectories to perturbations

Liouville's integrability theorem (Classical)

Hamiltonian

$$H(p,q)$$
, coordinates $q=(q_1,\cdots,q_N)$
momenta $p=(p_1,\cdots,p_N)$

N independent constants of the motion, $I=(I_1,\cdots,I_N)$, in involution

$$\{I_{\alpha}, H\} = 0, \quad \{I_{\alpha}, I_{\beta}\} = 0, \quad \{f, g\} = \sum_{i=1, N} \frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}$$

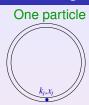
Liouville's integrability theorem (Classical)

Hamiltonian

$$H(p,q)$$
, coordinates $q=(q_1,\cdots,q_N)$
momenta $p=(p_1,\cdots,p_N)$

N independent constants of the motion, $I=(I_1,\cdots,I_N)$, in involution

$$\{I_{\alpha}, H\} = 0, \quad \{I_{\alpha}, I_{\beta}\} = 0, \quad \{f, g\} = \sum_{i=1, N} \frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}$$


There is a canonical transformation $(p,q) \to (\Theta,I)$ (action-angle variables)

$$H(p,q) = H'(I)$$

Equations of motion

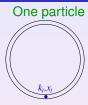
$$\begin{array}{lcl} \frac{dI_{\alpha}}{dt} & = & -\frac{\partial H'}{\partial \Theta_{\alpha}} = 0 & \Rightarrow & I_{\alpha} = \text{constant} \\ \frac{d\Theta_{\alpha}}{dt} & = & \frac{\partial H'}{\partial I_{\alpha}} = \Omega_{\alpha}(I) & \Rightarrow & \Theta_{\alpha} = \Omega_{\alpha}(I)t + \Theta_{\alpha}^{0} \end{array}$$

Scattering without diffraction (Quantum)

Momentum

Energy

Wavefunction


$$k_1$$

$$\varepsilon(k_1) = \frac{(k_1)^2}{2}$$

$$\Psi(x_1) = e^{ik_1x_1}$$

B. Sutherland, Beautiful Models (World Scientific, Singapore, 2004).

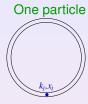
Scattering without diffraction (Quantum)

Momentum

Energy

Wavefunction

$$k_1 \qquad \qquad \varepsilon(k_1) = \frac{(k_1)^2}{2}$$


 $\Psi(x_1) = e^{ik_1x_1}$

Two particles
$$K = k_1 + k_2$$
 $E = \varepsilon(k_1) + \varepsilon(k_2)$
$$\Psi(x_1, x_2) \rightarrow \sum_{P} A(P) \; e^{i(k_{P1}x_1 + k_{P2}x_2)} = A(12) \; e^{i(k_1x_1 + k_2x_2)} + A(21) \; e^{i(k_2x_1 + k_1x_2)}$$

B. Sutherland, *Beautiful Models* (World Scientific, Singapore, 2004).

Scattering without diffraction (Quantum)

Momentum

Energy

Wavefunction

$$k_1 \qquad \qquad \varepsilon(k_1) = \frac{(k_1)^2}{2}$$

$$\Psi(x_1) = e^{ik_1x_1}$$

Two particles
$$k_2, x_2$$

$$K = k_1 + k_2$$
 $E = \varepsilon(k_1) + \varepsilon(k_2)$

$$\Psi(x_1, x_2) \rightarrow \sum_{P} A(P) e^{i(k_{P1}x_1 + k_{P2}x_2)}$$

$$= A(12) e^{i(k_1x_1 + k_2x_2)} + A(21) e^{i(k_2x_1 + k_1x_2)}$$

Three particles

$$K = k_1 + k_2 + k_3$$

$$K = k_1 + k_2 + k_3 E = \varepsilon(k_1) + \varepsilon(k_2) + \varepsilon(k_3)$$

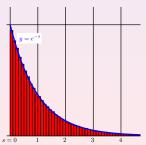
$$\Psi(x_1, x_2, x_3) \to \sum_{P} A(P) e^{i(k_{P1}x_1 + k_{P2}x_2 + k_{P3}x_3)}$$

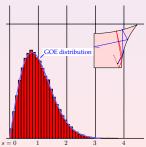
+ diffractive scattering

B. Sutherland, *Beautiful Models* (World Scientific, Singapore, 2004).

Semi-classical limit: Statistics of energy levels

Berry-Tabor conjecture (1977): The statistics of level spacings of quantum systems whose classical counterpart is integrable is described by a Poisson distribution. (Energy eigenvalues behave like a sequence of independent random variables.)


Semi-classical limit: Statistics of energy levels


- Berry-Tabor conjecture (1977): The statistics of level spacings of quantum systems whose classical counterpart is integrable is described by a Poisson distribution. (Energy eigenvalues behave like a sequence of independent random variables.)
- Bohigas, Giannoni, and Schmit (1984): At high energies, the statistics
 of level spacings of a particle in a Sinai billiard is described by a WignerDyson distribution. This was conjecture to apply to quantum systems
 that have a classically chaotic counterpart (violated in singular cases).

Semi-classical limit: Statistics of energy levels

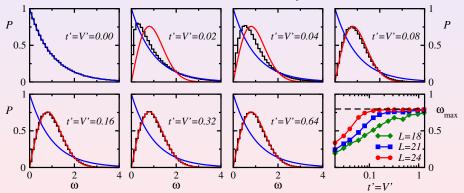
- Berry-Tabor conjecture (1977): The statistics of level spacings of quantum systems whose classical counterpart is integrable is described by a Poisson distribution. (Energy eigenvalues behave like a sequence of independent random variables.)
- Bohigas, Giannoni, and Schmit (1984): At high energies, the statistics
 of level spacings of a particle in a Sinai billiard is described by a WignerDyson distribution. This was conjecture to apply to quantum systems
 that have a classically chaotic counterpart (violated in singular cases).

