Improving Information Retrieval Performance using Word Embedding

Dwaipayan Roy

Indian Statistical Institute, Kolkata

December 28, 2018

Information Retrieval

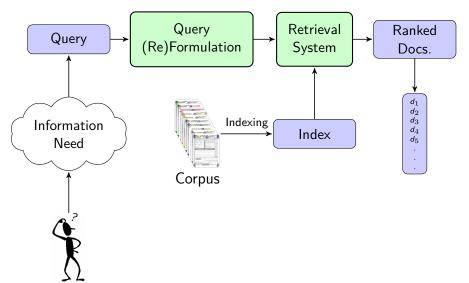
www.trec.nist.gov

Information Retrieval: A Practical Application

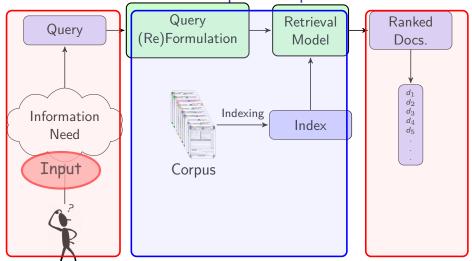
Q

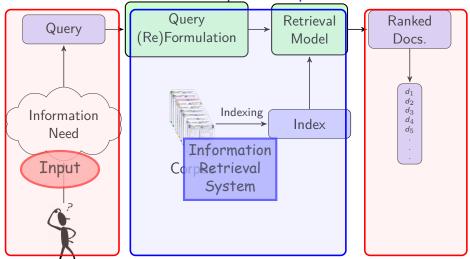
www.google.com

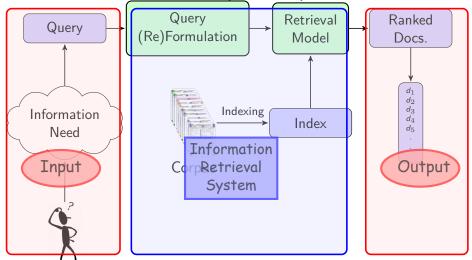
3 / 78



4 / 78







Retrieval Models

- Language Model with Jelinek Mercer Smoothing (LM-JM)
- Language Model with Dirichlet Smoothing (LM-Dir)
- BM25
- DFR
- **...**

Retrieval Models

- Language Model with Jelinek Mercer Smoothing (LM-JM)
- Language Model with Dirichlet Smoothing (LM-Dir)
- BM25
- DFR
- **...**

$$Score(D,Q) = \begin{cases} \sum_{t \in Q} f(D,t) \\ \prod_{t \in Q} f(D,t) \\ \dots \end{cases}$$

Retrieval Models

- Language Model with Jelinek Mercer Smoothing (LM-JM)
- Language Model with Dirichlet Smoothing (LM-Dir)
- BM25
- DFR
- ...

Score(D,Q) =
$$\begin{cases} \sum_{t \in Q} f(D, t) \\ \prod_{t \in Q} f(D, t) \\ \dots \end{cases}$$

$$\mathsf{LM-JM}(\mathsf{D},\mathsf{Q}) = \prod_{t \in \mathcal{Q}} \big[\lambda * \mathsf{MLE}(\mathsf{t} \; \mathsf{in} \; \mathsf{Document}) \\ \\ + (1-\lambda) * \mathsf{MLE}(\mathsf{t} \; \mathsf{in} \; \mathsf{Collection}) \big]$$

Evaluation: Datasets

Collection Name	Documents	# documents # topics		# rel-docs	
TREC123	Tipster disks 1, 2	741,856	150	37836	
			(51-200)		
TREC678	Tipster disks 4, 5	528,155	150	13692	
	exclude docs. from CR	320,133	(301-450)		
Robust	Tipster disks 4, 5	528,155	100	3720	
	exclude docs. from CR	320,133	(601-700)		
TREC910	WT10G	1,692,096	100	5980	
	W110G	1,032,030	(451-550)	3300	
GOV2	GOV2	25,205,179	150	26917	
		25,205,179	(701-850)	20317	
ClueWeb09B	ClueWeb09 Disk1 - English	50,220,423	200	11037	
		30,220,423	(1-200)		

Table: Overview of datasets used in experiments reported in this presentation.

