Simulating Turbulence: Resolution, Extreme Events and Towards Extreme Computing

P.K. Yeung

Georgia Inst of Tech, USA E-mail: pk.yeung@ae.gatech.edu

Turbulence from Angstroms to Light Years

Discussion Meeting in honor of Prof. Katepalli R. Sreenivasan

International Center for Theoretical Sciences

Bangalore, INDIA, January 2018

Sreeni as a visionary, and catalyst

1/30

KRS70@Denver, Nov 17-18, 2017

Simulation Database: a brief overview

"Deep Science" philosophy, to advance fundamental understanding

- Intermittency, inertial range and dissipative range
- Turbulent mixing, Schmidt numbers O(0.001) to O(1000)
- Turbulent dispersion, backward tracking (w/ B.L. Sawford)

Forced isotropic turbulence, R_{λ} up to 1300; various resolutions

- Largest production run at 8192³, using 262,144 parallel processes
- Some shorter (but quite arduous) runs at 12288³ (D. Buaria, poster at this conference) and 16384³ (X.M. Zhai, M.P. Clay)
- Some 3 Petabytes stored at supercomputer centers

First paper with Sreeni published in 2002. His tremendous and benevolent influence has endured since mid 1990's. Visited over 10 times.

3/30

Outline of This Talk

- Assessing the accuracy of large simulations
- Resolution in space and time for "extreme events"
- Towards extreme-scale computing: GPU algorithms

As ever-larger simulations become possible...

Within the realm of 3D homogeneous turbulence:

- What do we want to use the computing power for?
 (higher Reynolds no., Mach no., other physical processes..)
- How do we recognize the limitations?
 (deterministic as well as statistical sources of errors...)

Can a simulation at higher resolution resolve any doubts?

- Higher moments, extreme fluctuations inherently more sensitive
- An expensive proposition, subject to statistical sampling
- Resolution in space (especially critical for work on intermittency)
- Resolution in time (seems to be discussed less in literature)

Spatial Resolution in Pseudo-Spectral DNS

$$k_{max} = \sqrt{2}N/3; \quad \Delta x/\eta \approx 2.96/(k_{max}\eta)$$

- $k_{max}\eta \approx 1.5$ may be fine for low-order velocity statistics
- But better resolution needed for small-scale statistics, increasingly so at higher Reynolds numbers (Yakhot & Sreenivasan 2005).
- Refine the grid, run again at same *Re*, and compare (e.g. acceleration statistics, Yeung *et al.* PoF 2006)
- For a given snapshot, what features may be subject to errors?
 - ▶ Take best-resolved velocity field, truncate at some wavenumber k_c . Compute various statistics again, compare, and repeat
 - Large differences would indicate insufficient accuracy
 - ▶ A post-processing task, not a large new simulation
 - ▶ No information on global error after N-S time evolution

Temporal Resolution

Courant number constraint for numerical stability:

$$C = \left[\frac{|u|\Delta t}{\Delta x} + \frac{|v|\Delta t}{\Delta y} + \frac{|w|\Delta t}{\Delta z} \right]_{max} \sim \alpha \frac{u'\Delta t}{\Delta x}$$

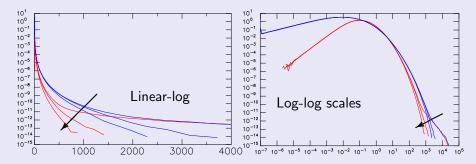
ullet Classical scaling and our experience in the simulations (take lpha=12)

$$\Delta t/\tau_{\eta} \approx (C/12)(15)^{1/4}(\Delta x/\eta) R_{\lambda}^{-1/2}$$

- ullet In large simulations, $\Delta t/ au_\eta$ frequently well under 1%
- But small scales evolve fast (at fixed position, swept by large scale motions of speed $\sim u'$, with a time scale of order η/u')
- Temporal intermittency is stronger than spatial intermittency, as comparisons between Eulerian and Lagrangian statistics suggest
- Short tests (approx 10 τ_{η} , say) at C=0.6, 0.3, 0.15 can help.