Distribution of level spacings: rectangular and chaotic cavities

Z. Rudnik, Notices AMS 55, 32 (2008).

Integrability to quantum chaos transition

Spinless fermions (hard-core bosons, spin-1/2) in one dimension


$$\hat{H} = \sum_{i=1}^{L} \left\{ -t \left(\hat{f}_{i}^{\dagger} \hat{f}_{i+1} + \text{H.c.} \right) + V \hat{n}_{i} \hat{n}_{i+1} - t' \left(\hat{f}_{i}^{\dagger} \hat{f}_{i+2} + \text{H.c.} \right) + V' \hat{n}_{i} \hat{n}_{i+2} \right\}$$

Integrability to quantum chaos transition

Spinless fermions (hard-core bosons, spin-1/2) in one dimension

$$\hat{H} = \sum_{i=1}^{L} \left\{ -t \left(\hat{f}_{i}^{\dagger} \hat{f}_{i+1} + \text{H.c.} \right) + V \hat{n}_{i} \hat{n}_{i+1} - t' \left(\hat{f}_{i}^{\dagger} \hat{f}_{i+2} + \text{H.c.} \right) + V' \hat{n}_{i} \hat{n}_{i+2} \right\}$$

Level spacing distribution ($N_f = L/3$)

L. Santos and MR, PRE 81, 036206 (2010); PRE 82, 031130 (2010).

Outline

- Introduction
 - Experiments with ultracold gases in one dimension
 - Absence of thermalization in 1D?
 - Classical and quantum integrability
 - Hard-core bosons in one-dimensional lattices
- 2 Generalized Gibbs Ensemble (GGE)
 - Maximal entropy and the GGE
- Generalized Thermalization
 - GGE vs quantum mechanics
 - Generalized eigenstate thermalization
- 4 Equilibration: Few-body vs local observables
 - Noninteracting fermions & hard-core anyons
- Summary

Bose-Fermi mapping in a 1D lattice

Hard-core boson Hamiltonian in an external potential

$$\hat{H} = -J\sum_{i} \left(\hat{b}_{i}^{\dagger} \hat{b}_{i+1} + \text{H.c.} \right) + \sum_{i} v_{i} \; \hat{n}_{i}$$

Constraints on the bosonic operators

$$\hat{b}_i^{\dagger 2} = \hat{b}_i^2 = 0$$

Bose-Fermi mapping in a 1D lattice

Hard-core boson Hamiltonian in an external potential

$$\hat{H} = -J\sum_{i} \left(\hat{b}_{i}^{\dagger} \hat{b}_{i+1} + \text{H.c.} \right) + \sum_{i} v_{i} \ \hat{n}_{i}$$

Constraints on the bosonic operators

$$\hat{b}_i^{\dagger 2} = \hat{b}_i^2 = 0$$

Map to spins and then to fermions (Jordan-Wigner transformation)

$$\hat{\sigma}_i^+ = \hat{f}_i^\dagger \prod_{\beta=1}^{i-1} e^{-i\pi \hat{f}_\beta^\dagger \hat{f}_\beta}, \quad \hat{\sigma}_i^- = \prod_{\beta=1}^{i-1} e^{i\pi \hat{f}_\beta^\dagger \hat{f}_\beta} \hat{f}_i$$

Non-interacting fermion Hamiltonian

$$\hat{H}_F = -J\sum_i \left(\hat{f}_i^{\dagger} \hat{f}_{i+1} + \text{H.c.}\right) + \sum_i v_i \; \hat{n}_i^f$$

Bose-Fermi mapping in a 1D lattice

Hard-core boson Hamiltonian in an external potential

$$\hat{H} = -J\sum_{i} \left(\hat{b}_{i}^{\dagger} \hat{b}_{i+1} + \text{H.c.} \right) + \sum_{i} v_{i} \ \hat{n}_{i}$$

Constraints on the bosonic operators

$$\hat{b}_i^{\dagger 2} = \hat{b}_i^2 = 0$$

Set of conserved quantitites

(Occupations of the single-particle energy eigenstates of the noninteracting fermions)

$$\hat{H}_F \hat{\gamma}_m^{f\dagger} |0\rangle = E_m \hat{\gamma}_m^{f\dagger} |0\rangle$$
$$\left\{ \hat{I}_m^f \right\} = \left\{ \hat{\gamma}_m^{f\dagger} \hat{\gamma}_m^f \right\}$$

One-body density matrix

One-body Green's function

$$G_{ij} = \langle \Psi_{HCB} | \hat{\sigma}_i^- \hat{\sigma}_j^+ | \Psi_{HCB} \rangle = \langle \Psi_F | \prod_{\beta=1}^{i-1} e^{i\pi \hat{f}_{\beta}^{\dagger} \hat{f}_{\beta}} \hat{f}_i \hat{f}_j^{\dagger} \prod_{\gamma=1}^{j-1} e^{-i\pi \hat{f}_{\gamma}^{\dagger} \hat{f}_{\gamma}} | \Psi_F \rangle$$

Time evolution

$$|\Psi_F(t)\rangle = e^{-i\hat{H}_F t} |\Psi_F^I\rangle = \prod_{\delta=1}^N \sum_{\sigma=1}^L P_{\sigma\delta}(t)\hat{f}_{\sigma}^{\dagger} |0\rangle$$

One-body density matrix

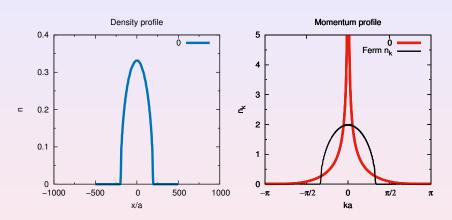
One-body Green's function

$$G_{ij} = \langle \Psi_{HCB} | \hat{\sigma}_i^- \hat{\sigma}_j^+ | \Psi_{HCB} \rangle = \langle \Psi_F | \prod_{\beta=1}^{i-1} e^{i\pi \hat{f}_{\beta}^{\dagger} \hat{f}_{\beta}} \hat{f}_i \hat{f}_j^{\dagger} \prod_{\gamma=1}^{j-1} e^{-i\pi \hat{f}_{\gamma}^{\dagger} \hat{f}_{\gamma}} | \Psi_F \rangle$$

Time evolution

$$|\Psi_F(t)\rangle = e^{-i\hat{H}_F t} |\Psi_F^I\rangle = \prod_{\delta=1}^N \sum_{\sigma=1}^L P_{\sigma\delta}(t) \hat{f}_{\sigma}^{\dagger} |0\rangle$$

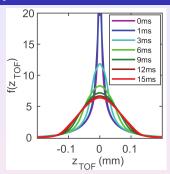
Exact Green's function


$$G_{ij}(t) = \det \left[\left(\mathbf{P}^l(t) \right)^{\dagger} \mathbf{P}^r(t) \right]$$

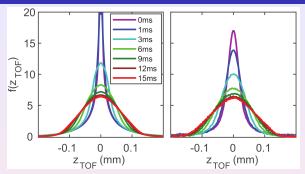
Computation time $\propto L^2 N^3 \to {\rm study}$ very large systems

 ~ 10000 lattice sites, ~ 1000 particles

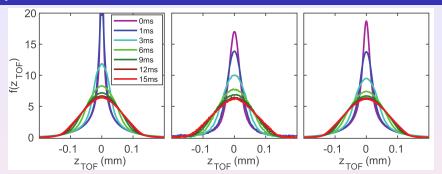
MR and A. Muramatsu, PRA 70, 031603(R) (2004); PRL 93, 230404 (2004).


