An overview of the R programming environment

Deepayan Sarkar

Software for Statistics

- Computing software is essential for modern statistics
- Large datasets
- Visualization
- Simulation
- Iterative methods
- Many softwares are available
- I will talk about R
- Available for Free (Open Source)
- Very popular (both academia and industry)
- Easy to try out on your own

Outline

- Some examples
- A little bit of history
- Some thoughts on why R has been
successful

Before we start, an experiment!

Color combination: Is it white \& gold or blue \& black ? Let's count!

Question: What proportion of population sees white \& gold?

- Statistics uses data to make inferences
- Model:
- Let p be the probability of seeing white \&
gold
- Assume that individuals are independent
- Data:
- Suppose X out of N sampled individuals see white \& gold; e.g., $N=45$, $X=26$.
- According to model, $X \sim \operatorname{Bin}(N, p)$
- "Obvious" estimate of $p=\mathrm{X} / \mathrm{N}=26 / 45=$ 0.58
- But how is this estimate derived?

Generally useful method: maximum likelihood

- Likelihood function: probability of observed data as function of p

$$
L(p)=P(X=26)=\binom{45}{26} p^{26}(1-p)^{(45-26)}, p \in(0,1)
$$

- Intuition: p that gives higher $L(p)$ is more "likely" to be correct
- Maximum likelihood estimate $\hat{p}=\arg \max L(p)$
- By differentiating

$$
\log L(p)=c+26 \log p+19 \log (1-p)
$$

$$
\begin{aligned}
& \frac{d}{d p} \log L(p)=\frac{26}{p}-\frac{19}{1-p}=0 \Longrightarrow 26(1-p)-19 p=0 \Longrightarrow p=\frac{26}{45}
\end{aligned}
$$

How could we do this numerically?

- Pretend for the moment that we did not know how to do this. How could we arrive at the same solution numerically?
- Basic idea: Compute $L(p)$ for various values of p and find minimum.
- To do this in R, the most important thing to understand is that R works like a calculator:
- The user types in an expression, R calculates the answer
- The expression can involve numbers, variables, and functions
- For example:

```
N = 45
x = 26
p = 0.5
choose (N, x) * p^x * (1-p)^(N-x)
```

\# [1] 0.06930242

"Vectorized" computations

- One distinguishing feature of R is that it operates on "vectors"

```
pvec = seq(0, 1, by = 0.01)
```

pvec

```
[1] 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 
[24] 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45
[47] 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0. 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68
[70] 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80
[93] 0.92 0.93 0.94 0.95 0.96 0.97 0.98}00.99 1.00
```

$\operatorname{Lvec}=\boldsymbol{c h o o s e}(N, x) * \operatorname{pvec}^{\wedge} \mathrm{x} *(1-\mathrm{pvec})^{\wedge}(N-x)$
Lvec

