Hats off to theoretical computer science

Nutan Limaye
Indian Institute of Technology, Bombay.

Summer School for Women in Mathematics and Statistics
May 17, 2018

Through simple puzzles let us try to understand some aspects of Logic, Computation of Boolean Functions, and Coding Theory.

Puzzle 1

Three girls and hats

The story:
Three girls sitting in a room.

Three girls and hats

The story:
Three girls sitting in a room.
Each wears a red colored or white colored hat.

Three girls and hats

The story:
Three girls sitting in a room.
Each wears a red colored or white colored hat.
Teacher asks each one of them to guess the color of their own hat.

Three girls and hats

The story:
Three girls sitting in a room.
Each wears a red colored or white colored hat.
Teacher asks each one of them to guess the color of their own hat.
They obviously have no clue!

Three girls and hats

The story:
Three girls sitting in a room.
Each wears a red colored or white colored hat.
Teacher asks each one of them to guess the color of their own hat. They obviously have no clue!

Teacher: there is alteast one red hat.

Three girls and hats

A: I don't know the color of my hat.
B : Even I don't know the color of my hat.

Three girls and hats

A: I don't know the color of my hat.
B : Even I don't know the color of my hat.
C : I know the color of my hat; its red!

Three girls and hats

A: I don't know the color of my hat.
B : Even I don't know the color of my hat.
C : I know the color of my hat; its red!
Go figure!

Discussion

Due to teacher's claim, not all hats white.

Discussion

Due to teacher's claim, not all hats white.
A doesn't know the color of her hat, therefore:

Discussion

Due to teacher's claim, not all hats white.
A doesn't know the color of her hat, therefore:
Both B's and C's hats cannot be white.

Discussion

Due to teacher's claim, not all hats white.
A doesn't know the color of her hat, therefore:
Both B's and C's hats cannot be white.
Say, C's hat is white and A's red:

Discussion

Due to teacher's claim, not all hats white.
A doesn't know the color of her hat, therefore:
Both B's and C's hats cannot be white.
Say, C's hat is white and A 's red:
Then B would know her hat color

Discussion

Due to teacher's claim, not all hats white.
A doesn't know the color of her hat, therefore:
Both B's and C's hats cannot be white.
Say, C's hat is white and A 's red:
Then B would know her hat color But even B does not know her hat color!!

Discussion

Due to teacher's claim, not all hats white.
A doesn't know the color of her hat, therefore:
Both B's and C's hats cannot be white.
Say, C's hat is white and A 's red:
Then B would know her hat color But even B does not know her hat color!!
Hence C can deduce ... everything!

What happened?

Initial information set:

After Teacher's announcement

$\{w w w\}$ deleted

new information set

After A's announcement

$\{r w w\}$ deleted

new information set

After B's announcement

$\{r r w\}$ and $\{w r w\}$ deleted

new information set

After B's announcement

\{rrw\} and $\{w r w\}$ deleted new information set
Observe, C's color can only be red!

Epistemic Logic

Logic that reasons about knowledge.

Epistemic Logic

Logic that reasons about knowledge.

Epistemic Logic

Logic that reasons about knowledge.

Initiated in 1950s, the study of epistemic logic has a rich history.

Epistemic Logic

Logic that reasons about knowledge.

Initiated in 1950s, the study of epistemic logic has a rich history.

Many applications in computer science, economics.

Epistemic Logic

Logic that reasons about knowledge.

Initiated in 1950s, the study of epistemic logic has a rich history.

Many applications in computer science, economics.

Examples are robotics, network security, study of social interactions etc.

Puzzle 2

Only we can save us

The story:
100 prisoners standing in a line.
Each can see everyone ahead of him but none behind him. Each wears a red or a white hat.

Only we can save us

The story:
100 prisoners standing in a line.
Each can see everyone ahead of him but none behind him.
Each wears a red or a white hat.
Jailor starting from the last guy asks each prisoner to guess color of his own hat.

Only we can save us

The story:
100 prisoners standing in a line.
Each can see everyone ahead of him but none behind him.
Each wears a red or a white hat.
Jailor starting from the last guy asks each prisoner to guess color of his own hat.
Jailor kills a prisoner if he gives a wrong answer.

Only we can save us

The story:
100 prisoners standing in a line.
Each can see everyone ahead of him but none behind him.
Each wears a red or a white hat.
Jailor starting from the last guy asks each prisoner to guess color of his own hat.
Jailor kills a prisoner if he gives a wrong answer.