Dynamical fermionization

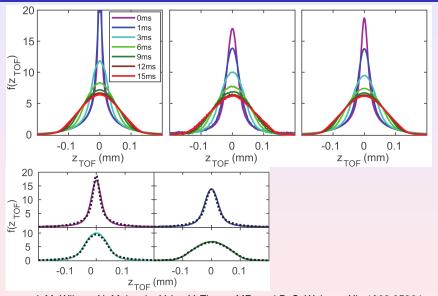
M. Rigol and A. Muramatsu, Phys. Rev. Lett. **94**, 240403 (2005).


"Problem" with TOF: B. Sutherland, Phys. Rev. Lett. 80, 3678 (1998).

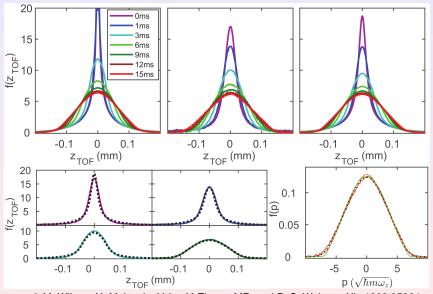
Dynamical fermionization


J. M. Wilson, N. Malvania, Y. Le, Y. Zhang, MR, and D. S. Weiss, arXiv:1908.05364.

Dynamical fermionization


J. M. Wilson, N. Malvania, Y. Le, Y. Zhang, MR, and D. S. Weiss, arXiv:1908.05364.

Dynamical fermionization


J. M. Wilson, N. Malvania, Y. Le, Y. Zhang, MR, and D. S. Weiss, arXiv:1908.05364.

Dynamical fermionization

J. M. Wilson, N. Malvania, Y. Le, Y. Zhang, MR, and D. S. Weiss, arXiv:1908.05364.

Dynamical fermionization

J. M. Wilson, N. Malvania, Y. Le, Y. Zhang, MR, and D. S. Weiss, arXiv:1908.05364.

Finite temperature

One-particle density matrix (grand-canonical ensemble)

$$\rho_{ij} \equiv \frac{1}{Z} \text{Tr} \left\{ \hat{b}_i^\dagger \hat{b}_j e^{-\frac{\hat{H}_{HCB} - \mu \sum_m \hat{b}_m^\dagger \hat{b}_m}{k_B T}} \right\}, \quad Z = \text{Tr} \left\{ e^{-\frac{\hat{H}_{HCB} - \mu \sum_m \hat{b}_m^\dagger \hat{b}_m}{k_B T}} \right\}$$

Finite temperature

One-particle density matrix (grand-canonical ensemble)

$$\rho_{ij} \equiv \frac{1}{Z} \text{Tr} \left\{ \hat{b}_i^{\dagger} \hat{b}_j e^{-\frac{\hat{H}_{HCB} - \mu \sum_m \hat{b}_m^{\dagger} \hat{b}_m}{k_B T}} \right\}, \quad Z = \text{Tr} \left\{ e^{-\frac{\hat{H}_{HCB} - \mu \sum_m \hat{b}_m^{\dagger} \hat{b}_m}{k_B T}} \right\}$$

Mapping to noninteracting fermions

$$\rho_{ij} = \frac{1}{Z} \text{Tr} \left\{ \hat{f}_{i}^{\dagger} \hat{f}_{j} \prod_{k=1}^{j-1} e^{i\pi \hat{f}_{k}^{\dagger} \hat{f}_{k}} e^{-\frac{\hat{H}_{F} - \mu \sum_{m} \hat{f}_{m}^{\dagger} \hat{f}_{m}}{k_{B}T}} \prod_{l=1}^{i-1} e^{-i\pi \hat{f}_{l}^{\dagger} \hat{f}_{l}} \right\}$$

Exact one-particle density matrix

$$\rho_{ij} = \frac{1}{Z} \left\{ \det \left[\mathbf{I} + (\mathbf{I} + \mathbf{A}) \mathbf{O}_1 \mathbf{U} e^{-(\mathbf{E} - \mu \mathbf{I})/k_B T} \mathbf{U}^{\dagger} \mathbf{O}_2 \right] - \det \left[\mathbf{I} + \mathbf{O}_1 \mathbf{U} e^{-(\mathbf{E} - \mu \mathbf{I})/k_B T} \mathbf{U}^{\dagger} \mathbf{O}_2 \right] \right\}$$

Computation time $\sim L^5$: 1000 sites

MR, PRA 72, 063607 (2005)

Finite temperature

One-particle density matrix (grand-canonical ensemble)

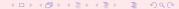
$$\rho_{ij} \equiv \frac{1}{Z} \operatorname{Tr} \left\{ \hat{b}_i^{\dagger} \hat{b}_j e^{-\frac{\hat{H}_{HCB} - \mu \sum_m \hat{b}_m^{\dagger} \hat{b}_m}{k_B T}} \right\}, \quad Z = \operatorname{Tr} \left\{ e^{-\frac{\hat{H}_{HCB} - \mu \sum_m \hat{b}_m^{\dagger} \hat{b}_m}{k_B T}} \right\}$$

Mapping to noninteracting fermions

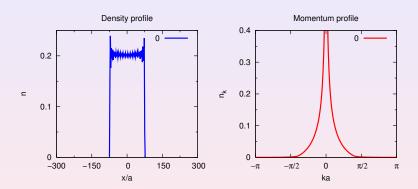
$$\rho_{ij} = \frac{1}{Z} \text{Tr} \left\{ \hat{f}_{i}^{\dagger} \hat{f}_{j} \prod_{k=1}^{j-1} e^{i\pi \hat{f}_{k}^{\dagger} \hat{f}_{k}} e^{-\frac{\hat{H}_{F} - \mu \sum_{m} \hat{f}_{m}^{\dagger} \hat{f}_{m}}{k_{B}T}} \prod_{l=1}^{i-1} e^{-i\pi \hat{f}_{l}^{\dagger} \hat{f}_{l}} \right\}$$

Exact one-particle density matrix

$$\rho_{ij} = \frac{1}{Z} \left\{ \det \left[\mathbf{I} + (\mathbf{I} + \mathbf{A}) \mathbf{O}_1 \mathbf{U} e^{-(\mathbf{E} - \mu \mathbf{I})/k_B T} \mathbf{U}^{\dagger} \mathbf{O}_2 \right] - \det \left[\mathbf{I} + \mathbf{O}_1 \mathbf{U} e^{-(\mathbf{E} - \mu \mathbf{I})/k_B T} \mathbf{U}^{\dagger} \mathbf{O}_2 \right] \right\}$$

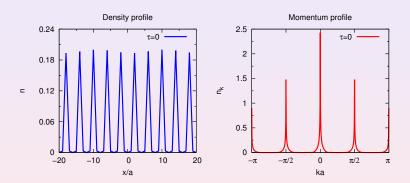

Computation time $\sim L^5$: 1000 sites

MR, PRA 72, 063607 (2005); W. Xu and MR, Phys. Rev. A 95, 033617 (2017).