| $[1]$ | $0.000000 e+00$ | $2.014498 e-40$ | $1.114740 e-32$ | $3.474672 e-28$ | $5.056051 e-25$ | $1.371093 e-22$ | $1.283689 e-20$ | $5.765318 e-19$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $[9]$ | $1.511495 e-17$ | $2.625366 e-16$ | $3.293866 e-15$ | $3.174813 e-14$ | $2.460262 e-13$ | $1.586687 e-12$ | $8.747777 e-12$ | $4.211439 e-11$ |
| $[17]$ | $1.801043 e-10$ | $6.938314 e-10$ | $2.435828 e-09$ | $7.868776 e-09$ | $2.358239 e-08$ | $6.602594 e-08$ | $1.737342 e-07$ | $4.318627 e-07$ |
| $[25]$ | $1.018706 e-06$ | $2.289299 e-06$ | $4.918220 e-06$ | $1.013189 e-05$ | $2.006894 e-05$ | $3.831376 e-05$ | $7.065023 e-05$ | $1.260767 e-04$ |
| $[33]$ | $2.181057 e-04$ | $3.663379 e-04$ | $5.982529 e-04$ | $9.510890 e-04$ | $1.473611 e-03$ | $2.227478 e-03$ | $3.287864 e-03$ | $4.742910 e-03$ |
| $[41]$ | $6.691627 e-03$ | $9.239888 e-03$ | $1.249429 e-02$ | $1.655390 e-02$ | $2.150009 e-02$ | $2.738512 e-02$ | $3.422026 e-02$ | $4.196469 e-02$ |
| $[49]$ | $5.051658 e-02$ | $5.970760 e-02$ | $6.930242 e-02$ | $7.900386 e-02$ | $8.846442 e-02$ | $9.730387 e-02$ | $1.051320 e-01$ | $1.115747 e-01$ |
| $[57]$ | $1.163022 e-01$ | $1.190543 e-01$ | $1.196637 e-01$ | $1.180712 e-01$ | $1.143327 e-01$ | $1.086179 e-01$ | $1.011977 e-01$ | $9.242411 e-02$ |
| $[65]$ | $8.270372 e-02$ | $7.246667 e-02$ | $6.213552 e-02$ | $5.209643 e-02$ | $4.267559 e-02$ | $3.412296 e-02$ | $2.660425 e-02$ | $2.020120 e-02$ |
| $[73]$ | $1.491921 e-02$ | $1.070050 e-02$ | $7.440747 e-03$ | $5.006696 e-03$ | $3.252859 e-03$ | $2.035570 e-03$ | $1.223457 e-03$ | $7.039944 e-04$ |
| $[81]$ | $3.863739 e-04$ | $2.013850 e-04$ | $9.918271 e-05$ | $4.588367 e-05$ | $1.979882 e-05$ | $7.901767 e-06$ | $2.887291 e-06$ | $9.539431 e-07$ |
| $[89]$ | $2.806024 e-07$ | $7.206085 e-08$ | $1.575446 e-08$ | $2.836495 e-09$ | $4.020606 e-10$ | $4.212284 e-11$ | $2.973693 e-12$ | $1.225581 e-13$ |

Plotting is very easy

plot(x = pvec, $y=$ Lvec, type = "l")

Functions

- Functions can be used to encapsulate repetitive computations
- Like mathematical functions, they take arguments as input and "returns" an output

```
L = function(p) choose(N, x) * p^x * (1-p)^(N-x)
```

L(0.5)
\# [1] 0.06930242

L ($26 / 45$)
\# [1] 0.1197183

Functions can be plotted directly

$\operatorname{plot}(\mathrm{L}$, from $=0$, to $=1)$

...and they can be numerically "optimized"

optimize(L, interval $=\mathbf{c}(0,1)$, maximum $=$ TRUE $)$

\# [1] 0.5777774

A more complicated example

- Suppose $X_{1}, X_{2}, \ldots, X_{n} \sim \operatorname{Bin}(N, p)$, and are independent
- Instead of observing each X_{i}, we only get to know $M=\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$
- What is the maximum likelihood estimate of p ? (N and n are known, $M=m$ is observed)

A more complicated example

To compute likelihood, we need p.m.f. of M :

$$
P(M \leq m)=P\left(X_{1} \leq m, \ldots, X_{n} \leq m\right)=\left[\sum_{x=0}^{m}\binom{N}{x} p^{x}(1-p)^{(N-x)}\right]^{n}
$$

and

$$
P(M=m)=P(M \leq m)-P(M \leq m-1)
$$

In R,

```
= 10
function (p, m)
x = seq(0, m)
    (\boldsymbol{sum}(\operatorname{choose}(N,x) * p^x* (1-p)^(N-x)))^n
function (p)
    F(p, M) - F(p, M-1)
```


Maximum Likelihood estimate

optimize(L, interval $=\mathbf{c}(0,1)$, maximum $=$ TRUE $)$
\$maximum
\# [1] 0.4996703
\# \$objective
\# [1] 0.1981222

"The Dress" revisited

- What factors determine perceived color? (From 23andme.com)

Age and Sex Effect on \#TheDress

Simulation: birthday problem

- R can be used to simulate random events
- Example: how likely is a common birthday in a group of 20 people?

```
N = 20
days = sample(365, N, rep = TRUE)
days
```

\# [1] 65
length (unique (days))

Law of Large Numbers

- With enough replications, sample proportion should converge to probability

```
haveCommon = function()
{
    days = sample(365, N, rep = TRUE)
    length(unique(days)) < N
}
haveCommon()
```

