

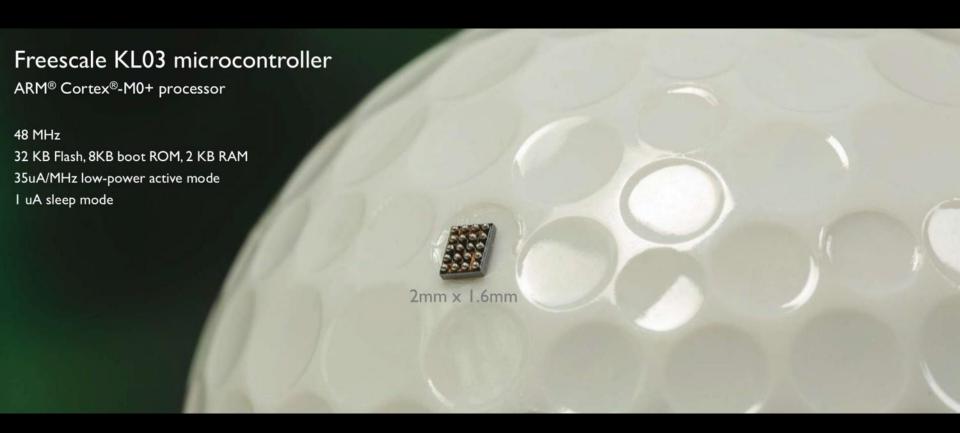
The Edge of Machine Learning

Resource-efficient ML in 2 KB RAM for the Internet of Things

Prateek Jain Microsoft Research India

D. Dennis, P. Jain, A. Kusupati, N. Natarajan, S. Patil, R. Sharma, H. Simhadri & M. Varma

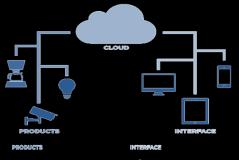
Resource-constrained IoT Devices



ARM Cortex M0+ at 48 MHz & 35 μ A/MHz with 2 KB RAM & 32 KB read only Flash

The Internet of Things

Smart City

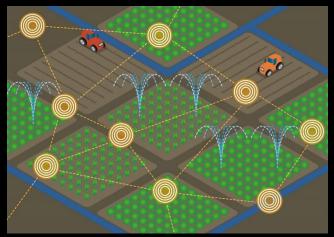


Smart Appliances

Intelligent IoT Devices

• Intelligent IoT devices can help deal with latency, bandwidth, privacy and energy concerns

Low latency brain implants



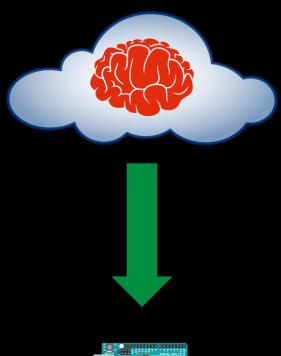
Smart agriculture for disconnected farms

Privacy preserving smart glasses

Energy efficient smart forks

Algorithms for the IDE - Objectives

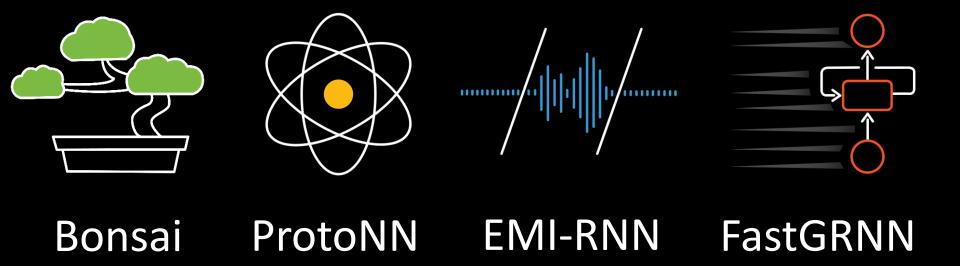
- To build a library of machine learning algorithms
 - Which can be trained on the cloud
 - But which will run on tiny IoT devices



Arduino Uno

Microsoft's EdgeML Library

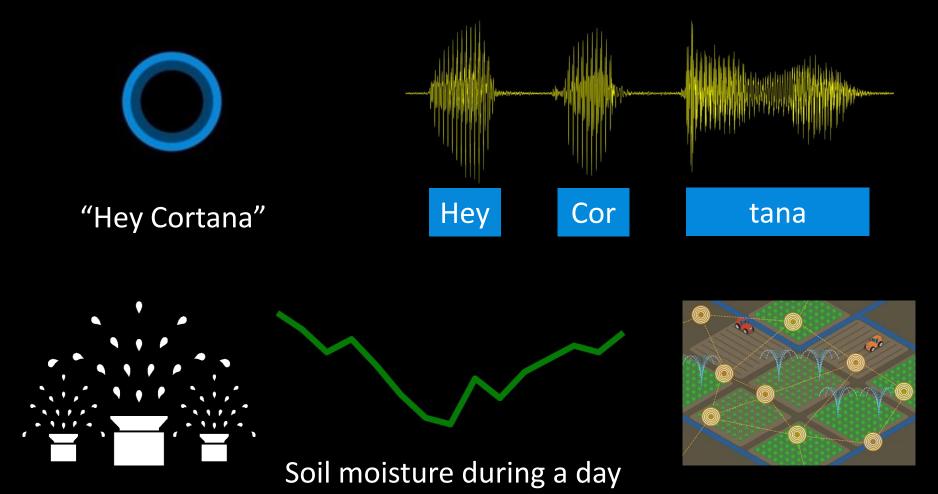
• Compact tree, kNN and RNN algorithms for classification, regression, ranking, time series, etc.



https://github.com/Microsoft/EdgeML

Time series data

• Time series is ubiquitous in most of the IoT devices as the sensory data is often modelled as Time series.