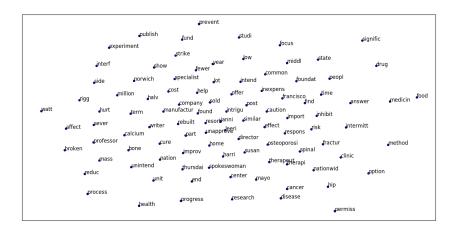
Evaluation: Metrics

■ MAP: Mean average precision

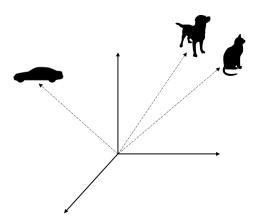
■ P@5: Precision upto rank 5

■ Recall: Percentage of relevant documents retrieved

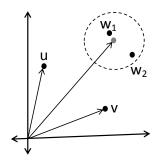
Represents every word as low dimensional vector in an abstract space.



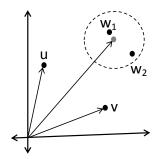
- Represents every word as low dimensional vector in an abstract space.
- Similarity between vectors reflect semantic similarity between terms.



- Represents every word as low dimensional vector in an abstract space.
- Similarity between vectors reflect semantic similarity between terms.
- Effect of conceptual composition by simple addition of vectors.

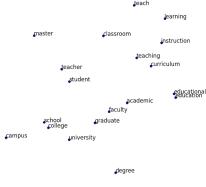


- Represents every word as low dimensional vector in an abstract space.
- Similarity between vectors reflect semantic similarity between terms.
- Effect of conceptual composition by simple addition of vectors.



 $German + Airlines \sim Lufthansa$

- Represents every word as low dimensional vector in an abstract space.
- Similarity between vectors reflect semantic similarity between terms.
- Effect of conceptual composition by simple addition of vectors.
- Words have close vector representations if they share similar contexts.



Outline

- 1 Improving Baseline Retrieval Model
- 2 Improving Relevance Feedback based Query Expansion
- 3 Query Performance Prediction using Word Embedding

Outline

- 1 Improving Baseline Retrieval Model
- 2 Improving Relevance Feedback based Query Expansion
- 3 Query Performance Prediction using Word Embedding

Traditional Language Model

Given:

- Collection *C*: A set of documents
- Query Q

Documents ranked:

lacksquare in decreasing order by the posterior probabilities P(D|Q)

Traditional Language Model

$$P(D|Q) = \prod_{t \in Q} \lambda \frac{tf(t, D)}{|D|} + (1 - \lambda) \frac{cf(t)}{cs}$$

Query terms generated by independent sampling from either the document or the collection

Language Model with Word Embedding

A generative process in which a noisy channel may transform a term t' into a term t

Term Transformation Events : via Document Sampling

Figure: Schematics of generating a query term t from d

$$P(t, t'|d) = P(t|t', d)P(t'|d)$$

$$P(t|t', d) = \frac{sim(t', t)}{\Sigma(d)}$$

Term Transformation Events: via Collection Sampling

Figure: Schematics of generating a query term t from the collection

$$\begin{array}{l} P(t,t'|\mathit{C}) = P(t|t',\mathit{C})P(t'|\mathit{C}) \\ P(t|t',\mathit{C}) = \frac{sim(t,t')}{\sum_{t'' \in \mathit{N}_t} sim(t,t'')} \end{array}$$

Term Transformation Events

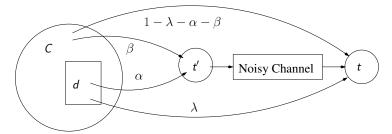


Figure: A Generalized Language Model (GLM). GLM degenerates to LM when $\alpha=\beta=0$.

- \bullet λ : Standard Jelinek Mercer weighting parameter
- $flue{\alpha}$: Probability of sampling term t via a transformation through a term t' sampled from the document d
- β : Probability of sampling term t via a transformation through a term t' sampled from collection

Term Transformation Events: Combined Events

$$P(Q|d) = \prod_{t \in Q} \left[\lambda P(t|d) + \alpha \sum_{t' \in d} P(t, t'|d) P(t') + \beta \sum_{t' \in N_t} P(t, t'|C) P(t') + (1 - \lambda - \alpha - \beta) P(t|C) \right]$$

