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Part-1 (warm-up)

Infinitude of primes



Definition, Statement, Proof - a first example

Definition
A prime number is any natural number (except 1) that is not
divisible by any number other than 1 and itself.

Theorem
There are infinitely many prime numbers.

Proof
If p1, . . . ,pk are all the primes, any n ≥ 1 can be written as

n = pe1
1 . . .pek

k

for a unique k-tuple of non-negative integers (e1, . . . ,ek).
As eis range over 0 to m− 1, we must get all n ≤ 2m − 1. But the

number of such k-tuples is mk which is much smaller than
2m − 1. −→←−
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The same proof, in more detail

If there were only k = 15 primes, we could make the table

p1=2 p2=3 p3=5 . . . . . . p15

2 1 0 0 . . . . . . 0
3 0 1 0 . . . . . . 0
4 2 0 0 . . . . . . 0
...

...
...

...
...

...
...

20 2 0 1 . . . . . . 0
...

...
...

...
...

...
...

2m m 0 0 . . . . . . 0

where each entry is at most m.
I On the left, 2m distinct numbers.
I On the right, at most m15 numbers.
I For large m (eg., m ≥ 25), the number m15 is smaller than 2m.
I Hence the contradiction, showing that there must be at
least 16 primes...



Food for thought

I The proof is so remarkable, that it can only be called a gem!
So is the usual proof of Euclid...

I But one should also ask - Why did anyone think of the
definition of prime number? Is it inevitable?

I The proof requires ingenuity. It is like problem solving, once
the problem has been stated. The definition requires may be
even deeper thought. In this case, it is not cleverness or
ingenuity as much as clarity of thought and insight as to what
concepts will turn out to be really meaningful.



Part-2: A great definition

Gamma function



Euler’s extension of the factorial function

1 + 2 + . . .+ n = 1
2 n(n + 1). Analogous formula for 1× 2× . . .× n?

Euler’s first observation
n! = (n+k)!

(n+1)...(n+k) =
k!(k+1)...(k+n)
(1+n)...(k+n) = k! kn

(1+n)...(k+n)
(k+1)...(k+n)

kn .

True for every natural number k . Second factor approaches 1
as k →∞. Thus, Euler arrived at

n! = lim
k→∞

k! kn

(1+n)...(k+n) .

The right hand side makes sense (i.e., limit exists) for any
complex number n other than negative integers. Make this the
definition of the factorial function.

Euler’s first definition
For z ∈ C \ {−1,−2, . . .}, define z! = lim

k→∞
k! kz

(1+z)...(k+z)
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Euler’s extension of the factorial function

This tells us a possible definition of the factorial, but is this the
right one? Euler also noticed that

n! =
∫∞

0 e−xxn−1dx .

Hence, an alternate definition for the factorial function-

Euler’s second definition
For z ∈ C with <z > 0, define z! =

∫∞
0 e−xx z−1dx .

The integral does not make sense for <z ≤ 0, hence the
restriction on z. We now have two definitions, which of the two
is the more natural one? Or is there a third?

Fact
For <z > 0, the two definitions of z! coincide.
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Euler’s extension of the factorial function

I 1× 2× . . .× z if z ∈ N

I
∫∞

0 e−xx zdx if z ∈ C, <z > 0,

I lim
k→∞

k! kz

(1+z)...(k+z) if z ∈ C \ (−N)

The third definition extends the second which extends the first.
Strong evidence that the new definitions are “right”!
In addition, if z! is defined by the second or third definition, then
(z + 1)! = z!(z + 1), analogous to the factorial function.
Can we find explicit value of z! for at least one z that is not a
positive integer?! Yes, eg., (1/2)! =

√
π.