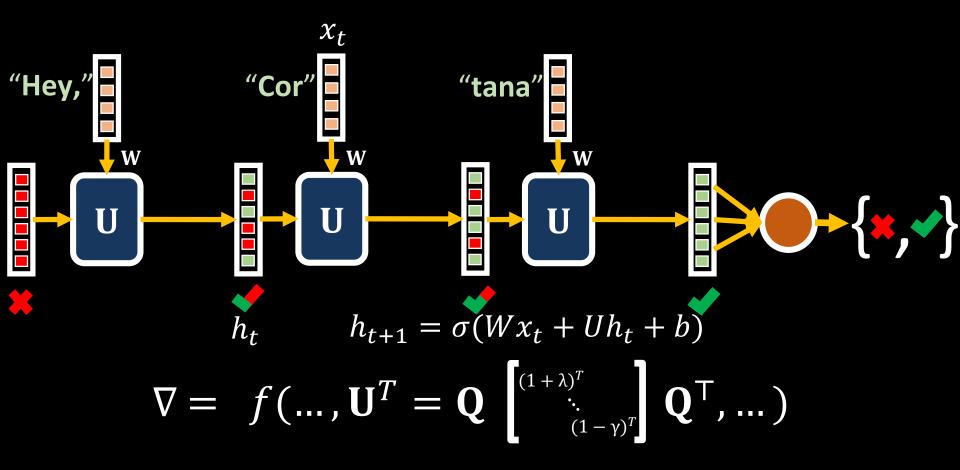
FastGRNN

A Fast, Accurate, Stable & Tiny (Kilobyte Sized) Gated RNN

A. Kusupati (MSRI), M. Singh (IITD), K. Bhatia (Berkeley), A. Kumar (Berkeley), P. Jain (MSRI) & M. Varma (MSRI)

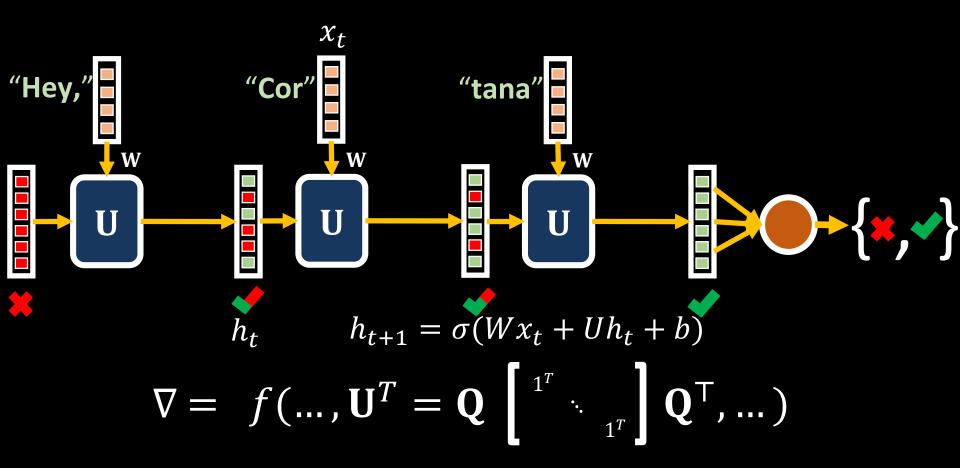
Recurrent Neural Networks (RNNs)

- State-of-the-art for analyzing sequences & time series
- Training is unstable due to exploding & vanishing gradients



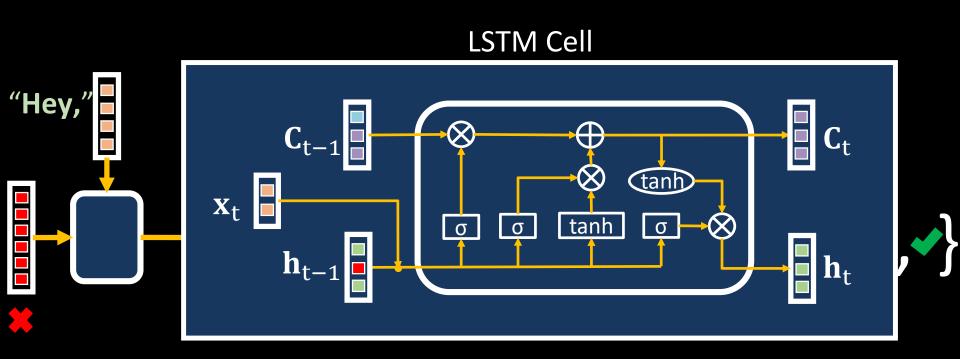
Unitary RNNs – uRNN, SpectralRNN, ...

- Unitary RNNs force all the eigenvalues of ${f U}$ to be pprox 1
- Unfortunately, they are expensive to train & lack accuracy



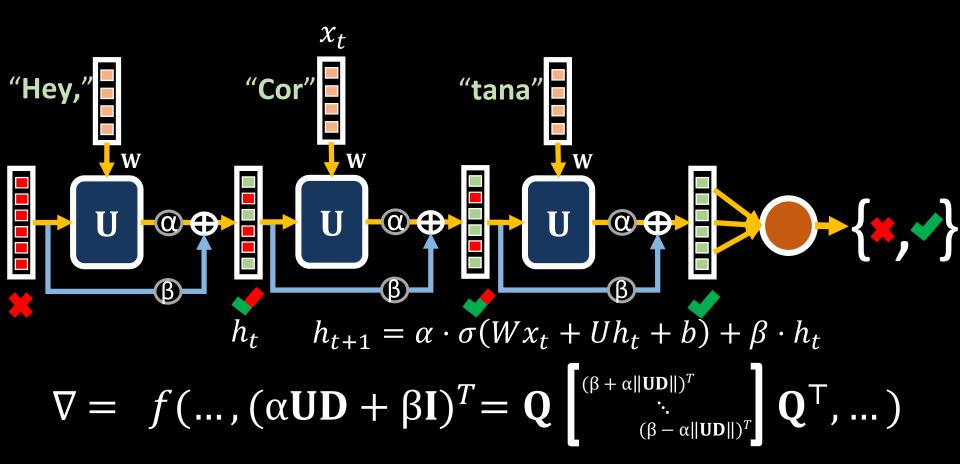
Gated RNNs – LSTM, GRU, ...

- Add extra parameters to stabilize training
- Have increased prediction costs on IoT microcontrollers
- Have intuitive explanations but lack formal guarantees



FastRNN

- Provably stable training with 2 additional scalars
- Accuracy: RNN << Unitary RNNs < FastRNN < Gated RNNs



Theorems

Convergence Bound:

- If: $\alpha \approx O(1/T)$, $\beta = 1 \alpha$
- Convergence to station point in $O(1/\epsilon^2)$ iterations
 - Independent of T!

Generalization Error Bound:

- $O(\frac{1}{\sqrt{n}})$, where $\alpha \approx O(1/T)$, $\beta = 1 \alpha$
 - Independent of T!