Generalized Language Model: Evaluation

Query	Method	Metrics			
		MAP	P@5	Recall	
TREC 123	LM	0.1967	0.4213	0.4477	
	GLM	$\boldsymbol{0.2104}^{\dagger}$	$\boldsymbol{0.4562}^{\dagger}$	0.4893^{\dagger}	
TREC 678	LM	0.2189	0.4160	0.5300	
	GLM	$\boldsymbol{0.2214}^{\dagger}$	0.4187	0.5327	
Robust	LM	0.2658	0.4364	0.7881	
	GLM	$\boldsymbol{0.2777}^{\dagger}$	0.4586^{\dagger}	0.7990	
WT10G	LM	0.1747	0.3152	0.6377	
	GLM	0.1906^{\dagger}	$\boldsymbol{0.3782}^{\dagger}$	0.6689^{\dagger}	

Table: Comparative performance of GLM on the basis of mean average precision (MAP) precision at 5 (P@5) and recall at 1000. A \dagger indicates the significance of the metric value with respect to the baseline LM based retrieval model.

Evaluation: Summary

 $\mathsf{GLM} > \mathsf{LM}$

D. Roy (ISI, Kolkata)

WE for IR

Evaluation: Summary

GLM > LM

A Word Embedding based Generalized Language Model for Information Retrieval (SIGIR 2015)

Retrieval Models: Keyword Matching

Score(D,Q) =
$$\begin{cases} \sum_{t \in Q} f(D, t) \\ \prod_{t \in Q} f(D, t) \\ \dots \end{cases}$$

Retrieval Models: Keyword Matching

Score(D,Q) =
$$\begin{cases} \sum_{t \in Q} f(D, t) \\ \prod_{t \in Q} f(D, t) \\ \dots \end{cases}$$

Query: Vehicle Smoke Pollution

$$Score(D,Q) = f(D, Vehicle) * f(D, Smoke) * f(D, Pollution)$$

Vocabulary Mismatch

Vehicle Smoke Pollution

Doc1

Passenger vehicles & heavy-duty trucks are a major source of air pollution which includes ozone, particulate matter and other smog-forming emissions in the form of smoke.

Doc2

The exhaust gas of cars powered by fossil fuels are a major source of toxic materials in the air that causes severe damage to the eco-system.

Vocabulary Mismatch

Vehicle Smoke Pollution

Doc1

Passenger vehicles & heavy-duty trucks are a major source of air pollution which includes ozone, particulate matter and other smort-forming emissions in the form moke.

Doc2

The exhaust gas of cars powered by fossil fuels are a major source of toxic materials in the air that causes severe damage to the eco-system.

Vocabulary Mismatch

Vehicle Smoke Pollution

Doc1

Passenger vehicles & heavy-duty trucks are a major source of air pollution which includes ozone, particulate matter and other smcr-forming emissions in the form moke.

Doc2

The exhaust gas of cars powered by fossil fuels are a major source of toxic materials in the air that causes severe damage to the eco-system.

Vocabulary Mismatch: Solution

Query Expansion

Add more words of similar meaning to initial query for better retrieval.

Outline

- Improving Baseline Retrieval Model
- Improving Relevance Feedback based Query Expansion
- Query Performance Prediction using Word Embedding

Outline

- Improving Baseline Retrieval Mode
- 2 Improving Relevance Feedback based Query Expansion
- 3 Query Performance Prediction using Word Embedding

D. Roy (ISI, Kolkata)

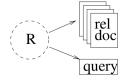
28 / 78

Pseudo-Relevance Feedback based Query Expansion

Given a query Q

- Perform initial retrieval using some retrieval model
- Consider top K documents as (pseudo-)relevant
- Select terms from those documents as candidate expansion terms
- Perform re-retrieval with the expanded query

Relevance based Language Model (RLM)



- Assumes that both query and (pseudo-)relevant documents sampled from a latent relevance model \mathcal{R} .
- The task \rightarrow to find (estimate) the density function for \mathcal{R} .

$$P(w|R) = \sum_{D \in M} P(w|D) \prod_{q \in Q} P(q|D)$$

RM3

RM3

A mixture model of RLM and query likelihood model.

$$P'(w|R) = \mu P(w|R) + (1 - \mu)P(w|Q)$$

$$P(w|R) = \sum_{D \in M} P(w|D) \prod_{q \in Q} P(q|D)$$

$$P(w|Q) = \frac{tf(w, Q)}{|Q|}$$

Motivation of this work

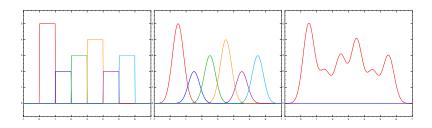
Word Vector Compositionality based Relevance Feedback using Kernel Density Estimation

Motivation of this work

Word Vector Compositionality based Relevance Feedback using Kernel Density Estimation

- Word embedding:
 - Captures the semantic relationship between terms.
- Relevance feedback:
 - Captures co-occurence information of terms with query in top docs.