Outline

- Introduction
 - Experiments with ultracold gases in one dimension
 - Absence of thermalization in 1D?
 - Classical and quantum integrability
 - Hard-core bosons in one-dimensional lattices
- 2 Generalized Gibbs Ensemble (GGE)
 - Maximal entropy and the GGE
- Generalized Thermalization
 - GGE vs quantum mechanics
 - Generalized eigenstate thermalization
- 4 Equilibration: Few-body vs local observables
 - Noninteracting fermions & hard-core anyons
- Summary



Relaxation dynamics in an integrable system

MR, V. Dunjko, V. Yurovsky, and M. Olshanii, PRL 98, 050405 (2007).

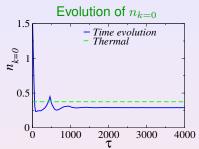
Relaxation dynamics in an integrable system

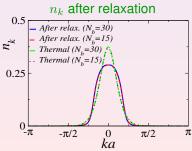
MR, V. Dunjko, V. Yurovsky, and M. Olshanii, PRL 98, 050405 (2007).

Thermal equilibrium

$$\hat{\rho} = Z^{-1} \exp\left[-\left(\hat{H} - \mu \hat{N}\right)/k_B T\right]$$

$$Z = \operatorname{Tr}\left\{\exp\left[-\left(\hat{H} - \mu \hat{N}\right)/k_B T\right]\right\}$$


$$E = \operatorname{Tr}\left\{\hat{H}\hat{\rho}\right\}, \quad N = \operatorname{Tr}\left\{\hat{N}\hat{\rho}\right\}$$
MR, PRA 72, 063607 (2005).

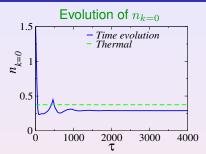

Thermal equilibrium

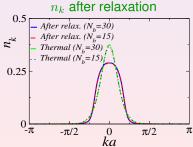
$$\hat{\rho} = Z^{-1} \exp\left[-\left(\hat{H} - \mu \hat{N}\right)/k_B T\right]$$

$$Z = \operatorname{Tr}\left\{\exp\left[-\left(\hat{H} - \mu \hat{N}\right)/k_B T\right]\right\}$$

$$E = \operatorname{Tr}\left\{\hat{H}\hat{\rho}\right\}, \quad N = \operatorname{Tr}\left\{\hat{N}\hat{\rho}\right\}$$
MR, PRA 72, 063607 (2005).

Thermal equilibrium


$$\hat{\rho} = Z^{-1} \exp\left[-\left(\hat{H} - \mu \hat{N}\right)/k_B T\right]$$


$$Z = \operatorname{Tr}\left\{\exp\left[-\left(\hat{H} - \mu \hat{N}\right)/k_B T\right]\right\}$$

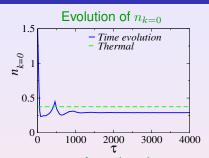
$$E = \operatorname{Tr}\left\{\hat{H}\hat{\rho}\right\}, \quad N = \operatorname{Tr}\left\{\hat{N}\hat{\rho}\right\}$$
MR, PRA **72**, 063607 (2005).

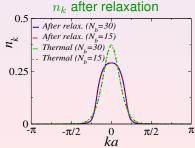
Conserved quantities (underlying noninteracting fermions)

$$\hat{H}_F \hat{\gamma}_m^{f\dagger} |0\rangle = E_m \hat{\gamma}_m^{f\dagger} |0\rangle$$
$$\left\{ \hat{I}_m \right\} = \left\{ \hat{\gamma}_m^{f\dagger} \hat{\gamma}_m^f \right\}$$

Thermal equilibrium

$$\hat{\rho} = Z^{-1} \exp\left[-\left(\hat{H} - \mu \hat{N}\right)/k_B T\right]$$


$$Z = \text{Tr}\left\{\exp\left[-\left(\hat{H} - \mu \hat{N}\right)/k_B T\right]\right\}$$


$$E = \text{Tr}\left\{\hat{H}\hat{\rho}\right\}, \quad N = \text{Tr}\left\{\hat{N}\hat{\rho}\right\}$$

MR, PRA 72, 063607 (2005).

Generalized Gibbs ensemble

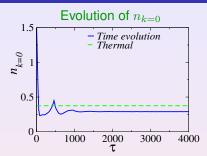
$$\begin{split} \hat{\rho}_{\text{GGE}} &= Z_c^{-1} \exp \left[-\sum_m \lambda_m \hat{I}_m \right] \\ Z_c &= \operatorname{Tr} \left\{ \exp \left[-\sum_m \lambda_m \hat{I}_m \right] \right\} \\ \operatorname{Tr} \left\{ \hat{I}_m \hat{\rho}_{\text{GGE}} \right\} &= \langle \hat{I}_m \rangle_{\tau=0} \end{split}$$

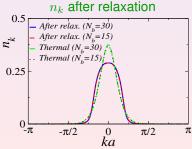
Thermal equilibrium

$$\hat{\rho} = Z^{-1} \exp\left[-\left(\hat{H} - \mu \hat{N}\right)/k_B T\right]$$

$$Z = \text{Tr}\left\{\exp\left[-\left(\hat{H} - \mu \hat{N}\right)/k_B T\right]\right\}$$

$$E = \text{Tr}\left\{\hat{H}\hat{\rho}\right\}, \quad N = \text{Tr}\left\{\hat{N}\hat{\rho}\right\}$$


MR, PRA **72**, 063607 (2005).