Similar analysis in each case shows exponential bounds (in T) for standard RNN

Theorems

Convergence to stationary point:

$$\mathrm{E}\left[\left\|\nabla_{\boldsymbol{\theta}}L(\widehat{\boldsymbol{\theta}})\right\|_{2}^{2}\right] \leq \frac{O(\alpha\mathrm{T})L(\boldsymbol{\theta}_{0})}{N} + \left(\overline{D} + \frac{4R_{\mathbf{W}}R_{\mathbf{U}}R_{\mathbf{v}}}{\overline{D}}\right)\frac{O(\alpha\mathrm{T})}{\sqrt{N}}$$

Generalization Error Bound:

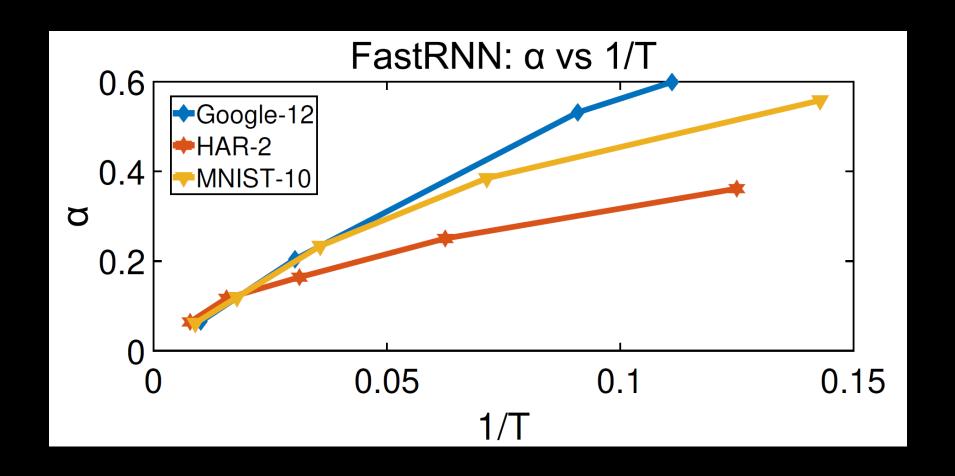
$$\varepsilon \le C \frac{O(\alpha T)}{\sqrt{n}} + B \sqrt{\frac{\ln\left(\frac{1}{\delta}\right)}{n}}$$

$$\alpha \approx O\left(\frac{1}{T}\right)$$
, $\beta = 1 - \alpha \Rightarrow$ independent of $T!!!$

N is # SGD iterations and n is # datapoints.

 $\overline{D} \geq 0$ helps in choosing right learning rate. $R_{\mathbf{X}} = max_{\mathbf{X}} \|\mathbf{X}\|_{\mathrm{F}}$.

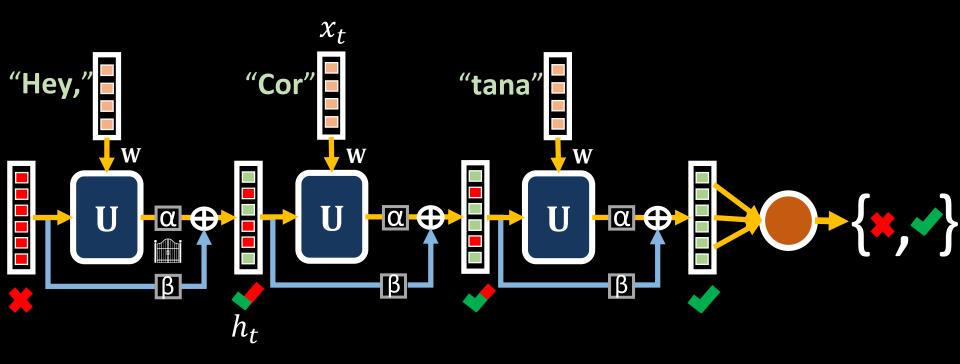
FastGRNN: α ?



FastGRNN

- Extend $\alpha \& \beta$ from scalars to vector gates
- Accuracy: RNN

 Constant
 Control
 <l

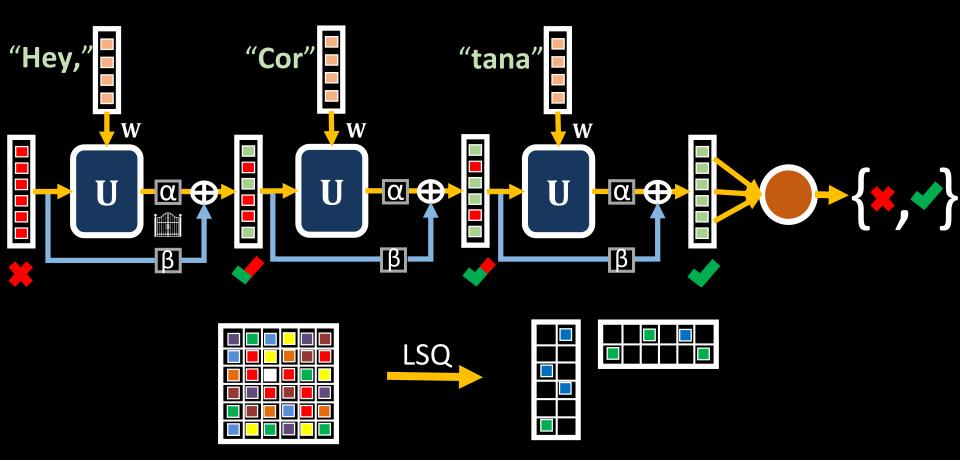


$$h_{t+1} = \alpha \odot \sigma(Wx_t + Uh_t + b) + \beta \odot h_t$$

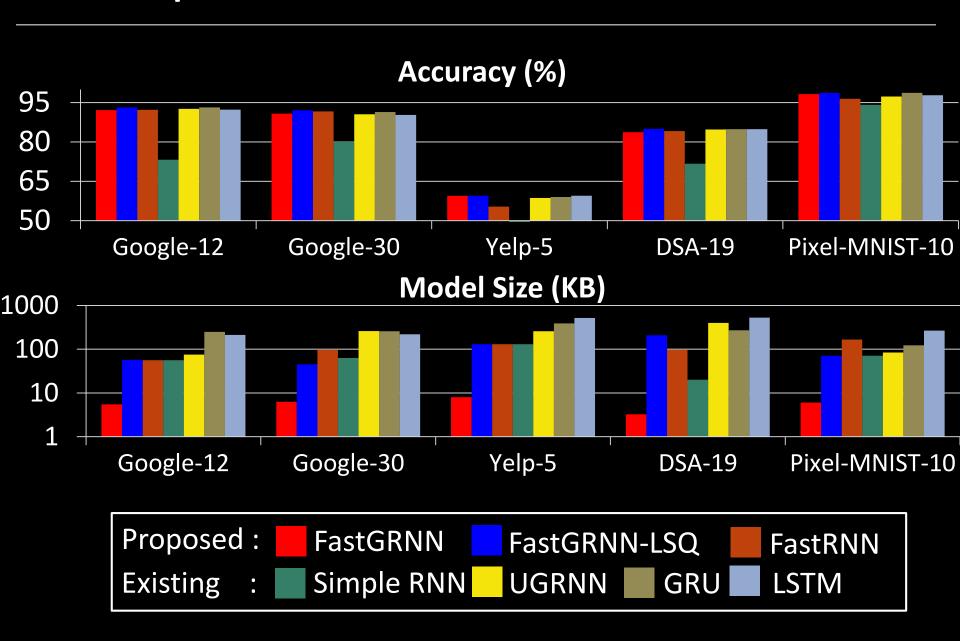
$$\alpha = \tanh(Wx_t + Uh_t + b_\alpha), \beta = 1 - \alpha$$