Kernel Density Estimation (KDE)



- Estimate a distribution that generates the given data (data points).
- Place kernel function (e.g. Gaussian) centered around each observed data point.
- Combine the Gaussians to get a function peaked at the observed data point.

Kernel Density Estimation (KDE)

$$f(x) = \frac{1}{nh} \sum_{i=1}^{n} K(\frac{x - x_i}{h})$$

- h bandwidth (smoothing parameter)
- n number of data points
- x_i ith data point
- K() the kernel

KDE with Gaussian Kernel

$$f(x) = \frac{1}{nh} \sum_{i=1}^{n} K(\frac{x - x_i}{h})$$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ト 恵 | 重 の 9 (で)

December 28, 2018 35 / 78

D. Roy (ISI, Kolkata) WE for IR

KDE with Gaussian Kernel

$$f(x) = \frac{1}{nh} \sum_{i=1}^{n} K(\frac{x - x_i}{h})$$

$$f(x) = \frac{1}{nh} \sum_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2} (\frac{x - x_i}{h})^2}$$

◆ロト ◆部ト ◆意ト ◆意ト 連目 からの

D. Roy (ISI, Kolkata) WE for IR December 28, 2018 35 / 78

KDE with Gaussian Kernel

$$f(x) = \frac{1}{nh} \sum_{i=1}^{n} K(\frac{x - x_i}{h})$$

$$f(x) = \frac{1}{nh} \sum_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2} (\frac{x - x_i}{h})^2}$$

 \blacksquare h and σ : tunable parameters

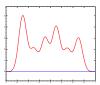
D. Roy (ISI, Kolkata)

WE for IR

Comparing the Estimations

Relevance Model Estimation

Given set of terms from (pseudo-)relevant documents, estimate the density function that generates \mathcal{R} .



Kernel Density Estimation

Given set of n data samples, estimates the density function that generates the observed data.

KDE in Relevance Feedback Scenario

$$f(x) = \frac{1}{nh} \sum_{i=1}^{n} K(\frac{x - x_i}{h})$$

The Points

- Observed data points (x_i) : $Q = \{q_1, \ldots, q_n\}$
- Points at which probability (density) is to be estimated (x): $w \rightarrow$ Candidate expansion term

D. Roy (ISI, Kolkata) WE for IR December 28, 2018 37 / 78

KDE in Relevance Feedback Scenario

$$f(x) = \frac{1}{nh} \sum_{i=1}^{n} K(\frac{x - x_i}{h})$$

The Points

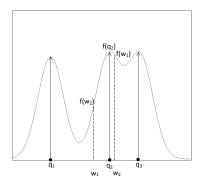
- **Observed data points** (x_i) : $Q = \{q_1, \ldots, q_n\}$
- Points at which probability (density) is to be estimated (x): $w \rightarrow Candidate expansion term$

$$f(w) = \frac{1}{nh} \sum_{i=1}^{n} K(\frac{w - q_i}{h})$$

D. Roy (ISI, Kolkata)

WE for IR

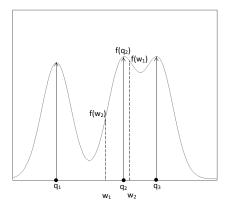
Relevance Feedback with KDE



One dimensional projection of embedded vectors

Kernel Density Estimate (Unweighted)

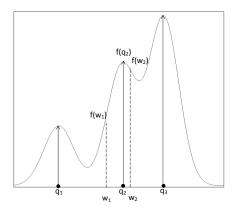
$$f(w) = \frac{1}{nh} \sum_{i=1}^{n} K(\frac{w - q_i}{h})$$



