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Finite sums

We know how to compute

a1 + a2

a1 + a2 + a3

a1 + a2 + · · ·+ an

1 + 2 + · · ·+ n =
n(n + 1)

2
.

1 + 22 + 32 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
.

1
2

+
1
22 + · · ·+ 1

2n = 1− 1
2n .
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But what if

1 + 2 + · · ·+ n + · · ·?

1 + 22 + · · ·+ n2 + · · ·?
1
2

+
1
22 + · · ·+ 1

2n + · · ·?

or
a1 + a2 + · · ·+ an + · · ·?

The number of summands become infinite?
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Infinite sequence and series

Real sequence
A function x from the set of natural numbers N to the set
of real numbers R.

x : N → R
n → xn

Denoted by (xn)/〈xn〉/{xn}∞n=1.

We shall denote it by (xn).

Note: The order of the numbers xn is important.
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Infinite series
Given a real sequence (xn),

∞∑
n=1

xn = x1 + x2 + · · ·+ xn + · · ·

is called the infinite series.

1 + 2 + · · ·
1 + 22 + · · ·

∞∑
n=1

1
n2 = 1 +

1
22 + · · ·

∞∑
n=1

1
2n =

1
2

+
1
22 + · · ·

are all infinite series.
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What to make of this infinite sum?

Augustin-Louis Cauchy
(1789-1857)

Modern formal notions on infinite
series from the works of Cauchy
and Abel.

Niels Henrik Abel
(1802-29)
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Convergent series

sn = x1 + · · ·+ xn, n ∈ N (sequence of partial sums).

If (sn) converges to a real number s, then the series
∞∑

n=1
xn

is convergent and its sum is s.

We write
∞∑

n=1
xn = s.

Divergent series
If the series is not convergent, then it is divergent.
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The simplest example: Geometric series

a, r ∈ R,
a + ar + ar 2 + · · ·+ ar n + · · ·

Finite sum:

a + ar + ar 2 + · · ·+ ar n = a
1− r n+1

1− r
.

Convergent if and only if |r | < 1, and has sum a
1−r .
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Going back to the ancient times

One of the earliest examples of summing finite geometric
series: Euclid Elements (300BC)

Perfect number
A positive integer m is called a perfect number if it is the
sum of all its divisors except itself, i.e.,

m =
∑
d |m
d 6=m

d .

If 2n − 1 is a prime, then 2n−1(2n − 1) is perfect.

2n−1(2n−1) = 1+2+ · · ·+2n−1 +(2n−1)(1+2+ · · ·+2n−2).

This involves summing the finite geometric series.
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Euler: If m is an even perfect number, then it is of the form
2n−1(2n − 1) for some n.

One of the oldest unsolved problems: Are there any odd
perfect numbers?.
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Infinite geometric series in the antiquity
Archimedes (287-212 BC) used “infinite” geometric series
to find the area of a parabolic segment using the Method
of Exhaustion.

Area of parabolic segment enclosed by y = x2 and y = 1
= ∆1 + (∆2 + ∆3) + (∆4 + ∆5 + ∆6 + ∆7) + · · ·
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Let’s compute ourselves

Note QR = 1
4PS.

Now

∆2 = ∆(OQR) + ∆(ZQR)

=
1
2

(OP + SZ )QR

=
1
2

YZ ·QR

=
1
8

YZ · PS

=
1
8

∆1.

Similarly, ∆3 = 1
8∆1.
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Therefore,

(∆2 + ∆3) =
1
4

∆1.

In the same way

7∑
i=4

∆i =
1
4

(∆2 + ∆3) =
1
42 ∆1.

· · · · · ·

Hence the area of the parabolic segment equals(
1 +

1
4

+
1
42 + · · ·

)
∆1 =

4
3

∆1.
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Infinity and infinite series: going further back

Zeno’s paradox of the tortoise and Achilles (Zeno (490BC)
There is a race between Achilles, the legandry Greek
warrior, and the tortoise. Achilles runs at the speed of
10ms−1 while the tortoise runs at a speed of 1ms−1.
Achilles gives the tortoise a head start of 10m. According
to Zeno, Achilles will never be able to overtake the slow
tortoise.

The resolution of the paradox lies in the convergence of
the infinite series

10 + 1 +
1
10

+ · · ·
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Series other than the geometric series

Liber calculationum, Richard Suiseth (or Swineshead,
known as the Calculator), 1350 showed

1
2

+
2
22 +

3
23 +

4
24 + · · · = 2.