Dissipation and Enstrophy: Spatial Filtering

- Enstrophy is more intermittent. Is it more sensitive to resolution?
- PDFs of $\epsilon/\langle\epsilon\rangle$ and $\Omega/\langle\Omega\rangle$, derived from velocity fields at R_{λ} 650, $k_{max}\eta=2.8$ (4096³); apply cutoff at $k_c/k_{max}=1$, 0.75, 0.5

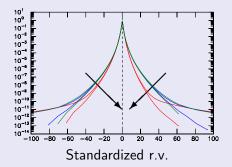


Convergence between PDFs of ϵ and Ω at far (power-law like) tails appears to be due to high-k modes, contaminated by aliasing errors

Why is dissipation more sensitive to resolution?

$$\epsilon \equiv 2\nu s_{ij}s_{ij}$$
; $\Omega \equiv \omega_i\omega_i$

• For incompressible isotropic turbulence: $\nabla_{\parallel} \mathbf{u}$ is negatively skewed and contributes only to ϵ ; while $\nabla_{\perp} \mathbf{u}$ is more intermittent



- Narrower PDF tails when some high k modes removed by filtering.
- $\nabla_{\parallel} \mathbf{u}$ more sensitive to resolution than ∇_{\perp} or $\nabla \times \mathbf{u}$

Incompressibility and 1-D Spectra

Incompressibility: $\hat{\mathbf{u}}(\mathbf{k}) \perp \mathbf{k}$ in wavenumber space

• At high $k \equiv |\mathbf{k}|$, spectral content of \hat{u}_1 is mostly in Fourier modes with large k_2 and/or k_3 (i.e., k_{\perp})

Relations for 1D spectra with k_1 near cutoff k_c $(k pprox k_1)$

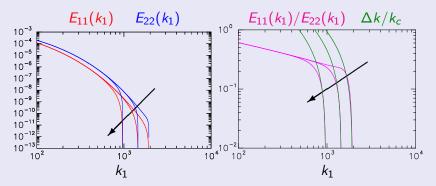
$$E_{11}(k_1) = \int_{k_1}^{\infty} \frac{E(k)}{k} (1 - k_1^2/k^2) dk$$

$$\approx \frac{E(k_1)}{k_1} \int_{k_1}^{k_c} (1 - k_1^2/k^2) dk \approx E(k_1) (\Delta k/k_1)^2$$

$$E_{22}(k_1) = \frac{1}{2} \int_{k_1}^{\infty} \frac{E(k)}{k} (1 + k_1^2/k^2) dk \approx E(k_1) (\Delta k/k_1)$$

Incompressibility and 1-D Spectra (cont'd)

- A spherical cutoff filter based on k removes more of high wavenumber content in longitudinal spectra than transverse (hence affects $\nabla_{\parallel} \mathbf{u}$ more than $\nabla_{\perp} \mathbf{u}$)
- For small $\Delta k = k_c k_1$: $E_{11}(k_1)/E_{22}(k_1) \approx \Delta k/k_c$
- $R_{\lambda} \sim 650$, $k_{max} \eta \approx 2.8$, 4096^3 , $k_c/k_{max} = 0.75$, 0.5:



Outline of This Talk

- Assessing the accuracy of large simulations
- Resolution in space and time for "extreme events"
- Towards extreme-scale computing: GPU algorithms

Tests of Spatial and Temporal Resolution

A wide parameter space: easier if not at the highest Reynolds number:

		$R_{\lambda}\sim390$							
$k_{ extit{max}}\eta$	Ν	C = 0.6	C = 0.3	C = 0.15					
1.33	1024	1.31	0.699	0.349					
2.67	2048	0.609	0.333	0.165					
5.38	4096	0.327	0.164	0.082					
		$R_{\lambda}\sim 650$							
1.33	2048	0.646	0.484	0.238					
2.67	4096	0.411	0.236	0.116					
5.38	8192	0.205	0.102	0.062					

Resolution parameters and percentage $\Delta t/\tau_{\eta}$ [Note: RK2 in time] for simulation datasets (roughly 10 τ_{η}) at Reynolds numbers corresponding (within statistical error) to past simulations at R_{λ} 390 and 650.

Resolution in time: Peak dissipation and enstrophy

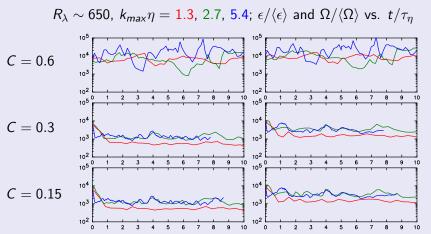
- \bullet C = 0.6 gives spuriously large peaks; 0.3 and 0.15 almost the same
- Sensitivity greater for $\epsilon/\langle\epsilon\rangle$, weaker at higher $k_{max}\eta$ (such as 5.4)

Resolution in space: Peak dissipation and enstrophy

$$R_{\lambda} \sim 390, \ k_{\text{max}} \eta = 1.3, \ 2.7, \ 5.4; \ \epsilon/\langle \epsilon \rangle \ \text{and} \ \Omega/\langle \Omega \rangle \ \text{vs.} \ t/\tau_{\eta}$$
 $C = 0.6$ $\frac{10^4}{10^2}$ $\frac{10^4}{10^4}$ $\frac{10^4}{10^4}$

- Impact of using higher $k_{max}\eta$ not clear if C is too high
- Low C: higher $k_{max}\eta$ does allow larger gradients, ϵ and Ω

Would a lower Courant no. be needed at higher R_{λ} ?



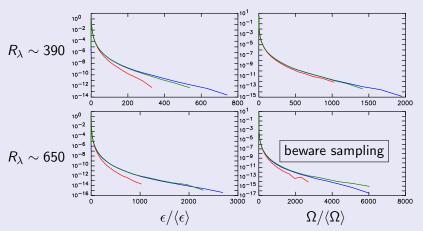
Not perfectly clear, but sensitivity to C at $k_{max}\eta\sim$ 5.4 seems stronger than at $R_\lambda\sim$ 390, even as $\Delta t/\tau_\eta$ drops

ICTS-2018

16/30

Best results available for dissipation and enstrophy PDFs

C = 0.15, $k_{max} \eta \approx 1.3 \ 2.7 \ 5.4$: Convergence apparently achieved



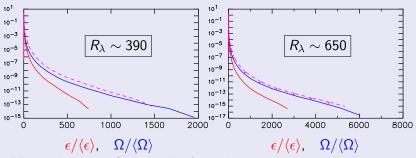
Tails stretch out further: as R_{λ} increases, and Ω relative to ϵ

Re-visiting the issue of dissipation vs enstrophy PDFs

- Both are measures of the small scales: should they scale similarly at sufficiently high Reynolds no.? (Nelkin 1999)
- Most data sources, including DNS at finite Reynolds no., show that enstrophy is more intermittent
- Visualizations of spatial structure: vortex filaments in contrast to more diffuse, sheet-like dissipative structures
- Recent DNS at higher resolution suggest both ϵ and Ω attain amplitudes more extreme than previously reported, scaling similarly unless averaged over significant scale sizes (Yeung *et al.* 2015)
 - yet contaminated by the effect of time-stepping errors, which affect dissipation more than enstrophy
 - ▶ although $\Delta t \ll \tau_{\eta}$, need to have $\Delta t \ll \eta/u'$, to resolve rapid rate of small scales advected by the large scales (Tennekes JFM 1975)

Compare dissipation and enstrophy PDFs again

Best data at C=0.15 (RK2), $k_{max}\eta\approx 5.4$: tails do not coincide, but seem to have the same shapes (Magenta dotted line is PDF of $2\epsilon/\langle\epsilon\rangle$)



Possible explanation from multi-fractal theory

- Assume $\langle \epsilon^n \rangle \propto R_\lambda^{f(n)}$, $\langle \Omega^n \rangle \propto R_\lambda^{g(n)}$, for $n \geq 1$. [with f(1) = g(1)]
- If f(n) and g(n) have the same functional *forms*: at a given R_{λ} , $\exists \beta$ s.t. $\beta \epsilon / \langle \epsilon \rangle$ and $\Omega / \langle \Omega \rangle$ have nearly the same PDF at large amplitudes

Outline of This Talk

- Assessing the accuracy of large simulations
- Resolution in space and time for "extreme events"
- Towards extreme-scale computing: GPU algorithms

How will we do larger simulations?

