Mathematical Modeling of Chemical Reactors

Preeti Aghalayam Professor, Dept. of Chemical Engg. IIT Madras preeti@iitm.ac.in

18 May 2018

Just your garden variety chemical plants

Gandhinagar Plant

Jamnagar Refinery

Urea manufacture plant

Catalytic cracking unit

Yes, there is chemistry

in Chemistry:

$A + B \rightarrow C + D$

in Chemical Engineering:

Some examples from my work

Being kind to the environment

- Chemical routes to NOx & soot
- Catalyst-based
 reduction of NOx

Utilising resources smartly

- Underground gasification of coal
- Production of carbon black

Some of the interesting questions we have answered-

- 1. How does NOx form in fuel-rich flames?
- 2. Which catalyst best controls NOx in automobile exhaust?
- 3. How does soot particle size distribution vary with burner configuration?
- 4. What are the important reactions in coal gasification?

Basics of chemical reactor modeling

The world famous perfectly stirred reactor

Also called the Continuously Stirred Tank Reactor or CSTR

Accumulation = Input – Output + Generation

$$\frac{dN_i}{dt} = F_{i0} - F_i + Vr_i$$

At t=0, $N_i=N_{i0}$

- Here, the "molar flow rate" F_0 enters the picture
- We can also introduce "concentration" C_i

$$\frac{dC_i}{dt} = v_0(C_{i0} - C_i)/V + r_i$$

We refer to the quantity V/v_0 as the reactor residence time

1	What is E then?	/
\succ		>
~		

Some case studies

1. Underground Coal Gasification

2. Understanding Automotive Soot

3. Catalytic Control of NOx

"Shape" of the UCG reactor

Modelling of UCG

The math model of UCG is an idealized picture of the complex process, but has good ability to predict experimental data

Formation of Soot in Flames

Regulations on PM emissions from vehicles prompt us to examine this problem.

 T_{h}

stagnation plate

Control of NOx using Catalysts

Catalytic converters are used to reduce NOx in automobiles

But they have drawbacks- cold start, lean burn engines...

Selective catalyic reduction, Lean NOx trap are proposed for this.

Image courtesy of ClearMechanic.com

Hypothesised reaction mechanism

A plug flow reactor model

Cat Converter

Mass balance for surface intermediates $\sum_{k=0}^{nrxns} \kappa B_{k} = 0$

 $\sum_{j=1}^{nrxns} v_{ij} R_j = 0$

Mass balance for gas-phase species

$$\frac{(C_i^0 - C_i)}{\tau} = -a_v * (\sum_{j=1}^{nrxns} v_{ij} R_j)$$

Catalyst site conservation

$$\sum_{i=1}^{nsurface} \theta_i = 1$$

	Elementary	Activation barrier (kcal/mol)					
	Reactions	Pt	Rh	Pd	Ru	Ir	
	NO + * \rightarrow NO*	0.0	0.0	0.0	0.0	0.0	
	NO* →NO + *	26.0	26.0	32.0	34.2	30.7	
	$NO^{\star} \rightarrow N^{\star} + O^{\star}$	12.5	6.6	9.0	0.0	7.7	
	$N^* + N^* \rightarrow N_2 + 2^*$	26.6	26.6	42.8	48.5	39.3	
	$NO^* \text{+} N^* \rightarrow N_2O^* \text{+} ^*$	21.2	21.2	30.0	42.2	28.7	
	$N_2O^* \rightarrow N_2O$ + *	12.2	10.0	17.0	12.0	14.0	
	$CO + * \rightarrow CO*$	0.0	0.0	0.0	0.0	0.0	
	$CO^* \rightarrow CO$ + *	32.0	32.0	34.0	34.0	34.0	
	$\mathrm{CO}^{\star} + \mathrm{O}^{\star} \rightarrow \mathrm{CO}_2 + 2^{\star}$	23.2	24.3	24.4	27.0	24.9	
	O ₂ + 2* -> 2O*	0.0	0.0	0.0	0.0	0.0	
	20* -> 0 ₂ + 2*	51.0	85.0	55.0	121.0	54.0	

But, honestly...

http://www.scrap-catalyst-hub.com/precious-metals/scrap-catalytic-converter-industry-size/

The catalyst metals are humongously expensive!

But this is just the beginning!

schematic of NO conversion to various products as the reactor temperature and inlet O2 % are varied

Models that account for economic & safety aspects

Studies on the effects of practical operating conditions

Discoveries of new and improved catalysts

Want to discuss anything? Write to me

preeti@iitm.ac.in

Preeti Aghalayam @kennybpm

i am a short person, to be precise, a short chemical engineering professor who likes to run.