FastGRNN

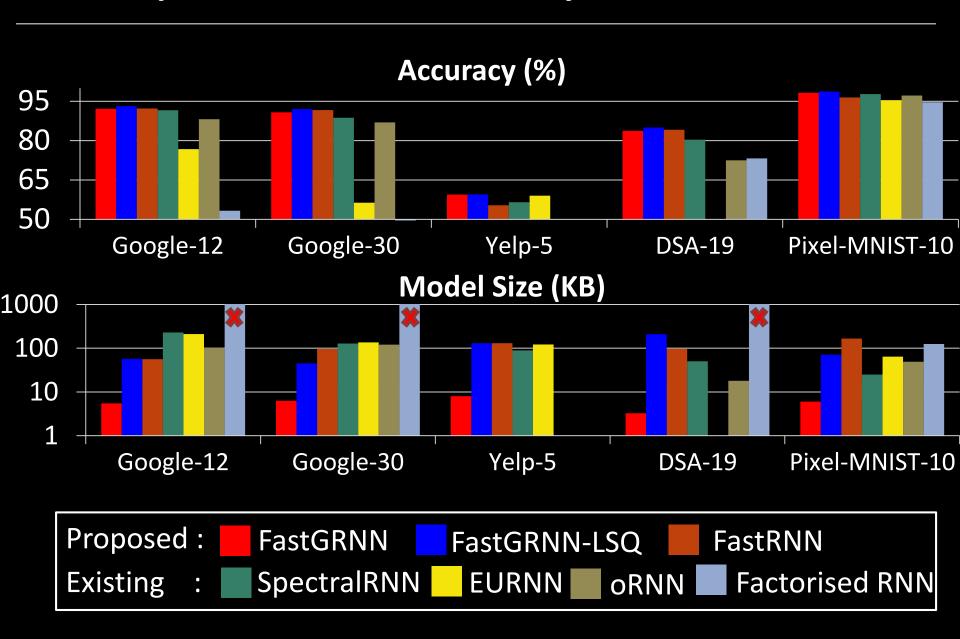
- Make U and W low-rank (L), sparse (S) and quantized (Q)
- Model Size: FastGRNN ≪ RNN ≈ Unitary RNNs < Gated RNNs



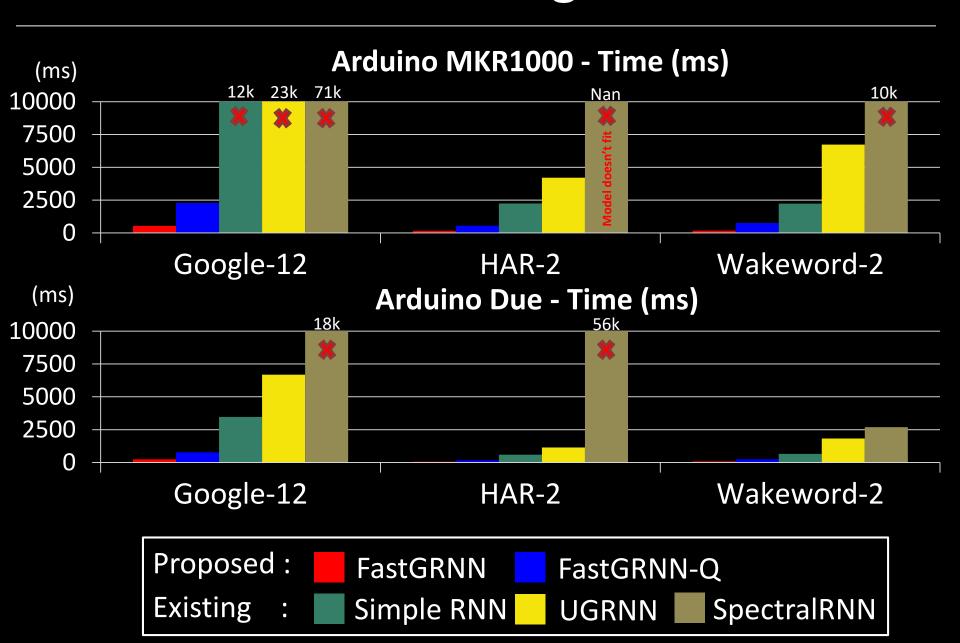
Comparison to Gated Architectures



Comparison to Unitary Architectures



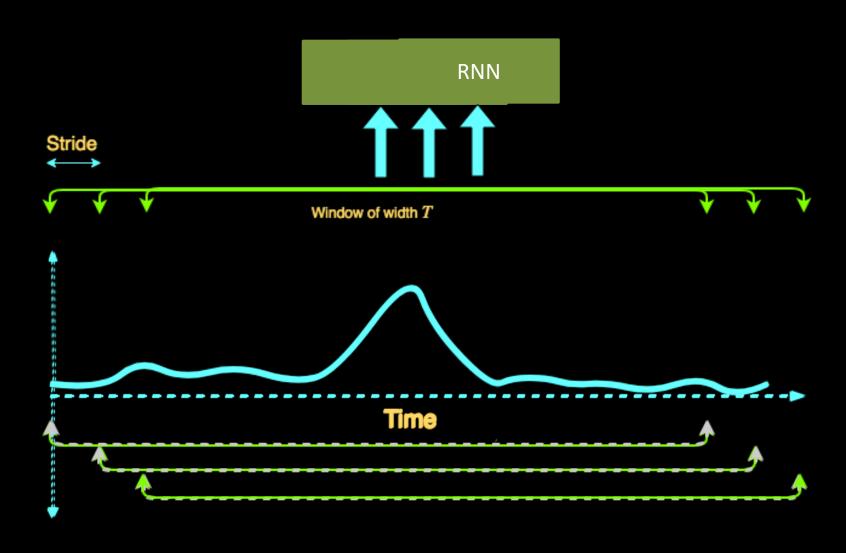
Prediction on Edge Devices



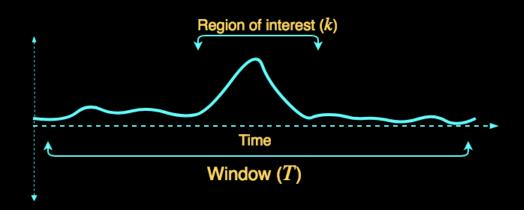
EMIRNN

Don Dennis (MSRI), Chirag P (MSRI), Harsha Simhadri (MSRI), P. Jain (MSRI)

