
Compound Data Embeddings:
Handling Text+Graph Data

Akshar Varma*, Northeastern University
Ongoing work with Tanay Mehta and Ravi Sundaram

*Work done while an intern at Amazon



Overview

● A concrete problem

● Our approach and its performance

● General problem

● Theoretical justification



The Problem

● User makes a (tail) query that yields no products
○ Query is too long/specific
○ Query is too vague

● Existing solution: suggest query reformulations by 
dropping random words.



Dropping random words



Can we do something better?



Example better reformulation



The problem setup

Learn a model that infers related queries given query text

● Training
○ Query-Product behaviour represented as Query-Query graph

■ Query text (as trigrams/words) as node labels
■ Add edge if queries share any product

● Inference
○ Only query text is known.

Get embeddings such that related queries are close in embedding space.



Limitations of existing embedding techniques

● Word/Sentence embeddings:
E.g. word2vec (Mikolov et al., NIPS 2013), GloVe (Pennington et al., EMNLP 
2014), SIF (Arora et al., ICLR 2017), ELMo (Peters et al., NAACL 2018)
○ Cannot incorporate graph data.

● Graph embeddings:
E.g. node2vec (Grover and Leskovec, KDD 2016), GraphSage (Hamilton et 
al., NIPS 2017), GAT (Velickovic et al., ICLR 2018)
○ Inference needs full graph.



Overview of our approach

● Naive idea: 
Get Graph embeddings, then use an LSTM to map text to the embeddings.
○ LSTMs are very slow.
○ Empirically perform poorly.

● Better idea:
○ Attention network to generate text embeddings.
○ Graph information in loss function (only while training).
○ Recommend k queries using KNN search over embeddings.



Attention-based Neural Network

● Attention (Bahdanau, Cho, Bengio, ICLR 2015) 
gives the neural network ability to focus on 
relevant parts
○ Eg: for “marble iphone 7 32GB case black”, we 

focus on ‘iphone’, ‘7’, and ‘case’.
● Attention Weights for each trigram,

using the embeddings of all trigrams.
● Take weighted average of trigram 

embeddings

 Inputs (as trigrams)

     Embedding Layer

    Attention

W. Average

           Output



Loss Functions

1. Match Graph embeddings:
Use cosine similarity to match node embeddings generated from some 
graph embedding method.

2. Positive/Negative Sampling:
Maximize similarity wrt +ve samples & minimize similarity wrt -ve samples
a. Positive samples:

i. Uniformly random neighbours
ii. Co-occuring nodes on long random walks

b. Negative samples are uniformly random non-adjacent nodes



Metrics

● How to measure relevance of recommended queries?
○ Relevant reformulations are not always adjacent on the QQ-graph. Noisy dataset.
○ Ideal measure: Use human-labelled relevance of recommendations

● Measure a weak signal of relevance.
○ Query Precision:

■ Fraction of the top 5 recommendations that share a product with test query
○ Product Recall:

■ Fraction of products of test query that belong to at least one of the top 5 
recommendations.

○ F1 score: 
■ HM of QP and AR



Performance on Metrics

Model Query 
Precision Product Recall F1-score

Theoretical best 0.180 0.324 0.209

Attention 58.89% 67.90% 61.72%

Attention-RW 59.44% 68.21% 62.20%

Attention-Word 51.11% 59.26% 53.59%

Attention-Word-RW 52.22% 61.42% 55.02%

Attention-match-GS 1.11% 2.16% 1.44%

Trigram Hash 37.22% 51.58% 41.63%

The row for theoretical 
best uses absolute values 
of the metrics. 

All other rows are 
percentages of the 
theoretical best value.



Qualitative examples

● Queries that work well:
○ red and balck hedadset with mic for gng (gaming headset)
○ fugo style (FUGOO bluetooth speakers)
○ tx-rz810 (audio receiver)
○ dtse9h/16gb (thumb drive)

● Queries that fail
○ epson to601 (printer ink cartridges, but see printers)
○ r7500 (WiFi router, but all models completely fail)
○ unifi lr (wireless access point, TrigramHash succeeds by chance)



The General problem

● Training: Text labelled nodes with edges to relate text entities.
● Inference: Only text available, edges with seen nodes are unknown.
● Text embeddings should mimic (unknown) underlying graph

○ Co-occurence à la word2vec is now represented as a graph
● Other concrete problems:

Queries and Product titles Query to product or vice versa mapping

Product titles Related products recommendation

Tweets Find original author

StackOverflow titles Related question recommendation



Theoretical justification overview

● Words, concepts and texts 
are isotropic vectors

● Text is a diffusive walk on 
words around a concept.

● However, words move in 
context of a concept.

● Attention can handle this 
modification.