How many people will die?

Only we can save us

The story:
100 prisoners standing in a line.
Each can see everyone ahead of him but none behind him.
Each wears a red or a white hat.
Jailor starting from the last guy asks each prisoner to guess color of his own hat.
Jailor kills a prisoner if he gives a wrong answer.

How many people will die?

Lots of people may die

All may die.

Lots of people may die

All may die.

If each choses either red or white arbitrarily; all may die.

Lots of people may die

All may die.

If each choses either red or white arbitrarily; all may die.
All but one may die.

Lots of people may die

All may die.

If each choses either red or white arbitrarily; all may die.

All but one may die.

If atleast one red (white) hat last prisoner says red (white, respectively), others copy. This will save atleast one person.
In worst case exactly one person will survive.

Lots of people can survive

Can atleast 50 (half) survive?

Lots of people can survive

Can atleast 50 (half) survive?

Lots of people can survive

Can atleast 50 (half) survive? Idea: Majority

Lots of people can survive

Can atleast 50 (half) survive?

Idea: Majority
The last prisoner says red (white) if majority is red (white, respectively).
Everyone else sticks to that answer.

Lots of people can survive

Can atleast 50 (half) survive?

Idea: Majority
The last prisoner says red (white) if majority is red (white, respectively).
Everyone else sticks to that answer.
Note again, the goal for everyone is to save most of the people.

Lots of people can survive

Can atleast 50 (half) survive?

Idea: Majority
The last prisoner says red (white) if majority is red (white, respectively).
Everyone else sticks to that answer.
Note again, the goal for everyone is to save most of the people. Not necessarily save oneself.

Save almost all

Can we save 99 ?

Save almost all

Can we save 99 ?
Idea: Notice each prisoner computes a function.

Solution	strategy	function
1	none	constant function
2	last computes; others copy	\vee (OR)
3	last computes; others copy	majority

Majority is an involved function (provavbly harder to compute) as compared to the constant function or the OR function.
Leads to saving more people.

Save almost all

Can we save 99 ?
Idea: Notice each prisoner computes a function.

Solution	strategy	function
1	none	constant function
2	last computes; others copy	\vee (OR)
3	last computes; others copy	majority

Majority is an involved function (provavbly harder to compute) as compared to the constant function or the OR function.
Leads to saving more people.
Increase the complexity of functions each prisoner computes-to
save more people.

Save almost all

Can we save 99 ?

Save almost all

Can we save 99 ?
Parity:
Say red $=1$ and white $=0$.

Save almost all

Can we save 99 ?
Parity:
Say red $=1$ and white $=0$.
Last prisoner says red (white) if he sees odd (even,respectively) number of red hats ahead of him.

Save almost all

Can we save 99 ?
Parity:
Say red $=1$ and white $=0$.
Last prisoner says red (white) if he sees odd (even, respectively) number of red hats ahead of him.
... solution from here is easy.

Save almost all

Can we save 99 ?
Parity:
Say red $=1$ and white $=0$.
Last prisoner says red (white) if he sees odd (even, respectively) number of red hats ahead of him.
... solution from here is easy.

Solution	strategy	function
1	none	constant function
2	last computes; others copy	\vee (OR)
3	last computes; others copy	majority
4	each computes	parity

Complexity theory and Boolean functions

The study of complexity theory deals with analysing the resources required to compute certain functions.

Complexity theory and Boolean functions

The study of complexity theory deals with analysing the resources required to compute certain functions.
Let us only consider Boolean functions

Complexity theory and Boolean functions

The study of complexity theory deals with analysing the resources required to compute certain functions.
Let us only consider Boolean functions $f:\{0,1\}^{*} \rightarrow\{0,1\}$ Examples:

Complexity theory and Boolean functions

The study of complexity theory deals with analysing the resources required to compute certain functions.
Let us only consider Boolean functions $f:\{0,1\}^{*} \rightarrow\{0,1\}$ Examples:

$$
\operatorname{OR}\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if }\left(\sum_{i=1}^{n} x_{i}\right)>0 \\ 0 & \text { otherwise }\end{cases}
$$

Complexity theory and Boolean functions

The study of complexity theory deals with analysing the resources required to compute certain functions.
Let us only consider Boolean functions $f:\{0,1\}^{*} \rightarrow\{0,1\}$ Examples:

$$
\begin{gathered}
\operatorname{OR}\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if }\left(\sum_{i=1}^{n} x_{i}\right)>0 \\
0 & \text { otherwise }\end{cases} \\
\operatorname{Majority}\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if }\left(\sum_{i=1}^{n} x_{i}\right)>\left\lfloor\frac{n}{2}\right\rfloor \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Complexity theory and Boolean functions

