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Theoretically speaking ...

Through simple puzzles let us try to understand
some aspects of Logic, Computation of Boolean

Functions, and Coding Theory.



Puzzle 1



Three girls and hats

The story:
Three girls sitting in a room.

Each wears a red colored or white colored hat.
Teacher asks each one of them to guess the color of their own hat.
They obviously have no clue!

Teacher: there is alteast one red hat.
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Three girls and hats

A: I don’t know the color of my hat.
B: Even I don’t know the color of my hat.

C : I know the color of my hat; its red!

Go figure!
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Discussion

Due to teacher’s claim, not all hats white.

A doesn’t know the color of her hat, therefore:
Both B’s and C ’s hats cannot be white.

Say, C ’s hat is white and A’s red:
Then B would know her hat color
But even B does not know her hat color!!
Hence C can deduce . . . everything!



Discussion

Due to teacher’s claim, not all hats white.

A doesn’t know the color of her hat, therefore:

Both B’s and C ’s hats cannot be white.

Say, C ’s hat is white and A’s red:
Then B would know her hat color
But even B does not know her hat color!!
Hence C can deduce . . . everything!



Discussion

Due to teacher’s claim, not all hats white.

A doesn’t know the color of her hat, therefore:
Both B’s and C ’s hats cannot be white.

Say, C ’s hat is white and A’s red:
Then B would know her hat color
But even B does not know her hat color!!
Hence C can deduce . . . everything!



Discussion

Due to teacher’s claim, not all hats white.

A doesn’t know the color of her hat, therefore:
Both B’s and C ’s hats cannot be white.

Say, C ’s hat is white and A’s red:

Then B would know her hat color
But even B does not know her hat color!!
Hence C can deduce . . . everything!



Discussion

Due to teacher’s claim, not all hats white.

A doesn’t know the color of her hat, therefore:
Both B’s and C ’s hats cannot be white.

Say, C ’s hat is white and A’s red:
Then B would know her hat color

But even B does not know her hat color!!
Hence C can deduce . . . everything!



Discussion

Due to teacher’s claim, not all hats white.

A doesn’t know the color of her hat, therefore:
Both B’s and C ’s hats cannot be white.

Say, C ’s hat is white and A’s red:
Then B would know her hat color
But even B does not know her hat color!!

Hence C can deduce . . . everything!



Discussion

Due to teacher’s claim, not all hats white.

A doesn’t know the color of her hat, therefore:
Both B’s and C ’s hats cannot be white.

Say, C ’s hat is white and A’s red:
Then B would know her hat color
But even B does not know her hat color!!
Hence C can deduce . . . everything!



What happened?

Initial information set:



After Teacher’s announcement

{www} deleted new information set



After A’s announcement

{rww} deleted new information set



After B ’s announcement

{rrw} and {wrw} deleted new information set

Observe, C ’s color can only be red!
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Epistemic Logic

Logic that reasons about knowledge.

Initiated in 1950s, the study of epistemic logic has a rich
history.

Many applications in computer science, economics.

Examples are robotics, network security, study of social
interactions etc.
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Puzzle 2



Only we can save us

The story:
100 prisoners standing in a line.
Each can see everyone ahead of him but none behind him.
Each wears a red or a white hat.

Jailor starting from the last guy asks each prisoner to guess color
of his own hat.
Jailor kills a prisoner if he gives a wrong answer.

How many people will die?

?
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Lots of people may die

All may die.

If each choses either red or white arbitrarily; all may die.
All but one may die.
If atleast one red (white) hat last prisoner says red (white,
respectively), others copy. This will save atleast one person.
In worst case exactly one person will survive.
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Lots of people can survive

Can atleast 50 (half) survive?

Idea: Majority
The last prisoner says red (white) if majority is red (white,
respectively).
Everyone else sticks to that answer.
Note again, the goal for everyone is to save most of the people.
Not necessarily save oneself.
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Save almost all

Can we save 99?

Idea: Notice each prisoner computes a function.

Solution strategy function

1 none constant function
2 last computes; others copy ∨ (OR)
3 last computes; others copy majority

Majority is an involved function (provavbly harder to compute) as
compared to the constant function or the OR function.
Leads to saving more people.
Increase the complexity of functions each prisoner computes–to
save more people.
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Save almost all

Can we save 99?