The constraints

$$\operatorname{Tr}\left\{\hat{I}_{m}\hat{\rho}_{\mathsf{GGE}}\right\} = \langle\hat{I}_{m}\rangle_{\tau=0}$$

result in

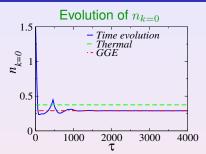
$$\lambda_m = \ln \left[\frac{1 - \langle \hat{I}_m \rangle_{\tau=0}}{\langle \hat{I}_m \rangle_{\tau=0}} \right]$$

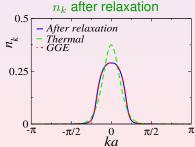
Thermal equilibrium

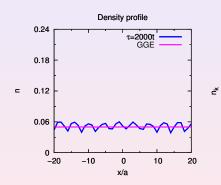
$$\hat{\rho} = Z^{-1} \exp\left[-\left(\hat{H} - \mu \hat{N}\right)/k_B T\right]$$

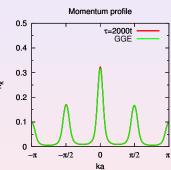
$$Z = \text{Tr}\left\{\exp\left[-\left(\hat{H} - \mu \hat{N}\right)/k_B T\right]\right\}$$

$$E = \text{Tr}\left\{\hat{H}\hat{\rho}\right\}, \quad N = \text{Tr}\left\{\hat{N}\hat{\rho}\right\}$$


MR, PRA **72**, 063607 (2005).


The constraints


$$\operatorname{Tr}\left\{\hat{I}_{m}\hat{\rho}_{\mathsf{GGE}}\right\} = \langle\hat{I}_{m}\rangle_{\tau=0}$$


result in

$$\lambda_m = \ln \left[\frac{1 - \langle \hat{I}_m \rangle_{\tau=0}}{\langle \hat{I}_m \rangle_{\tau=0}} \right]$$

Outline

- Introduction
 - Experiments with ultracold gases in one dimension
 - Absence of thermalization in 1D?
 - Classical and quantum integrability
 - Hard-core bosons in one-dimensional lattices
- 2 Generalized Gibbs Ensemble (GGE)
 - Maximal entropy and the GGE
- Generalized Thermalization
 - GGE vs quantum mechanics
 - Generalized eigenstate thermalization
- 4 Equilibration: Few-body vs local observables
 - Noninteracting fermions & hard-core anyons
- Summary

Exact results from quantum mechanics

If the initial state is not an eigenstate of \widehat{H}

$$|\psi_{\rm ini}\rangle\neq|\alpha\rangle \quad {\rm where} \quad \widehat{H}|\alpha\rangle=E_\alpha|\alpha\rangle \quad {\rm and} \quad E=\langle\psi_{\rm ini}|\widehat{H}|\psi_{\rm ini}\rangle,$$

then observables \hat{O} evolve in time:

$$O(\tau) \equiv \langle \psi(\tau) | \widehat{O} | \psi(\tau) \rangle \quad \text{where} \quad | \psi(\tau) \rangle = e^{-i\widehat{H}\tau} | \psi_{\rm ini} \rangle.$$

Exact results from quantum mechanics

If the initial state is not an eigenstate of \widehat{H}

$$|\psi_{\rm ini}\rangle\neq|\alpha\rangle \quad {\rm where} \quad \widehat{H}|\alpha\rangle=E_\alpha|\alpha\rangle \quad {\rm and} \quad E=\langle\psi_{\rm ini}|\widehat{H}|\psi_{\rm ini}\rangle,$$

then observables \hat{O} evolve in time:

$$O(\tau) \equiv \langle \psi(\tau) | \widehat{O} | \psi(\tau) \rangle \quad \text{where} \quad | \psi(\tau) \rangle = e^{-i\widehat{H}\tau} | \psi_{\rm ini} \rangle.$$

What is it that we call generalized thermalization?

$$O(\tau > \tau^*) \simeq O(I_1, \ldots, I_L).$$

Exact results from quantum mechanics

If the initial state is not an eigenstate of \widehat{H}

$$|\psi_{\rm ini}\rangle\neq |\alpha\rangle \quad {\rm where} \quad \widehat{H}|\alpha\rangle=E_\alpha|\alpha\rangle \quad {\rm and} \quad E=\langle\psi_{\rm ini}|\widehat{H}|\psi_{\rm ini}\rangle,$$

then observables \hat{O} evolve in time:

$$O(\tau) \equiv \langle \psi(\tau) | \widehat{O} | \psi(\tau) \rangle \quad \text{where} \quad | \psi(\tau) \rangle = e^{-i\widehat{H}\tau} | \psi_{\text{ini}} \rangle.$$

What is it that we call generalized thermalization?

$$O(\tau > \tau^*) \simeq O(I_1, \ldots, I_L).$$

One can rewrite

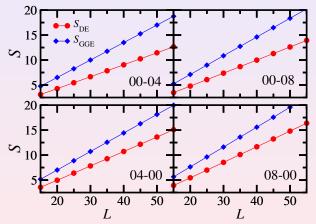
$$O(\tau) = \sum_{\alpha,\beta} C_{\alpha}^{\star} C_{\beta} e^{i(E_{\alpha} - E_{\beta})\tau} O_{\alpha\beta} \quad \text{using} \quad |\psi_{\text{ini}}\rangle = \sum_{\alpha} C_{\alpha} |\alpha\rangle.$$

Taking the infinite time average (diagonal ensemble $\hat{\rho}_{DE} \equiv \sum_{\alpha} |C_{\alpha}|^2 |\alpha\rangle\langle\alpha|$)

$$\overline{O(\tau)} = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} d\tau' \langle \Psi(\tau') | \hat{O} | \Psi(\tau') \rangle_{=}^{?} \sum_{\alpha} |C_{\alpha}|^2 O_{\alpha\alpha} \equiv \langle \hat{O} \rangle_{\text{DE}},$$

which depends on the initial conditions through $C_{\alpha} = \langle \alpha | \psi_{\text{ini}} \rangle$.

