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Simple random walk on integers

1 Start at 0.

2 Toss a fair coin.

3 If head appears, then take a step +1 and if tail appears, then
take a step −1.

4 Toss a fair coin in an independent fashion.

5 If head appears, then take a step +1 and if tail appears, then
take a step −1.

6 Repeat 4 and 5 again and again.
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Any random walk on integers

For every integer i , �x a nonnegative real number pi in such a way
that the sum of all pi 's is equal to 1.

1 Start at 0.

2 Take a step i with probability pi .

3 In an independent fashion, take another step j with probability
pj .

4 Repeat 3 again and again.

In case of simple random walk, p1 = p−1 =
1

2
and all other pi 's are 0.
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Branching simple random walk on integers

1 Start with one particle at position 0 (the zeroth generation).

2 The particle branches into two particles.

3 Each new particle tosses a fair coin independently of each other

and takes a step +1 or −1 depending on whether head or tail
appears.

4 This gives rise to the �rst generation.

5 Each particle repeats 2 and 3 independently of each other and
this process goes on.
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Any branching random walk on integers

For every integer i , �x a nonnegative real number pi in such a way
that the sum of all pi 's is equal to 1.

1 Start with one particle at position 0 (the zeroth generation).

2 The particle branches into two particles.

3 Each new particle takes a step i with probability pi

independently of each other.

4 This gives rise to the �rst generation.

5 Each particle repeats 2 and 3 independently of each other and
this process goes on.

For branching simple random walk, p1 = p−1 =
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Branching random walk on the real line

Everything is same as before except that step-sizes will no longer be
integers. It can be any real (random) number.

The number of o�spring particles can also be a random nonnegative
integer.

This model was introduced by Hammerseley (1974), Kingman (1975)
and Biggins (1976).
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Why is it important?

Branching random walks appear in many contexts ranging from
biology to statistical physics.

It can be used to describe how a growing population (of
bacteria, particles, etc.) invades a new environment.

In our rather simpli�ed model, we only allow the particles to
move along a single line (or even integers).

More complicated models can also be considered where particles
move in a plane or in a box.

For the purpose of this talk, we shall restrict ourselves to the
simple model and talk about the long run con�guration of the
positions of particles.
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What is long run con�guration?

Recall that, a branching random walk is a growing collection of
particles (or organisms) which starts from a single particle,
branch and spread independently of their positions and of the
other particles.

If we let the dynamics run for many many generations, how
would the picture (or the snapshot) of the system look like?

The long run con�guration is of great importance in statistical
physics, mathematical biology and probability theory.
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Two conjectures, two theorems and a question

Conjectures of Brunet and Derrida (2011): the long run con�guration

of positions of particles

1 is a decorated Poisson point process, and

2 exhibits superposability property.

Question of Brunet and Derrida (2011): Are 1 and 2 the same?

Theorem of Maillard (2013): YES, they are (under some conditions).

Theorem of Madaule (2017): 1 and 2 hold (under same conditions).

Key Question: What if the conditions are not satis�ed?
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What kind of conditions?

Roughly speaking, the conditions of Maillard (2013) and Madaule
(2017) force the step-sizes of most of the newborn particles to be
small.

Key Question: What if we allow bigger step-sizes?
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When step-sizes are bigger . . .

Conclusion: In our setup, DPPP should be replaced by ScDPPP

and superposability should be replaced by stability.

Bhattacharya, Hazra and R. (2017, 2018): (1) Brunet-Derrida
conjectures hold. (2) Long run con�guration has been explicitly
computed (missing when step-sizes are small).
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