Parity:
Say red= 1 and white= 0.
Last prisoner says red (white) if he sees odd (even,respectively)
number of red hats ahead of him.
. . . solution from here is easy.

Solution strategy function

1 none constant function
2 last computes; others copy ∨ (OR)
3 last computes; others copy majority
4 each computes parity
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Complexity theory and Boolean functions

The study of complexity theory deals with analysing the resources
required to compute certain functions.

Let us only consider Boolean functions f : {0, 1}∗ → {0, 1}
Examples:

OR(x1, x2, . . . , xn) =

{
1 if (

∑n
i=1 xi ) > 0

0 otherwise

Majority(x1, x2, . . . , xn) =

{
1 if (

∑n
i=1 xi ) > b

n
2c

0 otherwise

Thα(x1, x2, . . . , xn) =

{
1 if (

∑n
i=1 xi ) > α

0 otherwise

⊕(x1, x2, . . . , xn) =

{
1 if (

∑n
i=1 xi ) ≡ 1 (mod2)

0 otherwise
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Which of these functions are hard to compute?

Proposition

If we can compute Majority , we can compute Thα for any integer
α such that 0 ≤ α ≤ n.

Proof.
Proof by example (!): Say α = 2. Then

Th2(x1, x2, . . . , xn) = Majority(x1, x2, . . . , xn, y1, y2, . . . , yn)

where, y1 = 1, y2 = 1, . . . , yn−1 = 1, and yn = 0.

Easy to see that the proof generalises for any α.
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Which of these functions are hard to compute?

Proposition

If we can compute Thα for any integer α such that 0 ≤ α ≤ n,
then we can compute ⊕.

Proof.

⊕(x1, x2, . . . , xn) =

b n
2
c∨

i=0

[Th2i+1(x1, x2, . . . , xn)∧Th2i (x1, x2, . . . , xn)]

Majority is harder than Th which is harder than ⊕.
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How hard is ⊕ ?

Putting together polynomially many AND,OR, and NOT
functions, cascaded not more than O(1) times

can not compute ⊕.
Proving such results (lower bounds) is highly non-trivial.

I vaguely, one needs to say all possible such combinations fail

I evidence: decades of efforts has yielded only a few results

I pessimism: some techniques have been classified as useless for
proving such results

I optimism: because so less is known, there is a lot to discover!
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Farther the better.

The story:
Seven students sitting in a circle. Each wearing either a red or a
white hat.
Each can see all but his own hat.

The teacher asks them to guess the color of their own hat and
write it on a piece of paper.
They can either write a color or write ‘pass’.
They can talk to each other before they wear the hats but never
after that.
The students win if no one gives a wrong answer and atleast one
person answers.
The teacher wins, if even one student gives a wrong answer.
What is the probability that the students win? Uniform
distribution on all the possible configurations of the hats.
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Better than half . . .?

I claim: Yes, this can be improved.

Stay alone when right; club together when wrong!

Consider the case for 3 as an example.
(say red = 1, white = 0, and p stands for ‘pass’)

hats configuration students’s answers outcome

0 0 0 1 1 1 0
0 0 1 p p 1 1
0 1 0 p 1 p 1
0 1 1 0 p p 1
1 0 0 1 p p 1
1 0 1 p 0 p 1
1 1 0 p p 0 1
1 1 1 0 0 0 0

Strategy: If equal number of red and white then ‘pass’
else invert the value.
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When correct; others say pass, i.e. he is alone.
When wrong; all are together wrong.

Observe: Students are correct with probability 3
4
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Strategies
Strategy: If equal number of red and white then ‘pass’

else invert the value.
As stated this does not generalise.
Is there a better way of stating it, which will generalise?



Codes

Codes are functions such that f : {0, 1}k → {0, 1}n with k < n
(injective, with size of the range = 2k).

The codewords can be chosen to be vectors that are pairwise far
away. This helps for error correction.
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Figure: x and x ′ are δ apart. y corrected to its nearest neighbor x ′

By nearest codeword argument, a code with distance d can correct
up to bd2 c errors.
Hence, with distance 2 or 3 one error can be corrected.
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Coding theory and codes

I View of every student lacks one bit less

I All wrong when they form a codeword, else exactly one
answers

I Hence, if there is a right kind of code, then there is a right
kind of strategy

I Puzzle boils down to finding one such code.
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Puzzle 2 Complexity theory: takes the center stage

Puzzle 3 Coding theory: Pops up at various unexpected places
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