Outline


- Introduction
 - Experiments with ultracold gases in one dimension
 - Absence of thermalization in 1D?
 - Classical and quantum integrability
 - Hard-core bosons in one-dimensional lattices
- 2 Generalized Gibbs Ensemble (GGE)
 - Maximal entropy and the GGE
- Generalized Thermalization
 - GGE vs quantum mechanics
 - Generalized eigenstate thermalization
- Equilibration: Few-body vs local observables
 - Noninteracting fermions & hard-core anyons
- 5 Summary

$$S_{\mathsf{DE}} = -\mathsf{Tr}[\hat{\rho}_{\mathsf{DE}} \ln \hat{\rho}_{\mathsf{DE}}], \qquad S_{\mathsf{GGE}} = -\mathsf{Tr}[\hat{\rho}_{\mathsf{GGE}} \ln \hat{\rho}_{\mathsf{GGE}}]$$

$$S_{\mathsf{DE}} = -\mathsf{Tr}[\hat{\rho}_{\mathsf{DE}} \ln \hat{\rho}_{\mathsf{DE}}], \qquad S_{\mathsf{GGE}} = -\mathsf{Tr}[\hat{\rho}_{\mathsf{GGE}} \ln \hat{\rho}_{\mathsf{GGE}}]$$

Entropies after quenches in a superlattice potential

 S_{DE} & S_{GGE} are extensive but different! Santos, Polkovnikov, and MR, Phys. Rev. Lett. **107**, 040601 (2011).

$$S_{\mathsf{DE}} = -\mathsf{Tr}[\hat{\rho}_{\mathsf{DE}} \ln \hat{\rho}_{\mathsf{DE}}], \qquad S_{\mathsf{GGE}} = -\mathsf{Tr}[\hat{\rho}_{\mathsf{GGE}} \ln \hat{\rho}_{\mathsf{GGE}}]$$

The transverse-field Ising model

$$\hat{H}_{TFIM} = -\sum_{j} \hat{S}_{j}^{x} \hat{S}_{j+1}^{x} - h \sum_{j} \hat{S}_{j}^{z}$$

Entropies after quenches in the translationally invariant case

$$S_{\mathsf{GGE}} = 2S_{\mathsf{DE}}$$

Gurarie, J. Stat. Mech. P02014 (2013); Kormos, Bucciantini & Calabrese, EPL 107, 40002 (2014).

$$S_{\mathsf{DE}} = -\mathsf{Tr}[\hat{\rho}_{\mathsf{DE}} \ln \hat{\rho}_{\mathsf{DE}}], \qquad S_{\mathsf{GGE}} = -\mathsf{Tr}[\hat{\rho}_{\mathsf{GGE}} \ln \hat{\rho}_{\mathsf{GGE}}]$$

The transverse-field Ising model

$$\hat{H}_{TFIM} = -\sum_{j} \hat{S}_{j}^{x} \hat{S}_{j+1}^{x} - h \sum_{j} \hat{S}_{j}^{z}$$

Entropies after quenches in the translationally invariant case

$$S_{\mathsf{GGE}} = 2S_{\mathsf{DE}}$$

Gurarie, J. Stat. Mech. P02014 (2013); Kormos, Bucciantini & Calabrese, EPL 107, 40002 (2014).

Spin-1/2 XXZ chain: Piroli, Vernier, Calabrese, and MR, PRB 95, 054308 (2017); Alba and Pasquale, PRB 96, 115421 (2017).

$$S_{\mathsf{DE}} = -\mathsf{Tr}[\hat{\rho}_{\mathsf{DE}} \ln \hat{\rho}_{\mathsf{DE}}], \qquad S_{\mathsf{GGE}} = -\mathsf{Tr}[\hat{\rho}_{\mathsf{GGE}} \ln \hat{\rho}_{\mathsf{GGE}}]$$

The transverse-field Ising model

$$\hat{H}_{\text{TFIM}} = -\sum_{j} \hat{S}_{j}^{x} \hat{S}_{j+1}^{x} - h \sum_{j} \hat{S}_{j}^{z}$$

Entropies after quenches in the translationally invariant case

$$S_{\mathsf{GGE}} = 2S_{\mathsf{DE}}$$

Gurarie, J. Stat. Mech. P02014 (2013); Kormos, Bucciantini & Calabrese, EPL 107, 40002 (2014).

Spin-1/2 XXZ chain: Piroli, Vernier, Calabrese, and MR, PRB 95, 054308 (2017);
Alba and Pasquale, PRB 96, 115421 (2017).

Why does the GGE work?

$$S_{\mathsf{DE}} = -\mathsf{Tr}[\hat{\rho}_{\mathsf{DE}} \ln \hat{\rho}_{\mathsf{DE}}], \qquad S_{\mathsf{GGE}} = -\mathsf{Tr}[\hat{\rho}_{\mathsf{GGE}} \ln \hat{\rho}_{\mathsf{GGE}}]$$

The transverse-field Ising model

$$\hat{H}_{\text{TFIM}} = -\sum_{j} \hat{S}_{j}^{x} \hat{S}_{j+1}^{x} - h \sum_{j} \hat{S}_{j}^{z}$$

Entropies after quenches in the translationally invariant case

$$S_{\mathsf{GGE}} = 2S_{\mathsf{DE}}$$

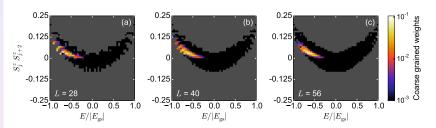
Gurarie, J. Stat. Mech. P02014 (2013); Kormos, Bucciantini & Calabrese, EPL 107, 40002 (2014).

Spin-1/2 XXZ chain: Piroli, Vernier, Calabrese, and MR, PRB 95, 054308 (2017);
Alba and Pasquale, PRB 96, 115421 (2017).

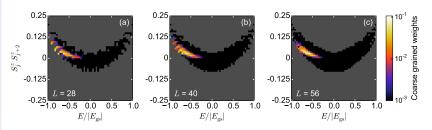
Why does the GGE work? Generalized eigenstate thermalization:

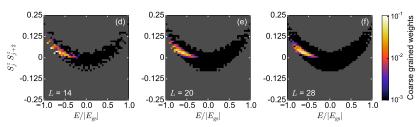
A. C. Cassidy, C. W. Clark, and MR, PRL 106, 140405 (2011).

L. Vidmar and MR, J. Stat. Mech. 064007 (2016).


Behind generalized thermodynamic Bethe ansatz approaches:

J.-S. Caux and F. H. L. Essler, PRL 110, 257203 (2013).


B Pozsgay, J. Stat. Mech. P09026 (2014).