- n number of samples
- h bandwidth
- $K(\cdot)$ kernel function

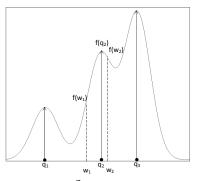
Kernel Density Estimate (Weighted)

$$f(w,\alpha) = \frac{1}{nh} \sum_{i=1}^{n} \alpha_i K(\frac{w - q_i}{h})$$



- \blacksquare *n* number of samples
- *h* bandwidth
- $K(\cdot)$ kernel function
- α_i weight of local Kernel function around ith data point

One dimensional KDE



$$f(w,\alpha) = \frac{1}{nh} \sum_{i=1}^{n} \alpha_i \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(w-q_i)^2}{2\sigma^2h^2}}$$

 \bullet α_i : weight of the i^{th} query term

ロ ト 4 個 ト 4 重 ト 4 重 ト 連 目 も り 9 (で)

41 / 78

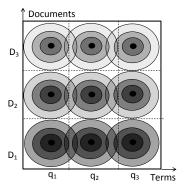
One dimensional KDE

$$f(w,\alpha) = \sum_{i=1}^{n} \frac{P(w|\mathcal{M})P(q_i|\mathcal{M})}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(\mathbf{w} - \mathbf{q_i})^T(\mathbf{w} - \mathbf{q_i})}{2\sigma^2 h^2}\right)$$

- Captures co-occurence information of terms with query in top docs.
- Captures the semantic relationship between terms.

D. Roy (ISI, Kolkata) WE for IR December 28, 2018 42 / 78

- In 1D-KDE, set of all top ranked documents considered as a single document model (\mathcal{M}) .
- We now generalize the 1D-KDE to two dimensions so as to weight the contributions obtained from different documents in the ranked list separately.



- The x-axis corresponds to the guery term vectors similar to one dimensional KDE (unordered).
- The y-axis represents the normalized term frequency of query terms in respective feedback documents.

The Points: One Dimensional KDE

- Observed data points (x_i) : $Q = \{q_1, \dots, q_n\}$
- Points at which probability (density) is to be estimated (x): $w \rightarrow Candidate expansion term$

The Points: Two Dimensional KDE

- **Observed data points** $(x_{ij}) = (q_i, D_i)$: Encapsulates word vector for i-th query word q_i and its normalized term frequency in feedback document D_i ($P(q_i|D_i)$).
- Points at which probability (density) is to be estimated (x) $= (w, D_i)$: Encapsulates word vector for candidate expansion term w and its normalized term frequency in feedback document D_i $(P(w|D_i)).$

$$f(\mathbf{x}, \alpha) = \sum_{i=1}^{n} \sum_{i=1}^{M} \frac{P(w|D_j)P(q_i|D_j)}{2\pi\sigma^2} \exp\left(\frac{(\mathbf{w} - \mathbf{q_i})^2 + (P(w|D_j) - P(q_i|D_j))^2}{-2\sigma^2h^2}\right)$$

D. Roy (ISI, Kolkata) WE for IR December 28, 2018 46 / 78

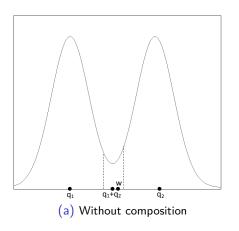
$$f(\mathbf{x},\alpha) = \sum_{i=1}^{n} \sum_{i=1}^{M} \frac{P(w|D_j)P(q_i|D_j)}{2\pi\sigma^2} \exp\left(\frac{(\mathbf{w} - \mathbf{q_i})^2 + (P(w|D_j) - P(q_i|D_j))^2}{-2\sigma^2h^2}\right)$$

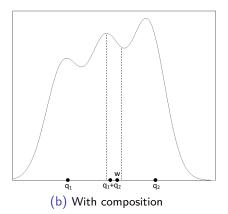
- w in document D_j , denoted as x, will get a high value of the density function if:
 - (i) \mathbf{w} is semantically close to query terms $\mathbf{q_i}$;
 - (ii) w frequently co-occurs with query terms in each top ranked document D_i .

◆ロト ◆御ト ◆夏ト ◆夏ト 夏目 釣り○

Term Composition in KDE

Extending the set of pivot points:



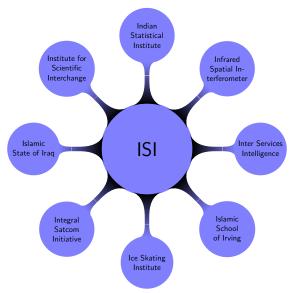


D. Roy (ISI, Kolkata)

WE for IR

December 28, 2018

Importance of Composition



Importance of Composition



Summary

Given:

- Corpora : Set of documents.
- Query $Q: q_1, \ldots, q_n$.
- Vector embeddings of each of the terms.
- First level retrieval performed using any LM.
- ET = All terms of top ranked M documents considered as potential expansion terms.
- Calculate KDE(w) for each $w \in ET$.
- Terms with high estimated value taken as expansion terms.
- Linearly interpolate derived density function with underlying query model.