Oresme, 1350 Summed the above series through
geometric methods.
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1

1 = 1

1/4

1/2

1/8

= 1/2 1/4

1/4

1/8

1/8

1/8

Oresme’s Summation

How will you find the sum of this series?
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Series for trigonometric functions

Madhava (fifteenth century), Gregory, Leibniz, Newton
(seventeenth century)

Gave the series for tan−1 x , sin x , cos x :

tan−1 x = x − x3

3
+

x5

5
− x7

7
+ · · · .

As a special case, the first series for π:

π

4
= 1− 1

3
+

1
5
− 1

7
+ · · · .
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Newton’s calculus
Issac Newton (1642-1727) based calculus on the
manipulation of infinite series.
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Power series

Geometric series, Madhava series : Express a function

f (x) in the form
∞∑

n=1
anxn, an ∈ R.

1
1− x

= 1 + x + x2 + · · ·

tan−1x = x − x3

3
+

x5

5
− · · ·

Useful to sum numerical series:

4
5

= 1− 1
4

+
1
42 − · · · ,

...
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Important to find other series by methods of integration
and inversion:

Let’s illustrate it with a simple example:

1
1 + x

= 1− x + x2 − · · · .

On integration∫ x

0

dt
1 + t

=

∫ x

0

(
1− t + t2 − · · ·

)
dt

Hence

log(1 + x) = x − x2

2
+

x3

3
− · · · .
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Newton’s method of series inversion (Newton 1671):

Let y denote the inverse function of log(1 + x), i.e.,
y = log(1 + x)⇔ ey − 1 = x .

y = x − x2

2
+

x3

3
− · · · (1)

Solve for y in terms of x . Equivalently put

x = a0 + a1y + a2y2 + · · ·

and substitute this value in the right-hand side of (1),

y = (a0+a1y+· · · )−(a0 + a1y + · · · )2

2
+

(a0 + a1y + · · · )3

3
−· · · .
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Compare the coefficients of powers of y on both sides.

Comparing the constant term:

0 = a0 −
a2

0

2
+

a3
0

3
− · · · = log(1 + a0)

which implies a0 = 0.

Comparing the coefficient of y ,

1 = a1.

Comparing the coefficient of y2,

0 = a2 −
a2

1

2
= a2 −

1
2
.

Comparing the coefficient of y3,

0 = a3 −
2a2a1

2
+

a3
1

3
= a3 −

1
2

+
1
3

= a3 −
1
6
.
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Newton found some initial terms and found the remaining
coefficients by analogy.

ey = 1 + y +
y2

2!
+

y3

3!
+ · · · .

Nowadays we use different methods to find series
expansions for given functions.
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Summation of series

Most of the series studied were of the form

f (x) =
∞∑

n=1

anxn,

where f is a known function.

Not difficult to sum the series.

Converse problem
Given a series. To find its sum.

This is a difficult problem.
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Examples:

Richard Suiseth, Oresme (1350)

1
2

+
2
22 +

3
23 + · · · = 2.

Mengoli(1650)

1
1 · 2

+
1

2 · 3
+ · · ·+ 1

n(n + 1)
+ · · · .

Easy to sum.

Note
1

n(n + 1)
=

1
n
− 1

n + 1
.
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Hence

n∑
k=1

1
k(k + 1)

= 1− 1
2

+
1
2
− 1

3
+ · · ·+ 1

n
− 1

n + 1

= 1− 1
n + 1

.

This gives
∞∑

n=1

1
n(n + 1)

= 1.
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The First hard example

Basel Problem
Sum

1 +
1
22 +

1
32 + · · · .

Unsuccessfully tried by Mengoli;
Unsuccessfully tried by Jacobi and Johann Bernoulli.

They instead summed the series
∞∑

n=2

1
n2−1 , and gave some

trivial results for the original problem.
Proved by Euler in 1734.
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Leonhard Euler (1707-83): Fundamental
contributions in the study of infinite series
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The first proof of Euler

sin x = x − x3

3!
+

x5

5!
− · · · =

∞∑
n=1

(−1)n−1 x2n−1

(2n − 1)!
.

sin
√

x√
x

= 1− x
3!

+
x2

5!
− · · · =

∞∑
n=1

(−1)n−1 xn−1

(2n − 1)!
.