The Extended factorial function (“Gamma function”) appears
everywhere in mathematics. Almost as important as sin and cos,
exp and log...
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Part-2: Another great definition

Determinant



Determinant

Recall the determinant of a 2× 2 matrix∣∣∣∣ a b
c d

∣∣∣∣ = ad − bc

and for a 3× 3 matrix ∣∣∣∣∣∣
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

∣∣∣∣∣∣ =
a1,1

∣∣∣∣ a2,2 a2,3

a3,2 a3,3

∣∣∣∣− a1,2

∣∣∣∣ a2,1 a2,3

a3,1 a3,3

∣∣∣∣+ a1,3

∣∣∣∣ a2,1 a2,2

a3,1 a3,2

∣∣∣∣
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Determinant

More generally, for an n× n array of numbers, we make a similar
recursive definition. For example, if n = 4, we have

a1,1

∣∣∣∣∣∣
a2,2 a2,3 a2,4

a3,2 a3,3 a3,4

a4,2 a4,3 a4,4

∣∣∣∣∣∣− a1,2

∣∣∣∣∣∣
a2,1 a2,3 a2,4

a3,1 a3,3 a3,4

a4,1 a4,3 a4,4

∣∣∣∣∣∣+ . . .

More succinctly,

If A = (ai,j)1 ≤ i, j ≤ n, then det(A) =
∑
π∈Sn

sgn(π)
n∏

k=1
ak,π(k).

Question
Why this definition? Why not some other combination like for
example, ∣∣∣∣ a b

c d

∣∣∣∣ = ad + bc?
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First use of determinant: Solving systems of linear
equations

I Consider 2 simultaneous equations in 2 variables x , y (for
fixed α, β)

ax + by = α

cx + dy = β.

Easy fact
Solution exists for any α, β if and only if ad − bc 6= 0, i.e.,∣∣∣∣ a b

c d

∣∣∣∣ 6= 0. In such a case, the solution is unique.

Same fact extends to n simultaneous linear equations in n
variables.

Lesson
The solvability of a system of linear equations can be checked
by computing the determinant of the array of coefficients.
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Second use of determinant: Finding volumes

I The determinant of an n× n matrix is equal in absolute value
to the parallelepiped formed by the columns of A (together
with the origin).
I This fact can be used also to compute volume changes
under non-linear transformations:

Volume change formula
Let A be a region in the plane and let T = (T1(x , y), T2(x , y)) be a
one-one, onto, differentiable function that maps A onto a
region B. Then, Vol(A) =

∫
B |JT (x , y)|dxdy where

JT (x , y) =

∣∣∣∣∣ ∂T1
∂x

∂T1
∂y

∂T2
∂x

∂T2
∂y

∣∣∣∣∣
Same holds in higher dimensions.
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Same holds in higher dimensions.



Third use of determinant: A counting problem

I Consider a finite graph G = (V , E). A spanning tree is a
connected subgraph of G that contains all the vertices and
has no cycles. Given a graph G, how many spanning trees
does it have?

Answer
Label vertices so that V = {1, . . . ,n}, form the n× n matrix L

L(i, j) =


deg(i) if j = i,

−1 if j ∼ i,

0 otherwise.

Delete the last row and last column of L to get L0. Then det(L0)
is equal to the number of spanning trees of G.
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Example: Complete graph Kn has nn−2 spanning trees (Cayley’s
theorem).

Figure: Illustration of Cayley’s theorem [Picture taken from
Wikipedia]
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Part-3: A great proof

Cantor’s diagonal
argument



Cantor’s diagonal argument

Cantor showed that if you make any list of binary sequences

0 1 0 0 1 0 0 . . . . . .

0 1 1 1 1 0 1 . . . . . .

1 1 0 1 0 0 0 . . . . . .

0 1 0 1 0 0 1 . . . . . .

0 0 0 0 1 0 0 . . . . . .

1 1 1 0 1 0 1 . . . . . .

0 1 0 1 0 1 0 . . . . . .

...
...

...
...

...

then some (in fact many) binary sequence must be missing
from the list!
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Cantor’s diagonal argument

Proof?