Weight of eigenstate expectation values after equilibration

Weight of eigenstate expectation values after equilibration

Weight of eigenstate expectation values in the GGE

L. Vidmar and MR, J. Stat. Mech. 064007 (2016).

Variance of observable $\hat{\mathcal{O}}$ after quenches $h_0 \to h$ (ENS = DE, GGE)

$$\Sigma_{\hat{\mathcal{O}},\mathsf{ENS}}^2 = \sum_n \rho_n^{\mathsf{ENS}} \langle n | \hat{\mathcal{O}} | n \rangle^2 - \left(\sum_n \rho_n^{\mathsf{ENS}} \langle n | \hat{\mathcal{O}} | n \rangle \right)^2$$

Variance of observable $\hat{\mathcal{O}}$ after quenches $h_0 \to h$ (ENS = DE, GGE)

$$\Sigma_{\hat{\mathcal{O}}, \mathsf{ENS}}^2 = \sum_n \rho_n^{\mathsf{ENS}} \langle n | \hat{\mathcal{O}} | n \rangle^2 - \left(\sum_n \rho_n^{\mathsf{ENS}} \langle n | \hat{\mathcal{O}} | n \rangle \right)^2$$

For all local observables for which $\Sigma^2_{\hat{\mathcal{O}}, \mathrm{ENS}}$ was calculated analytically

$$rac{\Sigma_{\hat{\mathcal{O}},\mathrm{DE}}^2}{\Sigma_{\hat{\mathcal{O}},\mathrm{GGE}}^2} = 2, \qquad ext{and} \qquad \Sigma_{\hat{\mathcal{O}},\mathrm{ENS}} \sim rac{1}{\sqrt{L}}$$

Variance of observable $\hat{\mathcal{O}}$ after quenches $h_0 \to h$ (ENS = DE, GGE)

$$\Sigma_{\hat{\mathcal{O}}, \mathsf{ENS}}^2 = \sum_n \rho_n^{\mathsf{ENS}} \langle n | \hat{\mathcal{O}} | n \rangle^2 - \left(\sum_n \rho_n^{\mathsf{ENS}} \langle n | \hat{\mathcal{O}} | n \rangle \right)^2$$

For all local observables for which $\Sigma^2_{\hat{\mathcal{O}}, \mathrm{ENS}}$ was calculated analytically

$$rac{\Sigma_{\hat{\mathcal{O}},\mathrm{DE}}^2}{\Sigma_{\hat{\mathcal{O}},\mathrm{GGE}}^2} = 2, \qquad ext{and} \qquad \Sigma_{\hat{\mathcal{O}},\mathrm{ENS}} \sim rac{1}{\sqrt{L}}$$

For example, for quenches across the critical field:

$$\Sigma_{\hat{S}_{j}^{x}\hat{S}_{j+1}^{x},\mathrm{DE}}^{2} = \begin{cases} \frac{1}{64L} \left[1 + h_{0}^{2} - \frac{2h_{0}}{h} \right] & \text{if} \quad h_{0} < 1, \ h > 1 \\ \\ \frac{1}{64L} \left[4 - 3h^{2} - \left(\frac{h}{h_{0}} \right) (4 - 2h^{2}) + \left(\frac{h}{h_{0}} \right)^{2} \right] & \text{if} \quad h_{0} > 1, \ h < 1 \end{cases}$$

L. Vidmar and MR, J. Stat. Mech. 064007 (2016).

Outline

- Introduction
 - Experiments with ultracold gases in one dimension
 - Absence of thermalization in 1D?
 - Classical and quantum integrability
 - Hard-core bosons in one-dimensional lattices
- 2 Generalized Gibbs Ensemble (GGE)
 - Maximal entropy and the GGE
- Generalized Thermalization
 - GGE vs quantum mechanics
 - Generalized eigenstate thermalization
- 4 Equilibration: Few-body vs local observables
 - Noninteracting fermions & hard-core anyons
- 5 Summary

Time averages vs instantaneous values

Noninteracting fermions

• Time average of one-body observables is always GGE:

$$\overline{\sigma(\tau)} = \lim_{\tau' \to \infty} \frac{1}{\tau'} \int_0^{\tau'} d\tau \sum_{s,s'} c_{ss'} e^{-i(e_s - e_{s'})\tau} |s\rangle \langle s'| = \sum_s c_{ss} |s\rangle \langle s|.$$

By construction, $ho_{\rm GGE}$ is diagonal with ${\rm tr}[\hat{
ho}_{\rm GGE}\,\hat{I}_s]=c_{ss}.$

K. He, L. F. Santos, T. M. Wright, and MR, PRA 87, 063637 (2013).

Time averages vs instantaneous values

Noninteracting fermions

• Time average of one-body observables is always GGE:

$$\overline{\sigma(\tau)} = \lim_{\tau' \to \infty} \frac{1}{\tau'} \int_0^{\tau'} d\tau \sum_{s,s'} c_{ss'} e^{-i(e_s - e_{s'})\tau} |s\rangle \langle s'| = \sum_s c_{ss} |s\rangle \langle s|.$$

By construction, $ho_{\rm GGE}$ is diagonal with ${\rm tr}[\hat{
ho}_{\rm GGE}\,\hat{I}_s]=c_{ss}.$

K. He, L. F. Santos, T. M. Wright, and MR, PRA 87, 063637 (2013).

Time independence of the trace distance

Trace distance in the one-body sector

$$\mathcal{D}\left[\sigma(\tau), \sigma_{\text{GGE}}\right] = \frac{1}{2N} \text{Tr}\left\{\sqrt{\left(\sigma(\tau) - \sigma_{\text{GGE}}\right)^2}\right\}$$

where $\operatorname{Tr}\{\sigma(\tau)\} = \operatorname{Tr}\{\sigma_{\rm GGE}\} = N$ (hence the 1/N factor in \mathcal{D}).

• $\sigma(\tau)=U(\tau)\sigma(0)U^{\dagger}(\tau)$ and $\sigma_{\rm GGE}$ is diagonal in the one-particle eigenbasis

$$\mathcal{D}[\sigma(\tau),\sigma_{\mathrm{GGE}}] = \mathcal{D}[U(\tau)\sigma(0)U^{\dagger}(\tau),U(\tau)\sigma_{\mathrm{GGE}}U^{\dagger}(\tau)] = \mathcal{D}[\sigma(0),\sigma_{\mathrm{GGE}}].$$

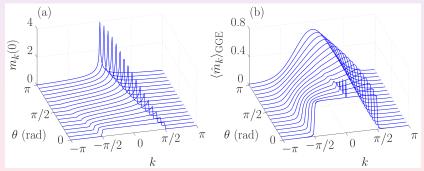
• $\sigma(\tau)$ does not equilibrate.