\# [1] FALSE
haveCommon()
\# [1] FALSE
haveCommon ()
\# [1] TRUE
haveCommon ()

Law of Large Numbers

- With enough replications, sample proportion should converge to probability
- Do this sytematically:
replicate(100, haveCommon())
\# [1] TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE
\# [20] TRUE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE
\# [39] FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
\# [58] TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE
\# [77] TRUE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE
\# [96] FALSE TRUE TRUE TRUE TRUE

Law of Large Numbers

- With enough replications, sample proportion should converge to probability
plot(cumsum(replicate(1000, haveCommon())) / 1:1000, type = "1")
lines (cumsum(replicate(1000, haveCommon())) / 1:1000, col = "red")
lines (cumsum(replicate (1000, haveCommon())) / 1:1000, col = "blue")

A more serious example: climate change

Showentries Year	Temp		CO2	CH4	NO2
1861	-0.411	286.5	838.2	288.9	
1862	-0.518	286.6	839.6	288.9	
1863	-0.315	286.8	840.9	289.0	
1864	-0.491	287.0	842.3	289.1	
1865	-0.296	287.2	843.8	289.1	
1866	-0.295	-0.315	287.4	845.5	289.2
1867	-0.268	-0.287	287.8	847.1	289.3
1868	-0.282		288.2		848.6
1869		Previous	1	2	3

Change in temperature (global average deviation) since 1851
library(lattice)
xyplot(Temp ~ Year, data = globalTemp, grid = TRUE)

Change in atmospheric carbon dioxide

```
xyplot(CO2 ~ Year, data = globalTemp, grid = TRUE)
```


Does change in CO_{2} explain temperature rise?

```
xyplot(Temp ~ CO2, data = globalTemp, grid = TRUE, type = c("p", "r"))
```


Plot includes the Least Squares regression line

Fitting the regression model

```
fm = lm(Temp ~ 1 + CO2, data = globalTemp)
coef(fm) # estimated regression coefficients
```

```
# (Intercept)
CO2
# -2.836082117 0.008486628
```

We can confirm using a general optimizer:

```
SSE = function(beta)
    with(globalTemp,
        sum((Temp - beta[1] - beta[2] * CO2)^2))
optim(c(0, 0), fn = SSE)
$par
[1] -2.836176636 0.008486886
#
# $value
[1] 2.210994
#
# $counts
function gradient
# 93
#
$convergence
[1] 0
#
# $message
# NULL
```


Fitting the regression model

lm () gives exact solution and more statistically relevant details
summary (fm)

```
#
Call:
lm(formula = Temp ~ 1 + CO2, data = globalTemp)
#
Residuals:
    Min 1Q Median 3Q Max
-0.28460-0.09004-0.00101 0.08616 0.35926
#
Coefficients
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -2.8360821 0.1145766 -24.75 <2e-16 ***
CO2 0.0084866 0.0003602 23.56 <2e-16 ***
Signif. codes: 0 '****'0.001 '***'0.01 '** 0.05 '.''0.1 ' ' 1
```


Fitting the regression model

lm () gives exact solution and more statistically relevant details
$\operatorname{str}(f m \$ q r)$

```
# List of 5
$ qr : num [1:151, 1:2] -12.2882 0.0814 0.0814 0.0814 0.0814
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:151] "1" "2" "3" "4"
.. ..$ : chr [1:2] "(Intercept)" "CO2"
.. altr(*, assign )= int [1:2] 0 1
$ qraux: num [1:2] 1.08 1.08
$ pivot: int [1:2] 1 2
$ tol : num 1e-07
S rank : int 2
# - attr(*, "class")= chr "qr"
```


Changing the model-fitting criteria

- Suppose we wanted to minimize sum of absolute errors instead of sum of squares
- No closed form solution any more, but general optimizer will still work:

```
SAE = function(beta)
{
    with(globalTemp,
        sum(abs(Temp - beta[1] - beta[2] * CO2)))
}
opt = optim(c(0, 0), fn = SAE)
opt
$par
[1] -2.832090898 0.008471257
#
$value
[1] 14.5602
#
# $counts
# function gradient
# 123 NA
#
$convergence
[1] 0
#
# $message
# NULL
```


What about $\mathrm{NH}_{4}, \mathrm{NO}_{2}$?

xyplot(Temp ~ CH4, data = globalTemp, grid = TRUE, type = c("p", "r"))

What about $\mathrm{NH}_{4}, \mathrm{NO}_{2}$?

xyplot(Temp ~NO2, data = globalTemp, grid = TRUE, type = c("p", "r"))

What about $\mathrm{NH}_{4}, \mathrm{NO}_{2}$? Difficult to distinguish

A very brief history of R

What is R ?