Time-series Analysis: Sliding Windows



Class Signatures are Tiny

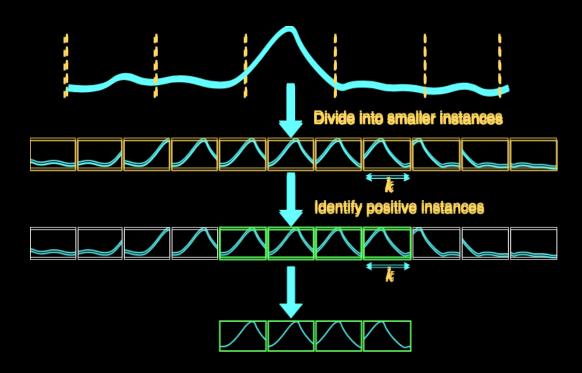


Typically $k \ll T$, i.e., actual signature of event is tiny

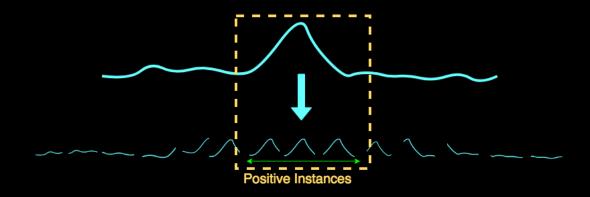
- Audio clips: 2-5secs but "Hey Cortana" typically spoken in <1sec
- Unnecessarily large T --- longer prediction time, lag
- Predictors must recognize signatures with different offsets
 - *requires larger* predictors.

EMI-RNN: Approach

- STEP 1: Divide X into smaller instances.
- STEP 2: Identify positive instances. Discard negative (noise) instances.
- STEP 3: Use these instances to train a smaller classifier.



EMI-RNN: Approach



Exploit temporal locality with MIL/Robust learning techniques

Property 1: Positive instances are clustered together.

Property 2: Number of positive instances can be estimated.

Two phase algorithm – alternates between identifying positive instances and training on the positive instances.

• Step 1:

```
Assign labels
Instance = source
data
```


• Step 1:

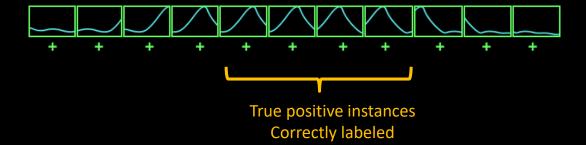
Assign labels
Instance = source
data

• Step 1:

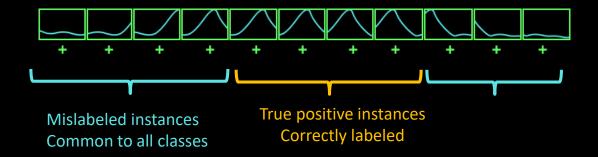
Assign labels
Instance = source
data

• Step 2:

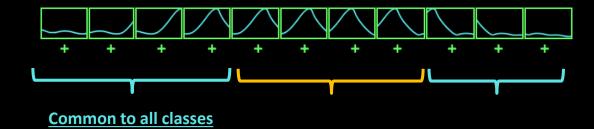
Train classifier on this data



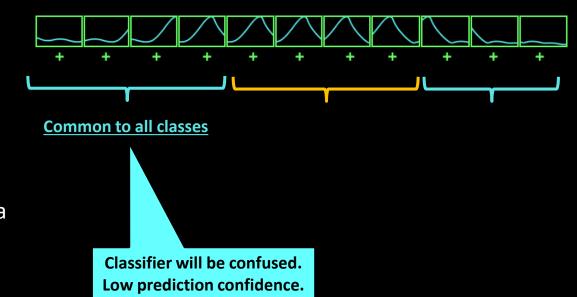
Step 2: Train classifier on this data



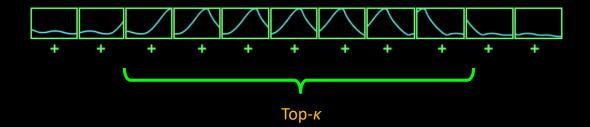
• Step 2: Train classifier on this data



 Step 2: Train classifier on this data



 Step 2: Train classifier on this data

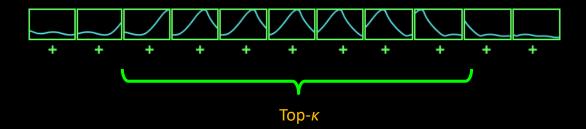


• Step 3:

Wherever possible, use classifier's prediction score to pick top- κ

Should satisfy property 1 and property 2

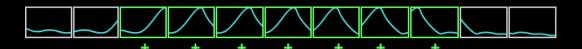
EMI-RNN: Algorithm



• Step 3:

Wherever possible, use classifier's prediction score to pick top- κ

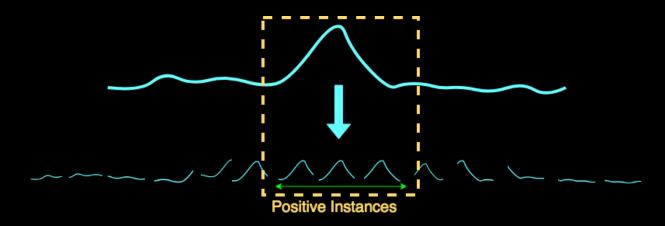
Should satisfy property 1 and property 2



EMI-RNN: Algorithm

Step 4: Repeat with new labels

EMI-RNN: Analysis?



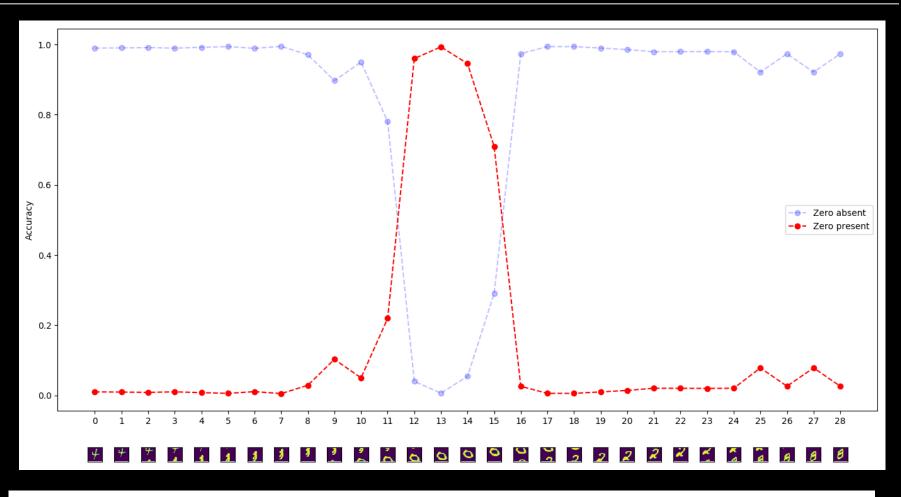
Theorem: In $\log n$ iterations, the true positive set

$$S_* = \{(i, \tau), \bar{y}_{i, \tau}^P = +1\}$$

will be recovered exactly, with high probability.