Evaluation

Query	Method	LM-JM		
		MAP	P@5	Recall
TREC 123	LM	0.1967	0.4213	0.4477
	RM3	0.2507*	0.4653*	0.5154*
	KDERLM	0.2661*†	0.4798*	0.5373*†
TREC 678	LM	0.2189	0.4160	0.5300
	RM3	0.2351*	0.4547*	0.5366
	KDERLM	0.2536*†	0.4601*†	0.5520*†
Robust	LM	0.2658	0.4364	0.7881
	RM3	0.3309*	0.4929*	0.8596*
	KDERLM	$0.3420^{*\dagger}$	0.5043*	0.8596*
WT10G	LM	0.1747	0.3152	0.6377
	RM3	0.2094*	0.3394*	0.6743*
	KDERLM	$0.2221^{*\dagger}$	0.3419*	0.6910*†

Evaluation: Summary

KDERLM > RM3 > GLM > LM

Evaluation: Summary

KDERLM > RM3 > GLM > LM

Word Vector Compositionality based Relevance Feedback using Kernel Density Estimation (CIKM 2016)

Query Expansion for Simple Query

Searching data set

National Geographic Readers: Snakes!

Query Expansion for Simple Query

Searching data set

■ National Geographic Readers: Snakes!

Query

python life span

Query Expansion for Simple Query

Searching data set

National Geographic Readers: Snakes!

Query

- python life span
- python setup in windows 10

Query Expansion for Simple Query

Searching data set

National Geographic Readers: Snakes!

Query

- python life span
- python setup in windows 10

Query expansion \rightarrow overkill or, not work at all.

Query Expansion for Simple Query

Searching data set

National Geographic Readers: Snakes!

Query

- python life span
- python setup in windows 10

Query expansion → overkill or, not work at all.

How to understand whether query actually need expansion? \rightarrow QPP

Outline

- 1 Improving Baseline Retrieval Model
- 2 Improving Relevance Feedback based Query Expansion
- 3 Query Performance Prediction using Word Embedding

Query Performance Prediction (QPP)

Definition

To quantify the quality of search results when no relevance feedback is given.

- For an ambiguous query, it may be difficult for a search engine to return satisfactory results for the query.
- This can lead to poor IR effectiveness.

Query Performance Prediction (QPP)

Why we need QP Predictor?

- ► Feedback to Users.
- Feedback to Search Engine.
- ▶ Feedback to System Administrator.

What Makes a Query Difficult?

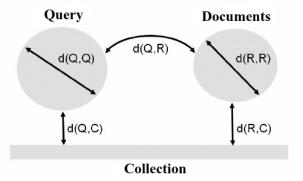
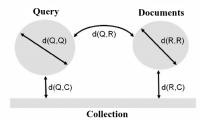


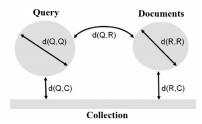
Figure: A general model of a topic based on a query Q expressing a specific information need, the relevant documents R for Q, the entire collection C, and the distances between the sets involved.

D. Roy (ISI, Kolkata)

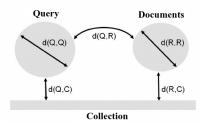
57 / 78



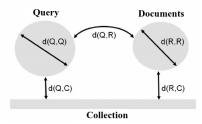
d(Q, C) - Distance between query and collection; Reflects likelihood of generation of Q from C.



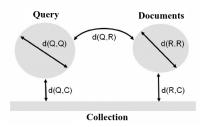
- d(Q, C) Distance between query and collection; Reflects likelihood of generation of Q from C.
- d(R, C) Distance between retrieved documents and collection; Reflects likelihood of generation of documents of R from C.



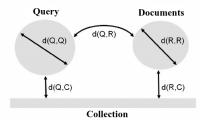
- d(Q, C) Distance between query and collection; Reflects likelihood of generation of Q from C.
- d(R, C) Distance between retrieved documents and collection; Reflects likelihood of generation of documents of R from C.
- **a** d(Q,Q) Diversity of query. Reflects the ambiguity of Q; more the diameter, more ambiguous the query.



