Branching Random Walks: Two Predictions, Two Theorems and a Question

Parthanil Roy
Joint work with Ayan Bhattacharya and Rajat Subhra Hazra

Indian Statistical Institute

$$
\text { May 14, } 2018
$$

What is a random walk?

Simple random walk on integers

Simple random walk on integers

(1) Start at 0 .

Simple random walk on integers

(1) Start at 0 .
(2) Toss a fair coin.

Simple random walk on integers

(1) Start at 0 .
(2) Toss a fair coin.
(3) If head appears, then take a step +1 and if tail appears, then take a step -1 .

Simple random walk on integers

(1) Start at 0 .
(2) Toss a fair coin.
(3) If head appears, then take a step +1 and if tail appears, then take a step -1 .
(4) Toss a fair coin in an independent fashion.

Simple random walk on integers

(1) Start at 0 .
(2) Toss a fair coin.
(3) If head appears, then take a step +1 and if tail appears, then take a step -1 .
(4) Toss a fair coin in an independent fashion.
(5) If head appears, then take a step +1 and if tail appears, then take a step -1 .

Simple random walk on integers

(1) Start at 0 .
(2) Toss a fair coin.
(3) If head appears, then take a step +1 and if tail appears, then take a step -1 .
(4) Toss a fair coin in an independent fashion.
(5) If head appears, then take a step +1 and if tail appears, then take a step -1 .
(6) Repeat 4 and 5 again and again.

Any random walk on integers

For every integer i, fix a nonnegative real number p_{i} in such a way that the sum of all p_{i} 's is equal to 1 .

Any random walk on integers

For every integer i, fix a nonnegative real number p_{i} in such a way that the sum of all p_{i} 's is equal to 1 .
(1) Start at 0 .

Any random walk on integers

For every integer i, fix a nonnegative real number p_{i} in such a way that the sum of all p_{i} 's is equal to 1 .
(1) Start at 0 .
(2) Take a step i with probability p_{i}.

Any random walk on integers

For every integer i, fix a nonnegative real number p_{i} in such a way that the sum of all p_{i} 's is equal to 1 .
(1) Start at 0 .
(2) Take a step i with probability p_{i}.
(3) In an independent fashion, take another step j with probability p_{j}.

Any random walk on integers

For every integer i, fix a nonnegative real number p_{i} in such a way that the sum of all p_{i} 's is equal to 1 .
(1) Start at 0 .
(2) Take a step i with probability p_{i}.
(3) In an independent fashion, take another step j with probability p_{j}.
(4) Repeat 3 again and again.

Any random walk on integers

For every integer i, fix a nonnegative real number p_{i} in such a way that the sum of all p_{i} 's is equal to 1 .
(1) Start at 0 .
(2) Take a step i with probability p_{i}.
(3) In an independent fashion, take another step j with probability p_{j}.
(4) Repeat 3 again and again.

In case of simple random walk, $p_{1}=p_{-1}=\frac{1}{2}$ and all other p_{i} 's are 0 .

What is a branching simple random walk?

Branching simple random walk on integers

Branching simple random walk on integers

(1) Start with one particle at position 0 (the zeroth generation).

Branching simple random walk on integers

(1) Start with one particle at position 0 (the zeroth generation).
(2) The particle branches into two particles.

Branching simple random walk on integers

(1) Start with one particle at position 0 (the zeroth generation).
(2) The particle branches into two particles.
(3) Each new particle tosses a fair coin independently of each other and takes a step +1 or -1 depending on whether head or tail appears.

Branching simple random walk on integers

(1) Start with one particle at position 0 (the zeroth generation).
(2) The particle branches into two particles.
(3) Each new particle tosses a fair coin independently of each other and takes a step +1 or -1 depending on whether head or tail appears.
(4) This gives rise to the first generation.

Branching simple random walk on integers

(1) Start with one particle at position 0 (the zeroth generation).
(2) The particle branches into two particles.
(3) Each new particle tosses a fair coin independently of each other and takes a step +1 or -1 depending on whether head or tail appears.
(This gives rise to the first generation.
(0) Each particle repeats 2 and 3 independently of each other and this process goes on.

Any branching random walk on integers

For every integer i, fix a nonnegative real number p_{i} in such a way that the sum of all p_{i} 's is equal to 1 .

Any branching random walk on integers

For every integer i, fix a nonnegative real number p_{i} in such a way that the sum of all p_{i} 's is equal to 1 .
(1) Start with one particle at position 0 (the zeroth generation).