From its own website:
R is a free software environment for statistical computing and graphics.

It is a GNU project which is similar to the S language and environment which was developed at Bell Laboratories (formerly AT\&T, now Lucent Technologies) by John Chambers and colleagues. R can be considered as a different implementation of S.

The origins of S

- Developed at Bell Labs (statistics research department) 1970s onwards
- Primary goals
- Interactivity: Exploratory Data Analysis vs batch mode
- Flexibility: Novel vs routine methodology
- Practical: For actual use, not (just) academic research

John Chambers received the prestigious ACM Software System Award in 1998
For The S system, which has forever altered how people analyze, visualize, and manipulate data.

The origins of R

- Early 1990s: Started as teaching tool by Robert Gentleman \& Ross Ihaka at the University of Auckland
- 1995: Convinced by Martin Mächler to release as Free Software (GPL)
- 2000: Version 1.0 released

Has since far surpassed S in popularity

Number of R packages on CRAN

Why the success? The user's perspective

- R is designed for data analysis
- Basic data structures are vectors
- Large collection of statistical functions
- Advanced statistical graphics capabilities
- The vast majority of R users use it as a statistical toolbox
- R "base" comes with a large suite of statistical modeling and graphics functions
- If these are not enough, more than 10000 add-on packages are available

The developer's perspective

- Easy dissemination of research (through add-on
packages)
- Rapid prototyping
- Interfaces to external software

Rapid prototyping

John Chambers, Programming with Data:
S is a programming language and environment for all kinds of computing involving data. It has a simple goal: To turn ideas into software, quickly and faithfully.

A silly example: generate Fibonacci sequence

```
fibonacci <- function(n)
    if (n< 2)
        x <- seq(length = n) - 1
    else
        x
        while (length(x) < n) {
            x <- c(x, sum(tail (x, 2)))
    }
}
fib10 <- fibonacci(10)
fib10
```

\# $\begin{array}{lllllllllll}{[1]} & 0 & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34\end{array}$

Also easy to call C for efficiency

File fib.c:

```
#include <Rdefines.h>
SEXP fibonacci_c(SEXP nr)
    int i, n = INTEGER_VALUE(nr)
    SEXP ans = PROTECT(NEW_INTEGER(n));
    int *x = INTEGER_POINTER(ans);
    x[0] = 0; x[1] = 1;
    for (i = 2; i < n; i++) x[i] = x[i-1] + x[i-2];
    UNPROTECT(1);
    return ans;
```

$\}$

Compile into shared library:
\$ R CMD SHLIB fib.c

Load into R and call:

```
dyn.load("fib.so")
cfibl0 = .Call("fibonacci_c", as.integer(10))
cfibl0
```


Even easier to call C++ with Rcpp package

File fib.cpp:

```
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
NumericVector fibonacci_cpp(int n)
    NumericVector x(n);
    x[0] = 0; x[1] = 1;
    for (int i = 2; i < n; i++) x[i] = x[i-1] + x[i-2];
    return x
```

Compile and call:

Rcpp::sourceCpp("fib.cpp")
fibonacci_cpp(10)

Summary

- Strengths of R: flexibility and
extensibility
- Powerful built-in tools
- Programming language
- Compiled code for efficiency
- Further demos of interfaces (if time)

Parting comments: reproducible documents

- Creating reports / presentations with numerical analysis is usually a two-step process:
- Do the analysis using a computational software
- Write report in a word processor, copy-pasting results
- R makes it very convenient to write "literate documents" that contain both analsyis code and report text
- Basic idea:
- Start with source text file containing code+text
- Transform file by running code and embedding results
- Produces another text file (LaTeX, HTML, markdown)
- Processed further using standard tools
- Example: this presentation is created from this source file (R Markdown) using knitr and pandoc
- As the source format is markdown, output could also be PDF instead of HTML