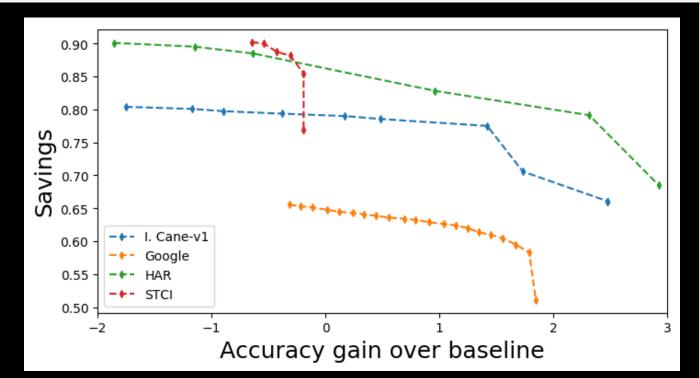
Problem setting is non-homogeneous and interesting. First such result! Details in paper.

EMI-RNN: Empirical Results



EMI-RNN: Empirical Results

Dataset	Accuracy Gain (over Baseline LSTMs)	Prediction Time Reduction
HAR	0.8%	8x
Sports	2.0%	9x
Google	1.5%	8x
Interactive Cane	1.0%	45x



Deployment on tiny-devices?

- Deployment on Pi0 device: audio keyword detection
 - Total prediction budget: 22.5ms
 - Baseline LSTM prediction time: 226ms (with 91% accuracy)
 - Our method: 14.9ms (with 94% accuracy)

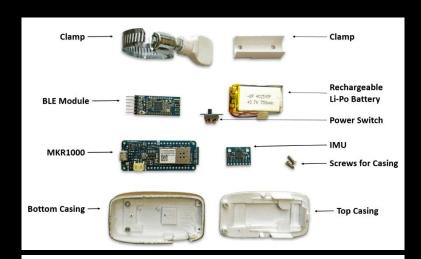
Demos: Algorithms in real-time

Interactive Cane / GesturePod:

- 5-class gesture recognition on M0+ microcontroller
- 6KB ProtoNN model

Wakeword detection

- Detect "Hey Cortana" on Raspberry Pi0
- Process 800millisecond audioframe in <10ms



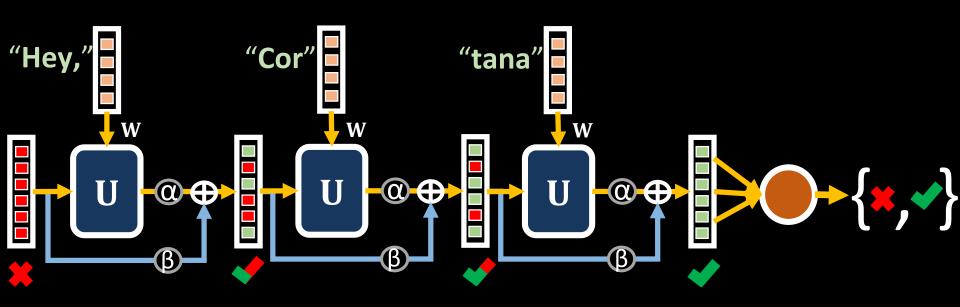
Conclusions

- ML for IoT devices might provide many high-impact opportunities
- Microsoft's Edge Machine Learning Library
 - https://github.com/Microsoft/EdgeML
- Bonsai, ProtoNN, FastGRNN & EMI-RNN
 - Fit into a few Kilobytes of memory
 - Make predictions in milliseconds
 - Are energy efficient & extend battery life
 - Have state-of-the-art prediction accuracies

Appendix

FastRNN

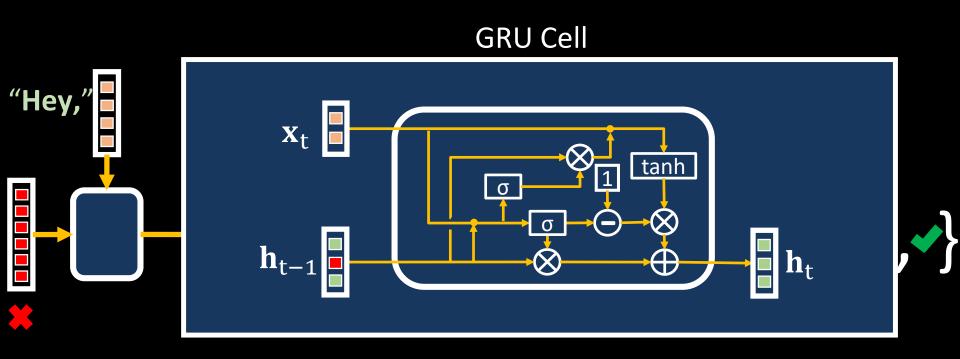
- Provably stable training with 2 additional scalars
- Accuracy: RNN ≪ Unitary RNNs < FastRNN < Gated RNNs



$$\nabla = f(\dots, (\alpha \mathbf{U}\mathbf{D} + \beta \mathbf{I})^T = \mathbf{Q} \begin{bmatrix} (1+\epsilon)^T & \vdots & \vdots & \vdots & \vdots \\ & \ddots & \vdots & \vdots & \vdots \\ & & (1-\epsilon')^T \end{bmatrix} \mathbf{Q}^T, \dots)$$

Gated RNNs – LSTM, GRU, ...

- Add extra parameters to stabilize training
- Infeasible edge prediction due to large model size
- Have intuitive explanations but no formal guarantees



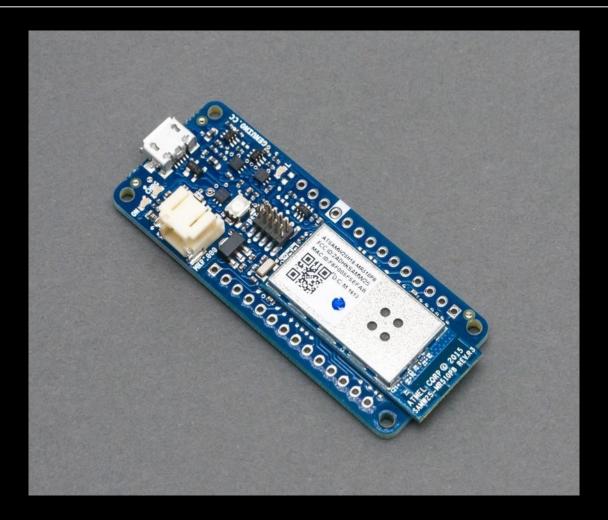
Dataset Statistics

	Dataset	# Train	# Features	# Time Steps	# Test
	Google-12	22,246	3,168	99	3,081
	Google-30	51,088	3,168	99	6,835
	Wakeword-2	195,800	5,184	162	83,915
	Yelp-5	500,000	38,400	300	500,000
l	PTB-10000	929,589		300	82,430
	HAR-2	7,352	1,152	128	2,947
	DSA-19	4,560	5,625	125	4,560
	Pixel-MNIST-10	60,000	784	784	10,000

Activity NLP

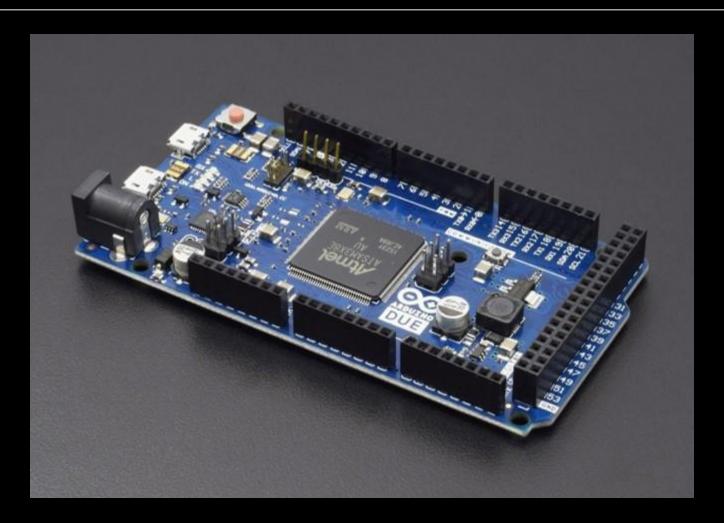
Image

The Arduino MKR1000



32 bit SAMD21 Cortex-M0+ Processor at 48 MHz with 32 KB RAM & 256 KB read only Flash

The Arduino Due



32 bit AT91SAM3X8E Processor at 84 MHz with 96 KB RAM & 512 KB read only Flash

RNN gradients

$$\mathbf{h}_{t} = \sigma(\mathbf{W}\mathbf{x}_{t} + \mathbf{U}\mathbf{h}_{t-1} + \mathbf{b})$$

$$\frac{\partial L}{\partial \mathbf{U}} = \sum_{t=0}^{T} \mathbf{D}_{t} \left(\prod_{k=t}^{T-1} \mathbf{U}^{\mathsf{T}} \mathbf{D}_{k+1} \right) (\nabla_{\mathbf{h}_{T}} L) \mathbf{h}_{t-1}^{\mathsf{T}}$$

$$\frac{\partial L}{\partial \mathbf{W}} = \sum_{t=0}^{T} \mathbf{D}_{t} \left(\prod_{k=t}^{T-1} \mathbf{U}^{\mathsf{T}} \mathbf{D}_{k+1} \right) (\nabla_{\mathbf{h}_{T}} L) \mathbf{x}_{t}^{\mathsf{T}}$$

$$\mathbf{D}_{k} = \operatorname{grad}(\mathbf{h}_{k})$$
 $\mathbf{D}_{k} = \operatorname{diag}(\sigma'(\mathbf{W}\mathbf{x}_{k} + \mathbf{U}\mathbf{h}_{k-1} + \mathbf{b}))$

FastRNN gradients

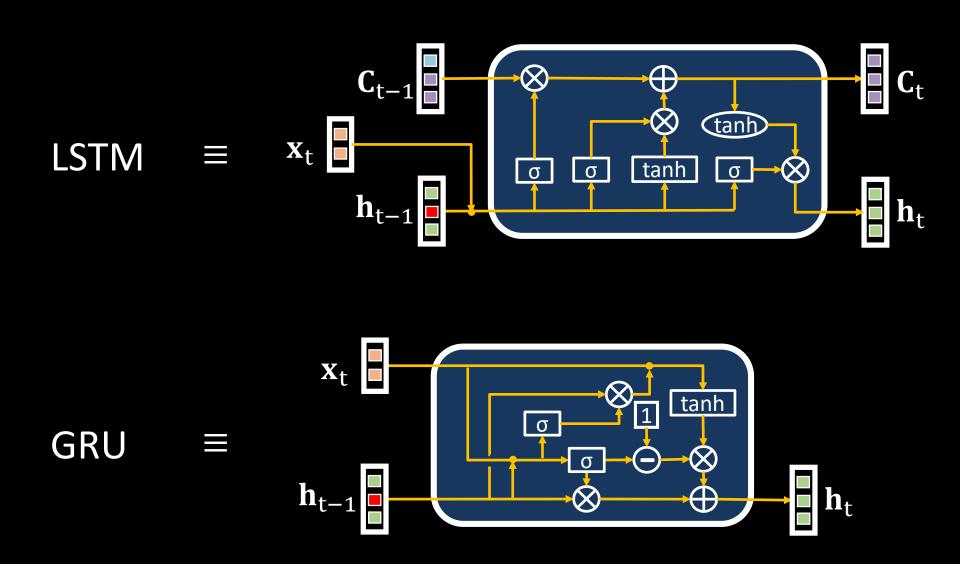
$$\tilde{\mathbf{h}}_{t} = \sigma(\mathbf{W}\mathbf{x}_{t} + \mathbf{U}\mathbf{h}_{t-1} + \mathbf{b})$$
$$\mathbf{h}_{t} = \alpha \tilde{\mathbf{h}}_{t} + \beta \mathbf{h}_{t-1}$$

$$\frac{\partial L}{\partial \mathbf{U}} = \alpha \sum_{t=0}^{T} \mathbf{D}_{t} \left(\prod_{k=t}^{T-1} (\alpha \mathbf{U}^{\mathsf{T}} \mathbf{D}_{k+1} + \beta \mathbf{I}) \right) (\nabla_{\mathbf{h}_{T}} L) \mathbf{h}_{t-1}^{\mathsf{T}}$$

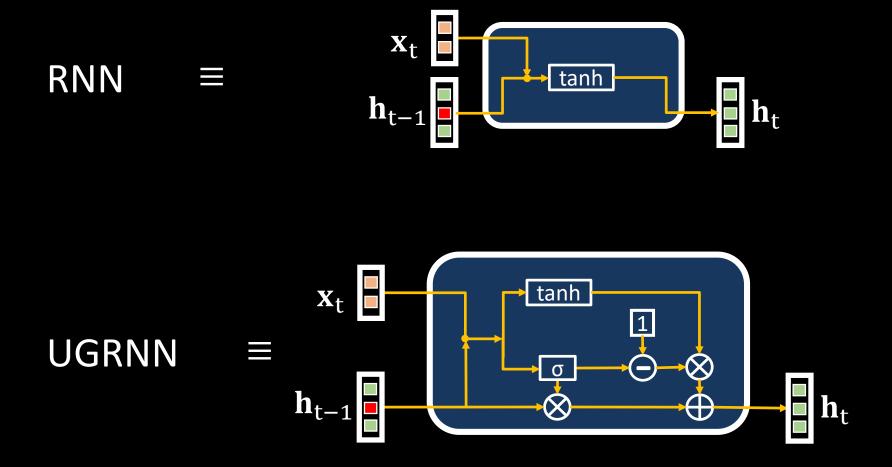
$$\frac{\partial L}{\partial \mathbf{W}} = \alpha \sum_{t=0}^{T} \mathbf{D}_{t} \left(\prod_{k=t}^{T-1} (\alpha \mathbf{U}^{\mathsf{T}} \mathbf{D}_{k+1} + \beta \mathbf{I}) \right) (\nabla_{\mathbf{h}_{T}} L) \mathbf{x}_{t}^{\mathsf{T}}$$

$$\mathbf{D}_{k} = \operatorname{grad}(\mathbf{h}_{k})$$
 $\mathbf{D}_{k} = \operatorname{diag}(\sigma'(\mathbf{W}\mathbf{x}_{k} + \mathbf{U}\mathbf{h}_{k-1} + \mathbf{b}))$

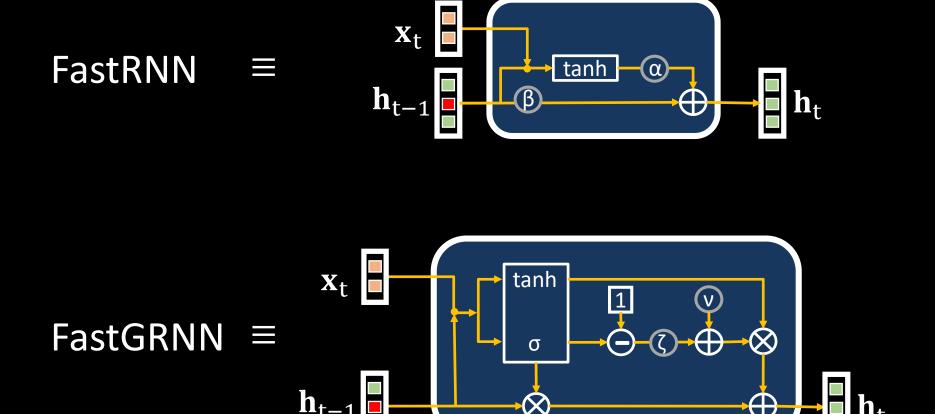
More Block Diagrams



More Block Diagrams

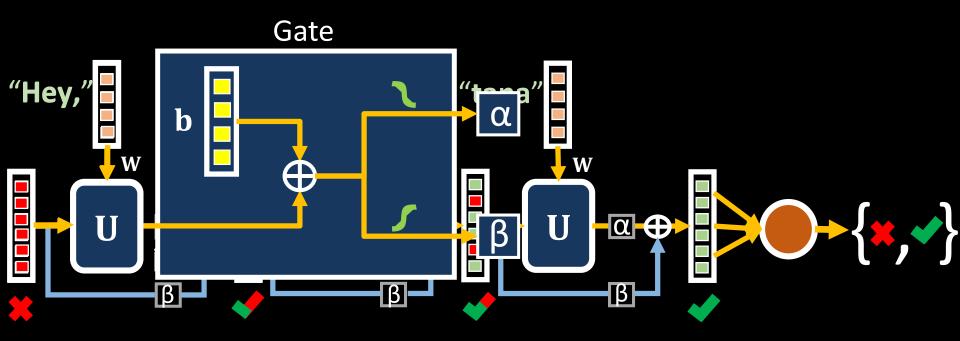


More Block Diagrams

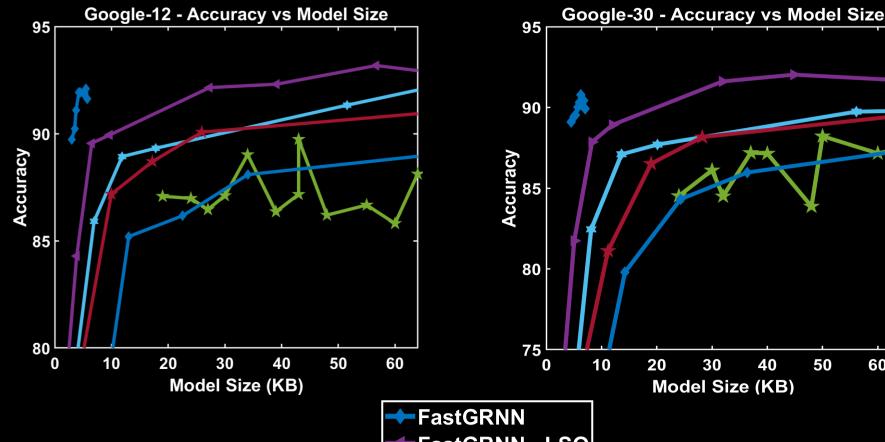


FastGRNN

- Extend α & β from scalars to vector gates

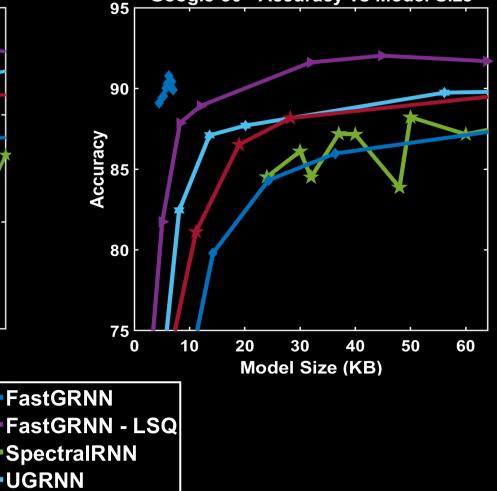


Prediction Accuracy vs Model Size



GRU

LSTM



Effects of Compression (LSQ)

FastGRNN - LSQ