Any branching random walk on integers

For every integer i, fix a nonnegative real number p_{i} in such a way that the sum of all p_{i} 's is equal to 1 .
(1) Start with one particle at position 0 (the zeroth generation).
(2) The particle branches into two particles.

Any branching random walk on integers

For every integer i, fix a nonnegative real number p_{i} in such a way that the sum of all p_{i} 's is equal to 1 .
(1) Start with one particle at position 0 (the zeroth generation).
(2) The particle branches into two particles.

- Each new particle takes a step i with probability p_{i} independently of each other.

Any branching random walk on integers

For every integer i, fix a nonnegative real number p_{i} in such a way that the sum of all p_{i} 's is equal to 1 .
(1) Start with one particle at position 0 (the zeroth generation).
(2) The particle branches into two particles.

- Each new particle takes a step i with probability p_{i} independently of each other.
- This gives rise to the first generation.

Any branching random walk on integers

For every integer i, fix a nonnegative real number p_{i} in such a way that the sum of all p_{i} 's is equal to 1 .
(1) Start with one particle at position 0 (the zeroth generation).
(2) The particle branches into two particles.

- Each new particle takes a step i with probability p_{i} independently of each other.
- This gives rise to the first generation.
- Each particle repeats 2 and 3 independently of each other and this process goes on.

Any branching random walk on integers

For every integer i, fix a nonnegative real number p_{i} in such a way that the sum of all p_{i} 's is equal to 1 .
(1) Start with one particle at position 0 (the zeroth generation).
(2) The particle branches into two particles.

- Each new particle takes a step i with probability p_{i} independently of each other.
(1) This gives rise to the first generation.
(0. Each particle repeats 2 and 3 independently of each other and this process goes on.

For branching simple random walk, $p_{1}=p_{-1}=\frac{1}{2}$ and other $p_{i}=0$.

Branching random walk on the real line

Everything is same as before except that step-sizes will no longer be integers. It can be any real (random) number.

Branching random walk on the real line

Everything is same as before except that step-sizes will no longer be integers. It can be any real (random) number.

The number of offspring particles can also be a random nonnegative integer.

Branching random walk on the real line

Everything is same as before except that step-sizes will no longer be integers. It can be any real (random) number.

The number of offspring particles can also be a random nonnegative integer.

This model was introduced by Hammerseley (1974), Kingman (1975) and Biggins (1976).

Why is it important?

Why is it important?

- Branching random walks appear in many contexts ranging from biology to statistical physics.

Why is it important?

- Branching random walks appear in many contexts ranging from biology to statistical physics.
- It can be used to describe how a growing population (of bacteria, particles, etc.) invades a new environment.

Why is it important?

- Branching random walks appear in many contexts ranging from biology to statistical physics.
- It can be used to describe how a growing population (of bacteria, particles, etc.) invades a new environment.
- In our rather simplified model, we only allow the particles to move along a single line (or even integers).

Why is it important?

- Branching random walks appear in many contexts ranging from biology to statistical physics.
- It can be used to describe how a growing population (of bacteria, particles, etc.) invades a new environment.
- In our rather simplified model, we only allow the particles to move along a single line (or even integers).
- More complicated models can also be considered where particles move in a plane or in a box.

Why is it important?

- Branching random walks appear in many contexts ranging from biology to statistical physics.
- It can be used to describe how a growing population (of bacteria, particles, etc.) invades a new environment.
- In our rather simplified model, we only allow the particles to move along a single line (or even integers).
- More complicated models can also be considered where particles move in a plane or in a box.
- For the purpose of this talk, we shall restrict ourselves to the simple model and talk about the long run configuration of the positions of particles.

What is long run configuration?

What is long run configuration?

- Recall that, a branching random walk is a growing collection of particles (or organisms) which starts from a single particle, branch and spread independently of their positions and of the other particles.

What is long run configuration?

- Recall that, a branching random walk is a growing collection of particles (or organisms) which starts from a single particle, branch and spread independently of their positions and of the other particles.
- If we let the dynamics run for many many generations, how would the picture (or the snapshot) of the system look like?

What is long run configuration?

- Recall that, a branching random walk is a growing collection of particles (or organisms) which starts from a single particle, branch and spread independently of their positions and of the other particles.
- If we let the dynamics run for many many generations, how would the picture (or the snapshot) of the system look like?
- The long run configuration is of great importance in statistical physics, mathematical biology and probability theory.