Hamiltonian and quenches

Hard-core anyon Hamiltonian in 1D

$$\begin{split} \hat{H} &= -J \sum_{j=1}^{L-1} \left(\hat{a}_j^\dagger \hat{a}_{j+1} + \text{H.c.} \right), \\ \text{where } \hat{a}_j \hat{a}_k^\dagger &= \delta_{jk} - e^{-i\theta \operatorname{sgn}(j-k)} \hat{a}_k^\dagger \hat{a}_j \text{ and } \hat{a}_j \hat{a}_k = -e^{i\theta \operatorname{sgn}(j-k)} \hat{a}_k \hat{a}_j. \end{split}$$

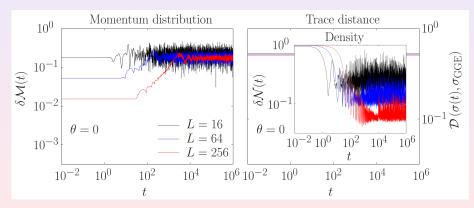
T. M. Wright, MR, M. J. Davis, and K. V. Kheruntsyan, PRL 113, 050601 (2014).

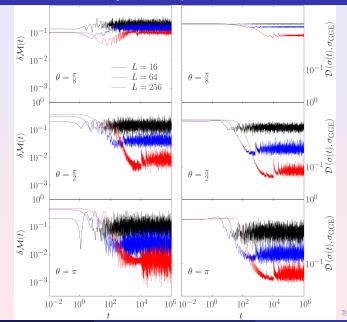

Hamiltonian and quenches

Hard-core anyon Hamiltonian in 1D

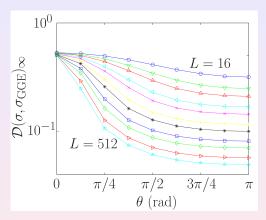
$$\hat{H} = -J \sum_{j=1}^{L-1} \left(\hat{a}_{j}^{\dagger} \hat{a}_{j+1} + \text{H.c.} \right),$$

where
$$\hat{a}_j\hat{a}_k^\dagger=\delta_{jk}-e^{-i\theta\operatorname{sgn}(j-k)}\hat{a}_k^\dagger\hat{a}_j$$
 and $\hat{a}_j\hat{a}_k=-e^{i\theta\operatorname{sgn}(j-k)}\hat{a}_k\hat{a}_j$.

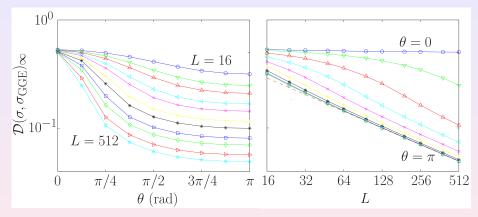

Quench: Open box with $L=2N \rightarrow L=4N$


T. M. Wright, MR, M. J. Davis, and K. V. Kheruntsyan, PRL 113, 050601 (2014).

Dynamics after the quench (trace distance vs m_k/n_i)


$$\delta \mathcal{M}(t) = \left(\sum_{k} |m_{k}(t) - \langle \hat{m}_{k} \rangle_{\text{GGE}}|\right) / \sum_{k} \langle \hat{m}_{k} \rangle_{\text{GGE}}$$
$$\delta \mathcal{N}(t) = \left(\sum_{i} |n_{i}(t) - \langle \hat{n}_{i} \rangle_{\text{GGE}}|\right) / \sum_{i} \langle \hat{n}_{i} \rangle_{\text{GGE}}$$

Dynamics after the quench (trace distance vs m_k)



Scaling of the trace distances

- For $\theta \neq 0$: $\mathcal{D}[\sigma, \sigma_{\text{GGE}}]_{\infty} \propto 1/\sqrt{L}$
- So long as the system is interacting the entire one-body density matrix relaxes to the GGE prediction. All one-body observables, not only $\{n_i\}$ and $\{m_k\}$, are described by the GGE.

Scaling of the trace distances

- For $\theta \neq 0$: $\mathcal{D}[\sigma, \sigma_{\text{GGE}}]_{\infty} \propto 1/\sqrt{L}$
- So long as the system is interacting the entire one-body density matrix relaxes to the GGE prediction. All one-body observables, not only $\{n_i\}$ and $\{m_k\}$, are described by the GGE.

- Few-body observables in integrable systems equilibrate
 - ★ Recurrences occur but most of the time observables are described by the diagonal ensemble

- Few-body observables in integrable systems equilibrate
 - ★ Recurrences occur but most of the time observables are described by the diagonal ensemble
- After equilibration, observables can be described by a generalized Gibbs ensemble (GGE), which takes into account the constraints imposed by the conserved quantities
 - ★ The number of constraints increases polynomially with the system size, while the Hilbert space increases exponentially with the system size

- Few-body observables in integrable systems equilibrate
 - ★ Recurrences occur but most of the time observables are described by the diagonal ensemble
- After equilibration, observables can be described by a generalized Gibbs ensemble (GGE), which takes into account the constraints imposed by the conserved quantities
 - ★ The number of constraints increases polynomially with the system size, while the Hilbert space increases exponentially with the system size
- The GGE works because of an underlying generalized eigenstate thermalization (expectation values of few-body observables do not change between eigenstates of the Hamiltonian with similar distributions of conserved quantities)
 - ★ Microcanonical discussion: Cassidy, Clark & MR, PRL 106, 140405 (2011).

- Few-body observables in integrable systems equilibrate
 - ★ Recurrences occur but most of the time observables are described by the diagonal ensemble
- After equilibration, observables can be described by a generalized Gibbs ensemble (GGE), which takes into account the constraints imposed by the conserved quantities
 - ★ The number of constraints increases polynomially with the system size, while the Hilbert space increases exponentially with the system size
- The GGE works because of an underlying generalized eigenstate thermalization (expectation values of few-body observables do not change between eigenstates of the Hamiltonian with similar distributions of conserved quantities)
 - ★ Microcanonical discussion: Cassidy, Clark & MR, PRL **106**, 140405 (2011).
- In quenches involving hard-core anyons, the entire one-body density matrix equilibrates to the GGE prediction with the singular exception of free fermions
 - \bigstar The effective bath provided by the other particles (for $\theta \neq 0$) makes relaxation to the GGE possible. No need of tracing out a spatial domain

Collaborators

- Matthew J. Davis (Queensland)
- Vanja Dunjko (U Mass Boston)
- Karén V. Kheruntsyan (Queensland)
- Alejandro Muramatsu (Buenos Aires 1951- Stuttgart 2015)
- Maxim Olshanii (U Mass Boston)
- Anatoli Polkovnikov (Boston U)

- Lea F. Santos (Yeshiva U)
- Lev Vidmar (Jožef Stefan Institute)
- David Weiss & group (Penn State)
- Tod W. Wright (Queensland)
- Vladimir Yurovsky (Tel Aviv U)
- Yicheng Zhang (Penn State)

Supported by:

