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Prologue:

• Early Ramsey-type theorems include the

theorem of Ramsey; the other results being those

of Schur, van der Waerden and Hilbert, which share

the credit of preceding the result of Ramsey in the

class of Ramsey-type theorems.

• Origins of some of the famous recent developments

in mathematics can be traced back to these results.



Planning of this lecture:

• The general philosophy of this theme.

• The pigeonhole principle

( of which the classical Ramsey theorem is a

generalization).

• Some of these theorems.

Interrelations and generalizations.



General philosophy:

Existence of regular substructures in general combina-

torial structures is the phenomena which can be said to

characterize the subject of Ramsey theory.

Most often, we shall come across results saying that if a

large structure is divided into finitely many parts, at least

one of the parts will retain certain regularity properties

of the original structure.

In some results in Ramsey theory, ‘large’ substructures

will be seen to have certain regularities.

Theodore Motzkin: ”Complete disorder is impossible.”



The pigeonhole principle:

The pigeonhole principle: If n + 1 objects are put in n

pigeonholes, then there will be a pigeonhole containing

more than one object.

A well-known example: If you have a party of at least

6 people, you can guarantee that there will be a group

of 3 people who all know each other, or a group of 3

people who all do not know each other.



Proof by graphs:

(joining by red line when two people know each other)



Theorems of Ramsey and Schur:

Ramsey’s Theorem (1930):

Let k, r, l(≥ k) be positive integers. Then there exists

a positive integer n = n(k, r, l) such that for any r-

colouring of the k-subsets of the set [n], there is an

l-subset of [n] all of whose k- subsets are of the same

colour.

Schur’s Theorem (1916):

For any r-colouring of Z+, ∃ a monochromatic subset

{x, y, z} of Z+ such that x + y = z. (The situation is

described by saying that the equation x+ y = z has a

monochromatic solution.)



Deduction of Schur’s Theorem from Ramsey’s Theorem:

Let N = n(2, r,3), where n(k, r, l) is as defined in

Ramsey’s Theorem above.

An r-colouring χ : [N ] → [r] induces an r-colouring χ∗

of the collection of 2-element subsets of [N ]:

χ∗({i, j}) = χ(|i− j|), i 6= j ∈ [N ].

By definition, ∃ a 3-element subset {a, b, c} of [N ] with

a < b < c such that χ∗({a, b}) = χ∗({b, c}) = χ∗({c, a}),

that is, χ(b− a) = χ(c− b) = χ(c− a).

Since (b−a)+(c− b) = (c−a), we get a monochro-

matic solution of x+ y = z.



van der Waerden’s theorem:

Rightly finding its place among the ‘pearls’ that Kinchin

presents in his ‘Three pearls of Number theory’, the the-

orem of van der Waerden we are going to state now, led

to many interesting developments in combinatorics and

number theory.

van der Waerden’s theorem (1927): Given k, r ∈ Z+,

there exists W (k, r) ∈ Z+ such that for any r-colouring

of {1,2, · · ·W (k, r)}, there is a monochromatic arith-

metic progression (A.P.) of k terms.



Some generalizations of Schur’s theorem:

Schur’s Theorem: For any finite colouring of Z+, ∃ a

monochromatic subset {x, y, z} of Z+ satisfying the

equation

x+ y = z.

Special case of van der Waerden’s theorem: For any

finite colouring of Z+, ∃ a monochromatic subset

{x, y, z} of Z+ satisfying the equation

x+ z = 2y.



Rado’s theorem (abridged version). Given an equation

c1x1 + · · ·+ cnxn = 0, ci(6= 0) ∈ Z,

it has a monochromatic solution (x1, · · · , xn) ( where

xi’s may not be distinct ) in Z+ with respect to any fi-

nite colouring if and only if some non-empty subset of

{c1, · · · , cn} sums to zero.

Folkman’s theorem. Given any two positive integers r

and k, there is a positive integer n = n(r, k) such that

if [n] is r coloured, there are positive integers a1 <

a2 < · · · < ak satisfying
∑

1≤i≤k ai ≤ n such the ele-

ments
∑

i∈I ai are identically coloured as I varies over

different non-empty subsets of {1,2, · · · , k}.



Some generalizations of van der Waerden’s theorem:

Grünwald’s theorem. Let d, r ∈ Z+. Then given any

finite set S ⊂ (Z+)d, and an r-colouring of (Z+)d,

there exists a positive integer ‘a’ and a point ‘v’ in (Z+)d

such that the set aS + v is monochromatic.

Remark.