The study of complexity theory deals with analysing the resources required to compute certain functions.
Let us only consider Boolean functions $f:\{0,1\}^{*} \rightarrow\{0,1\}$ Examples:

$$
\begin{gathered}
\operatorname{OR}\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if }\left(\sum_{i=1}^{n} x_{i}\right)>0 \\
0 & \text { otherwise }\end{cases} \\
\operatorname{Majority}\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if }\left(\sum_{i=1}^{n} x_{i}\right)>\left\lfloor\frac{n}{2}\right\rfloor \\
0 & \text { otherwise }\end{cases} \\
\operatorname{Th}^{\alpha}\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if }\left(\sum_{i=1}^{n} x_{i}\right)>\alpha \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Complexity theory and Boolean functions

The study of complexity theory deals with analysing the resources required to compute certain functions.
Let us only consider Boolean functions $f:\{0,1\}^{*} \rightarrow\{0,1\}$ Examples:

$$
\begin{gathered}
\operatorname{OR}\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if }\left(\sum_{i=1}^{n} x_{i}\right)>0 \\
0 & \text { otherwise }\end{cases} \\
\operatorname{Majority}\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if }\left(\sum_{i=1}^{n} x_{i}\right)>\left\lfloor\frac{n}{2}\right\rfloor \\
0 & \text { otherwise }\end{cases} \\
\operatorname{Th}^{\alpha}\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if }\left(\sum_{i=1}^{n} x_{i}\right)>\alpha \\
0 & \text { otherwise }\end{cases} \\
\oplus\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if }\left(\sum_{i=1}^{n} x_{i}\right) \equiv 1(\bmod 2) \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Which of these functions are hard to compute?

Proposition

If we can compute Majority, we can compute T^{α} for any integer α such that $0 \leq \alpha \leq n$.

Which of these functions are hard to compute?

Proposition

If we can compute Majority, we can compute T^{α} for any integer α such that $0 \leq \alpha \leq n$.

Proof.
Proof by example (!): Say $\alpha=2$.

Which of these functions are hard to compute?

Proposition

If we can compute Majority, we can compute $T h^{\alpha}$ for any integer α such that $0 \leq \alpha \leq n$.

Proof.
Proof by example (!): Say $\alpha=2$. Then

$$
\operatorname{Th}^{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{Majority}\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right)
$$

Which of these functions are hard to compute?

Proposition

If we can compute Majority, we can compute $T h^{\alpha}$ for any integer α such that $0 \leq \alpha \leq n$.

Proof.
Proof by example (!): Say $\alpha=2$. Then

$$
\operatorname{Th}^{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{Majority}\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right)
$$

where, $y_{1}=1, y_{2}=1, \ldots, y_{n-1}=1$, and $y_{n}=0$.

Which of these functions are hard to compute?

Proposition

If we can compute Majority, we can compute T^{α} for any integer α such that $0 \leq \alpha \leq n$.

Proof.
Proof by example (!): Say $\alpha=2$. Then

$$
\operatorname{Th}^{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{Majority}\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right)
$$

where, $y_{1}=1, y_{2}=1, \ldots, y_{n-1}=1$, and $y_{n}=0$.
Easy to see that the proof generalises for any α.

Which of these functions are hard to compute?

Proposition
If we can compute $T h^{\alpha}$ for any integer α such that $0 \leq \alpha \leq n$, then we can compute \oplus.

Which of these functions are hard to compute?

Proposition

If we can compute $T h^{\alpha}$ for any integer α such that $0 \leq \alpha \leq n$, then we can compute \oplus.

Proof.

$$
\oplus\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\bigvee_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\left[T h^{2 i+1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \wedge T h^{2 i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right]
$$

Which of these functions are hard to compute?

Proposition
If we can compute $T h^{\alpha}$ for any integer α such that $0 \leq \alpha \leq n$, then we can compute \oplus.

Proof.

$$
\oplus\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\bigvee_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\left[T h^{2 i+1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \wedge T h^{2 i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right]
$$

Majority is harder than Th which is harder than \oplus.

How hard is \oplus ?

Putting together polynomially many $A N D, O R$, and NOT functions, cascaded not more than $O(1)$ times

How hard is \oplus ?