Roots of sin
√

x√
x are x1 = π2, x2 = (2π)2, x3 = (3π)2, . . . .
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Let
1 + a1x + a2x2 + · · ·+ anxn

have roots u1, . . . ,un.

Then

1 + a1x + · · ·+ anxn = (u1 − x) · · · (un − x)

=

(
1− x

u1

)
· · ·
(

1− x
un

)
.

This gives
1
u1

+
1
u2

+ · · ·+ 1
un

= −a1.
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Assuming this is also true for “infinite polynomials”,we get

1
π2 +

1
(2π)2 +

1
(3π)2 + · · · = −coeeficient of x =

1
3!
.

Hence

1 +
1
22 +

1
32 + · · · =

π2

6
.

This is a remarkable proof but lacks rigour.

A number of proofs were given by Euler and many
mathematicians afterwards.
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An elementary rigorous proof

Let

An =

π/2∫
0

cos2n xdx and Bn =

π/2∫
0

x2 cos2n xdx for all n ≥ 0.

An =

π/2∫
0

cos x cos2n−1 xdx

= (2n − 1)

π/2∫
0

sin2 x cos2(n−1) xdx (Integrating by parts)

= (2n − 1)(An−1 − An) (Using sin2 x = 1− cos2 x).
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Since
An

2n − 1
= An−1 − An,

An

2n − 1
=

An−1

2n
. (2)

Also

π/2∫
0

sin2 x cos2n xdx =
An+1

2n + 1
=

An

2(n + 1)
. (3)
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Again

An =

π/2∫
0

1 · cos2n xdx

= 2n

π/2∫
0

x sin x cos2n−1 xdx

= n

π/2∫
0

x2
(

(2n − 1) sin2 x cos2(n−1) x − cos2n x
)

dx

= n(2n − 1)Bn−1 − 2n2Bn.
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Dividing both sides by n2An,

1
n2 =

(2n − 1)Bn−1

nAn
− 2Bn

An

=
2Bn−1

An−1
− 2Bn

An
(Using (2)) (4)
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From (4)

n∑
k=1

1
k2 =

n∑
k=1

(
2Bk−1

Ak−1
− 2Bk

Ak

)
=

2B0

A0
− 2Bn

An
.

A0 =

π/2∫
0

dx =
π

2
and B0 =

π/2∫
0

x2dx =
π3

24
.
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Now we estimate Bn
An
.

For 0 ≤ x ≤ π
2 ,

π
2 x ≤ sin x .

Using this and (3)

Bn ≤
4
π2

π/2∫
0

sin2 x cos2n xdx =
4An

2π2(n + 1)
.

Hence
2Bn

An
≤ 4
π2(n + 1)

→ 0 as n→∞.

Thus we get
∞∑

n=1

1
n2 =

2B0

A0
=
π2

6
.
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The first criterian on convergence of series

The alternating series

a1−a2+a3−· · ·+(−1)n−1an+· · · ,

an ≥ 0, an ≥ an+1 is
convergent if and only if

lim
n→∞

an = 0.

 

Gottfried Wilhelm Leibniz
(1646-1716)
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The first divergent series

Oresme (1350)
Oresme proved the divergence of the harmonic series.

1 +
1
2

+
1
3

+ · · · .

His proof same as the modern one:

1 +

(
1
2

)
+

(
1
3

+
1
4

)
+

(
1
5

+
1
6

+
1
7

+
1
8

)
+ · · ·

> 1 +
1
2

+
2
4

+
4
8

+ · · ·

= 1 +
1
2

+
1
2

+
1
2

+
1
2

+ · · · .
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Divergent series: different views

Euler (1746): “I believe that every series should be
assigned a certain value. However, to account for all
the difficulties that have been pointed, this value
should not be denoted by the name sum,. . . .”

Abel (1828): “Divergent series are the invention of
the devil and it is shameful to base on them any
demonstration whatsoever”.

G. H. Hardy’s excellent book Divergent Series explains
the rights and wrongs; the good the bad and the ugly.
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Sum of divergent series

Granti series

1− 1 + 1− 1 + 1− 1 + · · ·

Leibniz, Euler: Sum is 1
2 .

Look the sequence of partial sums.

s1 = 1, s2 = 0, s3 = 1, . . . , s2n−1 = 1, s2n = 0, . . .

Clearly this is divergent.

But the average of the sequence of partial sums is 1
2 .