We note that when d = 1, putting S = {1, · · · , k},

Grünwald’s theorem implies van der Waerden’s theo-

rem.



(monochromatic translated homothety)



Hales-Jewett theorem: Let

Cn
t = {x1x2 · · ·xn : xi ∈ {1,2, · · · t}}.

A combinatorial line in Cn
t is a set of t points in Cn

t

ordered as X1, X2, · · · , Xt where

Xi = xi1xi2 · · ·xin

such that for j belonging to a nonempty subset I of

{1, · · ·n} we have xsj = s for 1 ≤ s ≤ t and x1j =

· · · = xtj = cj for some cj ∈ {1, · · · t} for j belonging

to the complement (possibly empty) of I in {1, · · ·n}.

Hales-Jewett theorem says that given any two positive

integers r and t, there exists n = HJ(r, t) such that

if Cn
t is r-coloured then there exists a monochromatic

combinatorial line.



Remark:

For t = 3 and n = 5, the following is an example of a

combinatorial line in C5
3 :

12123

22223

32323

We see that the collection of words in C5
3 are in one-

to-one correspondence in the obvious way with a sub-

set of the integers 1,2, · · · ,33333 where the integers

have their usual expression in decimal system, that is,

with base 10. Thus, the three words in the above com-

binatorial line correspond to an arithmetic progression

with common difference 10100.



Remarks:

The theorem of Hales and Jewett, revealing the com-

binatorial nature of van der Waerden’s theorem would

claim that this ‘pearl of number theory’ belonged to the

ancient shore of combinatorics.

Perhaps nothing can better describe the role of this the-

orem as has been done in the following statement:

“the Hales-Jewett theorem strips van der Waerden’s the-

orem of its unessential elements and reveals the heart

of Ramsey theory”.

–Graham, Rothschild and Spencer



However, on the other hand, van der Waerden’s

theorem was a prelude to a theme which essentially

belongs to the realm of Number Theory.

The development of this theme, culminating in the theo-

rem of Szemerédi, followed by the ergodic proof of Sze-

meredi’s theorem due to Furstenberg and holding some

yet unanswered questions to its bosom.

In the thirties, Erdős and Turan conjectured that for a

subset of the set of positive integers, the property of

possessing arithmetic progressions of arbitrary length

actually depends on the ‘size’ of the set.



Erdős and Turan conjecture

Any subset of Z+ with positive upper natural density

will have the property. For A ∈ Z+, the upper natural

density d̄(A) of A is defined by

d̄(A) = lim sup
N→∞

|A ∩ [N ]|

N
.

One can observe that in this regard, the situation is

quite different in the case of Schur’s theorem For, even

though the set of odd integers and the set of even inte-

gers have the same upper natural density (namely, 1
2),

the set of odd integers do not possess any solution to

the equation x+ y = z.



The first progress towards the Erdös-Turan conjecture

was made by K. F. Roth (1953) who proved that any

subset A of the set Z+ of positive integers with positive

upper natural density will always contain a three-term

arithmetic progression.

In Szemerédi (1969) improved Roth’s result to that of A

possessing a four-term arithmetic progression. Later in

1974, in a famous paper Szemerédi proved the general

Erdös-Turan conjecture by combinatorial method.

In 1977, Furstenberg gave an ergodic theoretic proof of

Szemerédi’s theorem which opened up the subject of

Ergodic Ramsey Theory.



The following conjecture of Erdős is still open.

If A ⊂ Z+ satisfies

∑

a∈A

1

a
= ∞,

then A contains arithmetic progressions of arbitrary length.



A theorem of Hilbert

Let T be a continuous map of a topological space X

into itself. Then a point x ∈ X is called a recurrent

point for T if for any neighbourhood V of x, ∃ n ≥ 1

with Tn(x) ∈ V .

Now, let X be a compact topological space and T :

X → X a continuous map. Let F denote the family of

nonempty closed subsets of X invariant under T .

Ordering by inclusion, we observe that because of com-

pactness of X, by the finite intersection property, the in-

tersection of a totally ordered chain in F belongs to F .

Hence, by Zorn’s lemma, F has a minimal element Y0.

We claim that each point of Y0 is a recurrent point for T.



Let y ∈ Y0 and Y={Tn(y) : n ≥ 1}, the forward orbit

closure of y.

Now, Y0 being T invariant, {Tn(y) : n ≥ 1} ⊂ Y0 and

therefore, Y0 being closed, {Tn(y) : n ≥ 1} ⊂ Y0.

But by definition, Y is nonempty and closed. Further,

since T is continuous, Y is invariant under T .