Putting together polynomially many $A N D, O R$, and NOT functions, cascaded not more than $O(1)$ times
can not compute \oplus.

How hard is \oplus ?

Putting together polynomially many $A N D, O R$, and NOT functions, cascaded not more than $O(1)$ times
can not compute \oplus.
Proving such results (lower bounds) is highly non-trivial.

- vaguely, one needs to say all possible such combinations fail

How hard is \oplus ?

Putting together polynomially many $A N D, O R$, and NOT functions, cascaded not more than $O(1)$ times
can not compute \oplus.
Proving such results (lower bounds) is highly non-trivial.

- vaguely, one needs to say all possible such combinations fail
- evidence: decades of efforts has yielded only a few results

How hard is \oplus ?

Putting together polynomially many $A N D, O R$, and NOT functions, cascaded not more than $O(1)$ times
can not compute \oplus.
Proving such results (lower bounds) is highly non-trivial.

- vaguely, one needs to say all possible such combinations fail
- evidence: decades of efforts has yielded only a few results
- pessimism: some techniques have been classified as useless for proving such results

How hard is \oplus ?

Putting together polynomially many $A N D, O R$, and NOT functions, cascaded not more than $O(1)$ times
can not compute \oplus.
Proving such results (lower bounds) is highly non-trivial.

- vaguely, one needs to say all possible such combinations fail
- evidence: decades of efforts has yielded only a few results
- pessimism: some techniques have been classified as useless for proving such results
- optimism: because so less is known, there is a lot to discover!

Puzzle 3

Farther the better.

The story:
Seven students sitting in a circle. Each wearing either a red or a white hat.
Each can see all but his own hat.

Farther the better.

The story:
Seven students sitting in a circle. Each wearing either a red or a white hat.
Each can see all but his own hat.
The teacher asks them to guess the color of their own hat and write it on a piece of paper.

Farther the better.

The story:
Seven students sitting in a circle. Each wearing either a red or a white hat.
Each can see all but his own hat.
The teacher asks them to guess the color of their own hat and write it on a piece of paper.
They can either write a color or write 'pass'.

Farther the better.

The story:
Seven students sitting in a circle. Each wearing either a red or a white hat.
Each can see all but his own hat.
The teacher asks them to guess the color of their own hat and write it on a piece of paper.
They can either write a color or write 'pass'.
They can talk to each other before they wear the hats but never after that.

Farther the better.

The story:
Seven students sitting in a circle. Each wearing either a red or a white hat.
Each can see all but his own hat.
The teacher asks them to guess the color of their own hat and write it on a piece of paper.
They can either write a color or write 'pass'.
They can talk to each other before they wear the hats but never after that.
The students win if no one gives a wrong answer and atleast one person answers.

Farther the better.

The story:
Seven students sitting in a circle. Each wearing either a red or a white hat.
Each can see all but his own hat.
The teacher asks them to guess the color of their own hat and write it on a piece of paper.
They can either write a color or write 'pass'.
They can talk to each other before they wear the hats but never after that.
The students win if no one gives a wrong answer and atleast one person answers.
The teacher wins, if even one student gives a wrong answer.

Farther the better.

The story:
Seven students sitting in a circle. Each wearing either a red or a white hat.
Each can see all but his own hat.
The teacher asks them to guess the color of their own hat and write it on a piece of paper.
They can either write a color or write 'pass'.
They can talk to each other before they wear the hats but never after that.
The students win if no one gives a wrong answer and atleast one person answers.
The teacher wins, if even one student gives a wrong answer.
What is the probability that the students win?

Farther the better.

The story:
Seven students sitting in a circle. Each wearing either a red or a white hat.
Each can see all but his own hat.
The teacher asks them to guess the color of their own hat and write it on a piece of paper.
They can either write a color or write 'pass'.
They can talk to each other before they wear the hats but never after that.
The students win if no one gives a wrong answer and atleast one person answers.
The teacher wins, if even one student gives a wrong answer.
What is the probability that the students win? Uniform distribution on all the possible configurations of the hats.

Can they win with probability half?

One student says 'red'. All others say pass.

Can they win with probability half?

One student says 'red'. All others say pass. Half the times no student is wrong.

Can they win with probability half?

One student says 'red'. All others say pass. Half the times no student is wrong.
Can they do better?

Can they win with probability half?

One student says 'red'. All others say pass. Half the times no student is wrong.
Can they do better?

Better than half ...