How do we do it now...

- Massive distributed-memory parallelism, with 2D domain decomposition (3D domain as "pencils")
- Usually, all-to-all communication for transposes of data is dominant
- On "Blue Waters" (Cray XE6): remote memory addressing via Co-Array Fortran, also helped by favorable machine topology

Changes in HPC landscape, towards Exascale (by 2021 in US)

- Many-core platforms with fewer but fatter nodes
- Heterogeneous computing: especially multi-threaded GPUs for fast arithmetic, but data movements are (even more) the key

GPUs: recent success for turbulent mixing at high Schmidt number using a combination of FFTs and compact finite differences (Gotoh et al. 2012)

Turbulent mixing at high Schmidt number

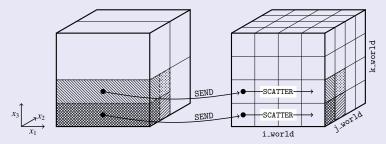
- $Sc = \nu/D$ varies: 7 for heat in water, 700 for salinity in ocean
- $Sc \gg 1$: smallest scale is Batchelor scale $\eta_B = \eta/\sqrt{Sc}$. Different scaling laws, and very difficult to resolve
- Disparate resolution requirements:
 - velocity on coarser grid, scalar on finer grid
 - scalar: use numerical method with lesser communication needs
 - some overlap of operations on velocity and scalar field?
 - CPU host to work on velocity, GPU for scalar
- Dual grid, dual communicator, dual scheme algorithm
 - ▶ CPU-based: Clay et al. 2017 (Comput. Phys. Commun., published)
 - ▶ GPU-based: Clay et al. 2018 (Comput. Phys. Commun., in revision)

GPU: Performed well on 27-Petaflop TITAN (Cray XK7) at Oak Ridge

Dual-Communicator Algorithm

Clay et al. Comput. Phys. Commun. 2017

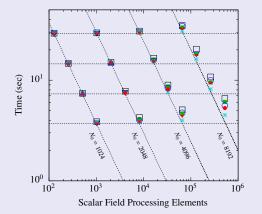
- Say $N_{\theta}/N_{u}=8$: workload on finer grid is much heavier
- Define 2 groups of MPI processes, proportional to N_u^3 and N_θ^3
- One-way intercommunicator transfer: need **u** on scalar side



- Overlap velocity field computations with scalar
- Overlap between operations on different velocity components

CPUs: DNS Code Performance Comparisons

- Problem sizes 1024³ to 8192³, different implementations
 - black squares: blocking and single-threaded
 - cyan stars: overlapping, using OpenMP nested parallelism



- Also very high scalability
- About 65% of time is spent on CCD3D
- Interpolation approx 25%
- Performance gain less than for CCD3D, due to reduced overlapping

GPU Programming Considerations

[Mainly based on experiences on TITAN (Cray XK7, 1 GPU/Node)]

- Directives-based, instead of CUDA, use OpenACC or (better yet)
 OpenMP 4.5 standard (facilitates asynchronous execution)
- FFTs using CUDA mathematical libraries extremely fast
- Memory of GPU only 1/5 of host: needs careful management
- Minimize data movement: almost all scalar field operations on GPUs
- Keep GPU(s) as busy as possible: e.g. by using 2 MPI processes on 16-core TITAN node sharing 1 GPU
- NVIDIA visual profiler can provide detailed diagnostics
- Currently, all communication go through CPUs, thus extra copying between CPU and GPU. Hope to avoid this on future machines