Therefore, Y ∈ F and by minimality Y = Y0. Hence

y ∈ Y which means that each neighbourhood of y con-

tains Tn(y) for some n ≥ 1.

Thus in particular, we have:

For a continuous map T from a compact topological

space X into itself, the set of recurrent points for T is

nonempty.



For a, b ∈ Λ the metric d defined below gives the dis-

crete topology on Λ.

d(a, b) =

{

0 if a = b

1 if a 6= b.

The space Ω = ΛZ+
with the product topology is metriz-

able. If for ω, ω′ ∈ Ω one defines

D(ω, ω′) =
∞
∑

n=1

d
(

ω(n), ω′(n)
)

2n
,

then it is easy to verify that the metric D corresponds

to the product topology on Ω. By Tychonoff’s theorem,

(Ω, D) is therefore compact.



Also the semigroup Z+ acts on the elements of Λ in

the obvious way by shifting. That is by the action of

n ∈ Z+, an element ω ∈ Ω goes to ω′ ∈ Ω where

ω′(m) = ω(m + n). The map on Ω corresponding

to n = 1 (which in fact determines the action of the

semigroup Z+) will be called the shift mapand we shall

denote it by σ. The map σ : Ω → Ω is continuous.

The space Ω endowed with the metric D and the Z+

action is a symbolic flow in the terminology of Dynami-

cal Systems. In a symbolic flow, by saying that a point

is recurrent one means that it is recurrent for the shift

map. Λ is sometimes called the alphabet and a finite

sequence of elements in Λ is called a word.



It is clear that two points ω, ω′ ∈ Ω are close if they

agree on a large block of numbers (1,2, · · · , N). There-

fore, in a symbolic flow, a sequence ω ∈ Ω is recurrent

if and only if every word occurring in ω occurs a sec-

ond time. We further note that a most general recurrent

point ω will look like

ω = [(aω(1)a)ω(2)(aω(1)a)]ω(3)

[(aω(1)a)ω(2)(aω(1)a)] · · · ∗

where a = ω(1) ∈ Λ and ω(i) ’s are arbitrary words

composed of elements of Λ.



Hilbert’s theorem. Given a finite colouring on Z+ and a

positive integer l, one can find l elements m1 ≤ m2 ≤

· · · ≤ ml in Z+ such that if P(m1, · · · ,ml) denotes

the set of sums
∑l

i=1 c(i)mi, c(i) = 0 or 1, then

infinitely many translates of P(m1, · · · ,ml) are of the

same colour.

Proof. Let χ : Z+ → {c1, c2, · · · , cq} be a q-colouring

on Z+. Let Λ = {1,2, · · · , q} and Ω be defined as

above. We consider the element ξ ∈ Ω where

ξ(n) = i ⇐⇒ n ∈ χ−1(ci), i = 1,2 · · · q.



Case I (ξ is a recurrent point)

Let ξ has the form given in (*) and

ω0 = a

ω1 = ω0ω
(1)ω0

ω2 = ω1ω
(2)ω1

· · · · · ·

ωn = ωn−1ω
(n)ωn−1

Now, denoting the length of the word ωnω
(n+1) by mn+1,

we see that if some symbol occurs at position p in wn,

then it occurs at positions p and p+mn+1 in ωn+1 =

ωnω
(n+1)ωn. Thus the symbol a occurs at positions

1,1+m1,1+m2,1+m1+m2 and in general at po-

sitions belonging to 1+ P(m1, · · ·ml) for any l. Since

every finite configuration occurs infinitely often in ξ, it



is now clear that χ−1(a) contains infinitely many trans-

lates of P(m1, · · ·ml).

Case II (ξ is not a recurrent point) In this case we con-

sider the forward orbit closure X of ξ in Ω. The shift

operator takes points of X to X and therefore there

is a recurrent point say w for the shift operator σ in

X. Let w be of the form given in (*). Therefore, there

exists a sequence of positive integers {nk} such that

σnk(ξ) → w. If a is the leading symbol in w, then

arguing as before, a occurs at positions belonging to

1+P(m1, · · ·ml). Choose k such that σnk(ξ) agrees

with w for (1+m1+· · ·+ml) terms. Then ξ(nk+p) =

a whenever p ∈ (1 + P(m1, · · ·ml)). One can as-

sume that nk → ∞. For, otherwise, a finite trans-

late of ξ would be recurrent and one could then in-

voke the first case. Therefore we obtain that 1 + nk +

P(m1, · · ·ml) ∈ χ−1(a) for a sequence {nk} where

nk → ∞ and this proves the theorem.