Observe: If even one student guesses a color, the group fails with probability half.

Better than half ...

Observe: If even one student guesses a color, the group fails with probability half.
Observe: It is mandatory that atleast one student guesses a color.

Better than half ...

Observe: If even one student guesses a color, the group fails with probability half.
Observe: It is mandatory that atleast one student guesses a color. Curiosity: Is it really possible to do better ...?

Better than half ...

Observe: If even one student guesses a color, the group fails with probability half.
Observe: It is mandatory that atleast one student guesses a color. Curiosity: Is it really possible to do better ...?

Better than half . . .?

I claim: Yes, this can be improved.

Better than half . . .?

I claim: Yes, this can be improved.
Stay alone when right; club together when wrong!

Better than half . . .?

I claim: Yes, this can be improved.
Stay alone when right; club together when wrong!
Consider the case for 3 as an example.

Better than half . . .?

I claim: Yes, this can be improved.
Stay alone when right; club together when wrong!
Consider the case for 3 as an example. (say red $=1$, white $=0$, and p stands for 'pass')

Better than half . . .?

I claim: Yes, this can be improved.
Stay alone when right; club together when wrong!
Consider the case for 3 as an example. (say red $=1$, white $=0$, and p stands for 'pass')

hats configuration	students's answers	outcome
000	111	0
001	pp1	1
010	$p 1 p$	1
011	$0 p p$	1
100	$1 p p$	1
101	$p 0 p$	1
110	pp0	1
111	000	0

Better than half . . .?

I claim: Yes, this can be improved.
Stay alone when right; club together when wrong!
Consider the case for 3 as an example. (say red $=1$, white $=0$, and p stands for 'pass')

hats configuration	students's answers	outcome		
0	0	0	1	1

Strategy: If equal number of red and white then 'pass'

Better than half . . .?

I claim: Yes, this can be improved.
Stay alone when right; club together when wrong!
Consider the case for 3 as an example. (say red $=1$, white $=0$, and p stands for 'pass')

hats configuration	students's answers	outcome
000	111	0
001	p p 1	1
010	$p 1 p$	1
011	$0 p p$	1
100	$1 p p$	1
101	$p 0 p$	1
110	pp0	1
111	000	0

Strategy: If equal number of red and white then 'pass' else invert the value.

Better than half . . .?

I claim: Yes, this can be improved.
Stay alone when right; club together when wrong!
Consider the case for 3 as an example. (say red $=1$, white $=0$, and p stands for 'pass')

hats configuration	students's answers	outcome
000	111	0
001	p p 1	1
010	$p 1 p$	1
011	$0 p p$	1
100	$1 p p$	1
101	$p 0 p$	1
110	pp0	1
111	000	0

Strategy: If equal number of red and white then 'pass' else invert the value.

Better than half ...

hats configuration	students's answers	outcome		
0	0	0	1	1

Better than half ...

$\left.\begin{array}{|l|l|l|l|l|}\hline \text { hats configuration } & \text { students's answers } & \text { outcome } \\ \hline 0 & 0 & 0 & 1 & 1\end{array}\right]$

Better than half ...

hats configuration	students's answers	outcome
000	111	0
001	p $p 1$	1
010	$p 1 p$	1
011	$0 p p$	1
100	$1 p p$	1
101	$p 0 p$	1
110	pp0	1
111	000	0

Observe: Each student speaks on 4 inputs out of 8 .
Each student is right on 2 and wrong on 2 inputs.

Better than half ...

hats configuration	students's answers	outcome		
0	0	0	1	1

Observe: Each student speaks on 4 inputs out of 8 .
Each student is right on 2 and wrong on 2 inputs.
When correct; others say pass, i.e. he is alone.

Better than half ...

hats configuration	students's answers	outcome
000	111	0
001	p p 1	1
010	$p 1 p$	1
011	$0 p p$	1
100	$1 p p$	1
101	$p 0 p$	1
110	pp0	1
111	000	0

Observe: Each student speaks on 4 inputs out of 8 .
Each student is right on 2 and wrong on 2 inputs.
When correct; others say pass, i.e. he is alone.
When wrong; all are together wrong.

Better than half ...

hats configuration	students's answers	outcome
000	111	0
001	p p 1	1
010	$p 1 p$	1
011	$0 p p$	1
100	$1 p p$	1
101	$p 0 p$	1
110	pp0	1
111	000	0

Observe: Each student speaks on 4 inputs out of 8 .
Each student is right on 2 and wrong on 2 inputs.
When correct; others say pass, i.e. he is alone.
When wrong; all are together wrong.