We can take the ‘sum’ to be 1
2 .
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Sum of divergent series

Granti series

1− 1 + 1− 1 + 1− 1 + · · ·

Leibniz, Euler: Sum is 1
2 .

Look the sequence of partial sums.

s1 = 1, s2 = 0, s3 = 1, . . . , s2n−1 = 1, s2n = 0, . . .

Clearly this is divergent.

But the average of the sequence of partial sums is 1
2 .

We can take the ‘sum’ to be 1
2 .
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Another view

This is the series

1− x + x2 − x3 + · · · (5)

when x = 1.

Sum of (5) is 1
1+x (for |x | < 1).

Thus the sum should be 1
1+1 = 1

2 .
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One more example

What should be the sum of the series

1− 2 + 3− 4 + · · ·?

We consider the power series

1− 2x + 3x2 − 4x3 + · · · .

This represents the function f (x) = 1
(1+x)2 for |x | < 1.

Hence the sum should be f (1) = 1
4 .
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One more example

What should be the sum of the series

1− 2 + 3− 4 + · · ·?

We consider the power series

1− 2x + 3x2 − 4x3 + · · · .

This represents the function f (x) = 1
(1+x)2 for |x | < 1.

Hence the sum should be f (1) = 1
4 .
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The series 1 + 2 + 3 + · · ·
Ramanujan (1913) gave its ‘sum’

Let s be the sum

s = 1 + 2 + 3 + · · · . (6)

We have
1
4

= 1− 2 + 3− 4 + · · · . (7)

Subtract (7) from (6) to get

s − 1
4

= 4 + 8 + 12 + · · ·

= 4(1 + 2 + 3 + · · · ) = 4s.

Thus
s = − 1

12
.
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What do these ‘sums’ denote?

These sums are clearly not the limits of the sequences of
partial sums.

Abel summability
Let (an) be a real sequence such that the power series
∞∑

n=1
anxn is convergent for every |x | < 1 to a function f (x).

Suppose lim
x→1−

f (x) exists and equals a. Then
∞∑

n=1
an is

Abel summable and has the Abel sum a.

The series 1− 1 + 1− 1 + · · · and1− 2 + 3− 4 + · · · are
Abel summable with Abel sums 1

2 and 1
4 , respectively.

Tanvi Jain



Cesaro summability
Let (an) be any real sequence, and put sn = a1 + · · ·+ an.
Define

H(k)
n =


1
n

n∑
i=1

si k = 1

1
n

n∑
i=1

H(k−1)
i k > 1.

The series
∞∑

n=1
an is Ck -summable if (H(k)

n ) is convergent

and its Ck -sum is lim
n→∞

Hn(k)..

The series 1− 1 + 1− 1 + · · · is C1-summable to 1
2 , and

the series 1 + 2 + 3 + · · · is C2-summable to − 1
12 .
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Riemann-ζ function

The series
∞∑

n=1

1
ns is convergent if and only if s > 1.

Define a function ζ : (1,∞)→ C as

ζ(s) =
∞∑

n=1

1
ns .

This function can be “nicely extended” to the complex
plane C \ {1}.

Studied by Euler in 1740 for real numbers, and by
Riemann in 1859 for complex numbers.

ζ(2) = π2

6 .

ζ(4) = π4

90 .

ζ(−1) = − 1
12 .

ζ(0) = −1.
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Let’s end the talk with a puzzle
Pebbling problem: Consider the following infinite grid of
squares with one corner.

Setup for the Pebbling Problem
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Consider an infinite grid
of squares with one
corner,i.e., the first
quadrant.

Six of the colors are
colored, as shown in the
figure.

At the beginning, these
six coloured squares
are each occupied by a
single pebble.

Setup for the Pebbling Problem

We are allowed to remove any pebble, provided we
replace it by two new pebbles in the square directly above
and in the square directly to the right. If either of these
squares are already occupied, the pebble cannot be
removed at that time.
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Questions
(1) Is it possible, by these operations, to evacuate all six
of the coloured squares?

(2) Suppose instead that only the corner square is
occupied by a pebble. In this case, is it possible to
evacuate the six coloured squares?
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Hint for the puzzle
Use infinite series.

1/32

1/16 1/321/8

1/641/321/161/81/4

1/641/321/161/81/41/2

1/321/161/81/41/21

1/16 1/32

1/64 1/128

1/64

1/64 1/256

1/512 1/1024

1/128

1/128

1/256

1/256

1/512

1/128

Labeling for the Quarter-Checkerboard
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