Two conjectures, two theorems and a question

Two conjectures, two theorems and a question

Conjectures of Brunet and Derrida (2011): the long run configuration of positions of particles

Two conjectures, two theorems and a question

Conjectures of Brunet and Derrida (2011): the long run configuration of positions of particles
(1) is a decorated Poisson point process, and

Two conjectures, two theorems and a question

Conjectures of Brunet and Derrida (2011): the long run configuration of positions of particles
(1) is a decorated Poisson point process, and
(2) exhibits superposability property.

Two conjectures, two theorems and a question

Conjectures of Brunet and Derrida (2011): the long run configuration of positions of particles
(1) is a decorated Poisson point process, and
(2) exhibits superposability property.

Question of Brunet and Derrida (2011): Are 1 and 2 the same?

Two conjectures, two theorems and a question

Conjectures of Brunet and Derrida (2011): the long run configuration of positions of particles
(1) is a decorated Poisson point process, and
(2) exhibits superposability property.

Question of Brunet and Derrida (2011): Are 1 and 2 the same?
Theorem of Maillard (2013): YES, they are

Two conjectures, two theorems and a question

Conjectures of Brunet and Derrida (2011): the long run configuration of positions of particles
(1) is a decorated Poisson point process, and
(2) exhibits superposability property.

Question of Brunet and Derrida (2011): Are 1 and 2 the same?
Theorem of Maillard (2013): YES, they are (under some conditions).

Two conjectures, two theorems and a question

Conjectures of Brunet and Derrida (2011): the long run configuration of positions of particles
(1) is a decorated Poisson point process, and
(2) exhibits superposability property.

Question of Brunet and Derrida (2011): Are 1 and 2 the same?
Theorem of Maillard (2013): YES, they are (under some conditions).

Theorem of Madaule (2017): 1 and 2 hold (under same conditions).

Two conjectures, two theorems and a question

Conjectures of Brunet and Derrida (2011): the long run configuration of positions of particles
(1) is a decorated Poisson point process, and
(2) exhibits superposability property.

Question of Brunet and Derrida (2011): Are 1 and 2 the same?
Theorem of Maillard (2013): YES, they are (under some conditions).

Theorem of Madaule (2017): 1 and 2 hold (under same conditions).

Key Question: What if the conditions are not satisfied?

What kind of conditions?

What kind of conditions?

Roughly speaking, the conditions of Maillard (2013) and Madaule (2017) force the step-sizes of most of the newborn particles to be small.

What kind of conditions?

Roughly speaking, the conditions of Maillard (2013) and Madaule (2017) force the step-sizes of most of the newborn particles to be small.

Key Question: What if we allow bigger step-sizes?

When step-sizes are bigger . . .

?? Brunet and Derrida (2011)

When step-sizes are bigger ...

?? Brunet and Derrida (2011)

When step-sizes are bigger ...

?? Brunet and Derrida (2011)

When step-sizes are bigger ...

?? Brunet and Derrida (2011)

When step-sizes are bigger . . .

?? Brunet and Derrida (2011)

When step-sizes are bigger . . .

?? Brunet and Derrida (2011)

When step-sizes are bigger ...

?? Brunet and Derrida (2011)

Conclusion: In our setup, $D P P P$ should be replaced by $S c D P P P$ and superposability should be replaced by stability.

When step-sizes are bigger ...

?? Brunet and Derrida (2011)

Conclusion: In our setup, $D P P P$ should be replaced by $S c D P P P$ and superposability should be replaced by stability.

Bhattacharya, Hazra and R. $(2017,2018):(1)$ Brunet-Derrida conjectures hold. (2) Long run configuration has been explicitly computed

When step-sizes are bigger ...

?? Brunet and Derrida (2011)

Conclusion: In our setup, $D P P P$ should be replaced by $S c D P P P$ and superposability should be replaced by stability.

Bhattacharya, Hazra and R. $(2017,2018):(1)$ Brunet-Derrida conjectures hold. (2) Long run configuration has been explicitly computed (missing when step-sizes are small).

My collaborators ...

Ayan Bhattacharya
Post-doctoral Researcher
Stochastics Group
Centrum Wiskunde \& Informatica
Amsterdam

Rajat Subhra Hazra Assistant Professor Stat-Math Unit Indian Statistical Institute Kolkata