Better than half . . .

hats configuration	students's answers	outcome		
0	0	0	1	1

Observe: Each student speaks on 4 inputs out of 8 .
Each student is right on 2 and wrong on 2 inputs.
When correct; others say pass, i.e. he is alone.
When wrong; all are together wrong.
Observe: Students are correct with probability $\frac{3}{4}$

Strategies

Strategy: If equal number of red and white then 'pass' else invert the value.
As stated this does not generalise.
Is there a better way of stating it, which will generalise?

Codes

Codes are functions such that $f:\{0,1\}^{k} \rightarrow\{0,1\}^{n}$ with $k<n$ (injective, with size of the range $=2^{k}$).

Codes

Codes are functions such that $f:\{0,1\}^{k} \rightarrow\{0,1\}^{n}$ with $k<n$ (injective, with size of the range $=2^{k}$).

The codewords can be chosen to be vectors that are pairwise far away. This helps for error correction.

Codes

Codes are functions such that $f:\{0,1\}^{k} \rightarrow\{0,1\}^{n}$ with $k<n$ (injective, with size of the range $=2^{k}$).

The codewords can be chosen to be vectors that are pairwise far away. This helps for error correction.

Figure: x and x^{\prime} are δ apart. y corrected to its nearest neighbor x^{\prime}

Codes

Codes are functions such that $f:\{0,1\}^{k} \rightarrow\{0,1\}^{n}$ with $k<n$ (injective, with size of the range $=2^{k}$).

The codewords can be chosen to be vectors that are pairwise far away. This helps for error correction.

Figure: x and x^{\prime} are δ apart. y corrected to its nearest neighbor x^{\prime}

By nearest codeword argument, a code with distance d can correct up to $\left\lfloor\frac{d}{2}\right\rfloor$ errors.

Codes

Codes are functions such that $f:\{0,1\}^{k} \rightarrow\{0,1\}^{n}$ with $k<n$ (injective, with size of the range $=2^{k}$).

The codewords can be chosen to be vectors that are pairwise far away. This helps for error correction.

Figure: x and x^{\prime} are δ apart. y corrected to its nearest neighbor x^{\prime}

By nearest codeword argument, a code with distance d can correct up to $\left\lfloor\frac{d}{2}\right\rfloor$ errors.
Hence, with distance 2 or 3 one error can be corrected.

Coding theory and codes

- View of every student lacks one bit less

Coding theory and codes

- View of every student lacks one bit less
- All wrong when they form a codeword, else exactly one answers

Coding theory and codes

- View of every student lacks one bit less
- All wrong when they form a codeword, else exactly one answers
- Hence, if there is a right kind of code, then there is a right kind of strategy

Coding theory and codes

- View of every student lacks one bit less
- All wrong when they form a codeword, else exactly one answers
- Hence, if there is a right kind of code, then there is a right kind of strategy
- Puzzle boils down to finding one such code.

Coding theory and codes

- View of every student lacks one bit less
- All wrong when they form a codeword, else exactly one answers
- Hence, if there is a right kind of code, then there is a right kind of strategy
- Puzzle boils down to finding one such code.

Conclusion and summary

Theoretical Computer Science is rich enough to attarct those who are interested and poor enough to keep those who are curious busy.

Conclusion and summary

Theoretical Computer Science is rich enough to attarct those who are interested and poor enough to keep those who are curious busy.

Puzzle 1 Logic: one of oldest and richest area

Conclusion and summary

Theoretical Computer Science is rich enough to attarct those who are interested and poor enough to keep those who are curious busy.

Puzzle 1 Logic: one of oldest and richest area
Puzzle 2 Complexity theory: takes the center stage

Conclusion and summary

Theoretical Computer Science is rich enough to attarct those who are interested and poor enough to keep those who are curious busy.

Puzzle 1 Logic: one of oldest and richest area
Puzzle 2 Complexity theory: takes the center stage
Puzzle 3 Coding theory: Pops up at various unexpected places

Conclusion and summary

Theoretical Computer Science is rich enough to attarct those who are interested and poor enough to keep those who are curious busy.

Puzzle 1 Logic: one of oldest and richest area
Puzzle 2 Complexity theory: takes the center stage
Puzzle 3 Coding theory: Pops up at various unexpected places

Hats off to ... theoretical computer science

Hats off to ... theoretical computer science

Thank you!