- d(Q, C) Distance between query and collection; Reflects likelihood of generation of Q from C.
- d(R, C) Distance between retrieved documents and collection; Reflects likelihood of generation of documents of R from C.
- ullet d(Q,Q) Diversity of query. Reflects the ambiguity of Q; more the diameter, more ambiguous the query.
- d(R, R) Distance among retrieved documents; Manifestation of ambiguity of retrieved documents.



- d(Q, C) Distance between query and collection; Reflects likelihood of generation of Q from C.
- d(R, C) Distance between retrieved documents and collection; Reflects likelihood of generation of documents of R from C.
- **a** d(Q,Q) Diversity of query. Reflects the ambiguity of Q; more the diameter, more ambiguous the query.
- d(R, R) Distance among retrieved documents; Manifestation of ambiguity of retrieved documents.
- d(Q,R) Distance between query and retrieved documents R; Equivalent to distribution of retrieval scores of R.



 d(Q, C) - Distance between query and collection; Reflects likelihood of generation of Q from C.

a d(Q, Q) - Diversity of query. Reflects the ambiguity of Q; more the diameter, more ambiguous the query.

Word Embedding based QPP

Ambiguous Terms

Terms with multiple senses

Hypothesis

For an ambiguous term w, in terms of the embedded space, w is more likely to be a peripheral point of a word cluster rather than being an interior point close to the cluster centre.

Ambiguous Term in Embedded Space

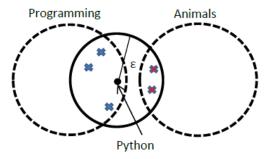


Figure: The neighbourhood of an ambiguous word with multiple senses

Ambiguous Term in Embedded Space

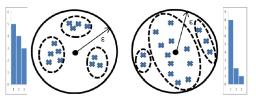


Figure: Histogram of number of terms in the ϵ -neighbourhood of a term

Ambiguous Term in Embedded Space

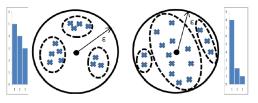


Figure: Histogram of number of terms in the ϵ -neighbourhood of a term

- Cluster the set of points in the ϵ -neighbourhood of query term
- For an ambiguous word, the distribution of points in the clusters likely to be close to uniform

Word Embedding based QPP

$$AMB_{WV}(Q; K, \epsilon) = \frac{1}{K} \sum_{k=1}^{K} (|N_{\epsilon}(\mathbf{Q})| - \mu)^{2};$$

- Q The query.
- $N_{\epsilon}(\mathbf{Q})$ ϵ -neighborhood of \mathbf{Q} .
- K Number of clusters.
- \bullet Neighbourhood size.
- μ Average cardinality of clusters. $(\frac{|N_{\epsilon}(\mathbf{Q})|}{\kappa})$

D. Roy (ISI, Kolkata)

WE for IR

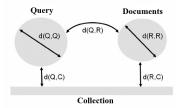
Word Embedding based QPP

$$AMB_{WV}(Q; K, \epsilon) = \frac{1}{K} \sum_{k=1}^{K} (|N_{\epsilon}(\mathbf{Q})| - \mu)^{2};$$

- \blacksquare High variance \to One sense predominates others \to Non-ambiguous
- **Low** variance \rightarrow Having multiple senses \rightarrow **Ambiguous**

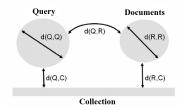
D. Roy (ISI, Kolkata) WE for IR December 28, 2018 63 / 78

Pre-retrieval QPP



- d(Q, C) Reflects likelihood of generation of Q from C.
- d(Q, Q) Reflects the ambiguity of Q;

Pre-retrieval QPP



- d(Q, C) Reflects likelihood of generation of Q from C.
- d(Q, Q) Reflects the ambiguity of Q;

Pre-retrieval QPP Methods

- Ignores any post-retrieval information
- Hybrid of pre-retrieval and post-retrieval approaches outperforms both

Combining with NQC

NQC

- Post-retrieval QPP.
- Variance of similarity score proportional to query performance.