GPU: Weak Scaling and GPU-to-CPU Speedup

$N_{ heta}^3$	512 ³	1024^{3}	2048^{3}	4096 ³	8192^{3}
Nodes	2	16	128	1024	8192
CPU (s)	14.80	14.94	15.33	15.71	16.13
Weak (%)	_	99.1	96.5	94.2	91.8
Async. Off	2.943	3.042	3.155	3.441	3.686
Weak (%)	_	96.7	93.3	85.5	79.8
Speedup	5.03	4.91	4.86	4.57	4.38
Async. On	2.929	2.900	2.938	3.024	3.259
Weak (%)	_	101	99.7	96.7	89.9
Speedup	5.05	5.15	5.22	5.20	4.95

Conclusions and Next Steps: Science Aspects

Resolution effects and numerical challenges in time and space stronger than anticipated earlier (at RK2, needs Courant no. C = 0.3 or 0.15)

- Although less intermittent than enstrophy, dissipation more sensitive to the numerics (role of incompressibility, vortex filaments, etc)
- Some past statements about extreme events in need of revision
- To examine/quantify resolution effects on various other statistics (perhaps inertial range statistics only weakly affected)

Successful development and execution of highly optimized algorithm for mixing at high Sc on a 27-PF GPU machine

- Minimizing data movement and aggressive overlapping using OpenMP 4.5 on GPUs: factor of 5 speedup over CPU only
- To fully analyze passive scalar with mean gradient at $R_{\lambda} \sim$ 140, Sc=512; and extend to active scalars (stratified flow)

Conclusions and Next Steps: Computing Aspects

Viability of 16384³ or higher on a production basis

- Adopt OpenMP 4.5 ideas in recent work on mixing at high Sc, towards new pseudo-spectral algorithm for velocity field
- Port codes to next big machine (150 PF SUMMIT at ORNL)
- Extension from 1 scalar to 2; passive to active

Obtaining, using, preserving resources

- Make science case in competitive proposals
- Large machines: problems are to be expected
- Where to put data and even hold on to them long term

More community and international cooperation would be very useful

Acknowledgments (in addition to Sreeni)

Research Support

• U.S National Science Foundation (Fluid Dynamics & Cyber)

Supercomputing Resource Providers

- Blue Waters Project (University of Illinois, Urbana-Champaign)
- Texas Advanced Computation Center (XSEDE Consortium)
- Oak Ridge Leadership Computing Facility (US Dept of Energy)

Collaborators and Friends

- Toshiyuki Gotoh, Nagoya Inst. of Tech., Japan
- Stephen B. Pope, Cornell Univ., USA
- Alain Pumir, ENS-Lyon, France
- Dhawal Buaria (PhD 2016), Max Planck Inst, Germany
- Matthew P. Clay (PhD 2017), Air Force Research Lab, USA

Current PhD Students

• Shine X.M. Zhai, Kiran Ravikumar

Some Publications

- Buaria, D., PKY, & Sawford, B.L. (2016) A Lagrangian study of turbulent mixing: forward and backward dispersion of molecular trajectories in isotropic turbulence. JFM 799, 352-382.
- Clay, M.P., Buaria, D., Gotoh, T. & PKY (2017) A dual communicator dual grid-resolution algorithm for Petascale simulations of turbulent mixing at high Schmidt number. *Comput. Phys. Commun.*, 219, 313-328.
- Donzis, D.A., Sreeni & PKY (2010) The Batchelor spectrum for mixing of passive scalars in isotropic turbulence. Flow, Turb. & Combust., 85, 549-566.
- Donzis, D.A., PKY & Sreeni (2008). Energy dissipation rate and enstrophy in isotropic turbulence: resolution effects and scaling in direct numerical simulations. *PoF*, 20, 045108.
- PKY, Donzis, D.A. & Sreeni (2012). Dissipation, enstrophy and pressure statistics in turbulence simulations at high Reynolds numbers. *JFM*, 700, 5-15.
- PKY, Zhai, X.M & Sreeni (2015). Extreme events in computational turbulence. PNAS, 112, 12633-12638.