Word Embedding and NQC based Hybrid Predictor

$$AMB_{WV}$$
-NQC = αAMB_{WV} + $(1 - \alpha)NQC$

D. Roy (ISI, Kolkata) WE for IR December 28, 2018 66 / 78

Evaluation: Metrics

Correlation between QPP scores and true score (AP value)

Evaluation Metrics

- Pearson's ρ : Correlation coefficient
- Kendall's τ : Rank correlation coefficient

 $\mathsf{High}\ \mathsf{correlation} \to \mathsf{Better}\ \mathsf{prediction}$

Results on Some of the Topic sets

	TREC3		TREC7		TREC8		TREC10	
	ρ	au	ρ	au	ρ	au	ρ	τ
AvgIDF	0.2353	0.2490	0.4262	0.3796	0.5910	0.3518	0.3736	0.2359
MaxIDF	0.2285	0.2772	0.3524	0.2662	0.4938	0.2996	0.2219	0.1233
WordNet	0.0297	-0.0375	0.2696	0.2509	0.0746	0.1014	0.2221	0.0896
AMB_{WV}	0.3222	0.2457	0.2043	0.2132	0.2132	0.1559	0.1544	0.0033
NQC	0.3146	0.1559	0.4580	0.3502	0.6717	0.4335	0.4676	0.2686
AvgIDF-NQC	0.2782	0.2620	0.4551	0.4253	0.6315	0.3878	0.4119	0.2588
MaxIDF-NQC	0.2862	0.3159	0.4204	0.3094	0.5815	0.3714	0.2157	0.2336
WordNet-NQC	0.1794	0.1069	0.4095	0.3453	0.3457	0.3078	0.3292	0.1673
<i>AMB_{WV}</i> -NQC	0.4741	0.3648	0.5362	0.3844	0.7070	0.4498	0.4936	0.2914

Table: Comaprisons of the word embedding based QPP method against various baselines on the test topic sets.

Contribution

An embedding based approach to quantify underlying ambiguity of user query.

D. Roy (ISI, Kolkata) WE for IR December 28, 2018 69 / 78

Contribution

 An embedding based approach to quantify underlying ambiguity of user query.

ESTIMATING GAUSSIAN MIXTURE MODELS IN THE LOCAL NEIGHBOURHOOD OF EMBEDDED WORD VECTORS FOR QUERY PERFORMANCE PREDICTION (INFORMATION PROCESSING AND MANAGEMENT - IN PRESS)

Conclusion

D. Roy (ISI, Kolkata) WE for IR December 28, 2018 70 / 78

Conclusion

WE & I R Great together!

Conclusion

WE & I R Great together!

https://github.com/dwaipayanroy dwaipayan_r@isical.ac.in

THANK YOU!

GLM: A less-heavy QE method

GLM Parameter Details

- \bullet λ empirically set to 0.2
- \blacksquare GLM parameters α and β varied within range of [0.1,0.4] to ensure $\alpha+\beta+\lambda<1$
- Word vectors embedded in a 200-dimensional space with negative-sampling using 5-word window on continuous bag-of- words model.
- \blacksquare N_t set to 3

1D-KDE Details

- $P(w|\mathcal{M}): \frac{tf(w,\mathcal{M})}{|\mathcal{M}|}$
- $lacksquare P(q_i|\mathcal{M}): rac{t\mathit{f}(q_i,\mathcal{M})}{|\mathcal{M}|}$
- h: Bandwidth set to one (1)
- \bullet σ : Trained on the development set (TREC 6 and TREC 9)

2D-KDE Details

- $(\mathbf{w} \mathbf{q_i})^2 = (\mathbf{w} \mathbf{q_i})^T (\mathbf{w} \mathbf{q_i})^T$
- $P(w|D_j): \frac{tf(w,D_j)}{|D_i|}$
- $P(q_i|D_j): \frac{tf(q_i,D_j)}{|D_i|}$
- h: Bandwidth set to one (1)
- \bullet σ : Trained on the development set (TREC 6 and TREC 9)
- $lue{}$ covariance matrix σ as a diagonal matrix with equal covariance for both the dimensions.

Extra slide

Pearson's ρ

$$\rho_{(X,Y)} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

■ Range: (-1,1)

Kendall's au

$$au_{(\mathbf{X},\mathbf{Y})} = \frac{ ext{(No. of concordant pair)} - ext{(No. of discordant pair)}}{n(n-1)/2}$$

■ Range: (-1,1)