Consider the diagonal of the table

0 1 0 0 1 0 0 . . . . . .

0 1 1 1 1 0 1 . . . . . .

1 1 0 1 0 0 0 . . . . . .

0 1 0 1 0 0 1 . . . . . .

0 0 0 0 1 0 0 . . . . . .

1 1 1 0 1 0 1 . . . . . .

0 1 0 1 0 1 0 . . . . . .

...
...

...
...

...

and form a new sequence by switching zeros and ones to get

1 0 1 0 0 1 1 . . . . . .

This sequence is not present in the list!
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Cantor’s diagonal argument

This is a remarkable proof technique found by Cantor. It occurs
again and again in mathematics. Just to drop some names,
you will see it in the context of compactness of product
topology, in Banach-Alaoglu theorem in functional analysis,
Prohorov’s theorem in probability theory ...

Exercise: Let (x1,1, x1,2, . . .), (x2,1, x2,2, . . .), (x3,1, x3,2, . . .), . . . be
sequences of numbers between 0 and 1 (i.e., 0 ≤ xi,j ≤ 1 for all
i, j). Then there is a common subsequence n1 < n2 < n3 < . . .

such that the sequences (x1,n1
, x1,n2

, . . .), (x2,n1
, x2,n2

, . . .),
(x3,n1

, x3,n2
, . . .), . . . all converge.
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Some remarks, from Gian
Carlo Rota on the

dichotomy between
problem solving and

theorizing in
mathematics



The problem solver

To the problem solver, the supreme achievement in
mathematics is the solution to a problem that has been given
up as hopeless....For him mathematics consists of a sequence
of challenges to be met...The problem solver is the role model
for budding young mathematicians. When we describe to the
public the conquests of mathematics, our shining heroes are
problem solvers.
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The theorizer

To the theorizer, the supreme achievement of mathematics is a
theory that sheds light on some incomprehensible
phenomenon. Success does not lie in solving problems but in
their trivialization....To the theorizer, the only mathematics that
will survive are the definitions. Great definitions are what
mathematics contributes to the world...Theorems are tolerated
as a necessary evil...



The theorizer

To the theorizer, the supreme achievement of mathematics is a
theory that sheds light on some incomprehensible
phenomenon.

Success does not lie in solving problems but in
their trivialization....To the theorizer, the only mathematics that
will survive are the definitions. Great definitions are what
mathematics contributes to the world...Theorems are tolerated
as a necessary evil...



The theorizer

To the theorizer, the supreme achievement of mathematics is a
theory that sheds light on some incomprehensible
phenomenon. Success does not lie in solving problems but in
their trivialization....

To the theorizer, the only mathematics that
will survive are the definitions. Great definitions are what
mathematics contributes to the world...Theorems are tolerated
as a necessary evil...



The theorizer

To the theorizer, the supreme achievement of mathematics is a
theory that sheds light on some incomprehensible
phenomenon. Success does not lie in solving problems but in
their trivialization....To the theorizer, the only mathematics that
will survive are the definitions.

Great definitions are what
mathematics contributes to the world...Theorems are tolerated
as a necessary evil...



The theorizer

To the theorizer, the supreme achievement of mathematics is a
theory that sheds light on some incomprehensible
phenomenon. Success does not lie in solving problems but in
their trivialization....To the theorizer, the only mathematics that
will survive are the definitions. Great definitions are what
mathematics contributes to the world...

Theorems are tolerated
as a necessary evil...



The theorizer

To the theorizer, the supreme achievement of mathematics is a
theory that sheds light on some incomprehensible
phenomenon. Success does not lie in solving problems but in
their trivialization....To the theorizer, the only mathematics that
will survive are the definitions. Great definitions are what
mathematics contributes to the world...Theorems are tolerated
as a necessary evil...



The theorizer

To the theorizer, the supreme achievement of mathematics is a
theory that sheds light on some incomprehensible
phenomenon. Success does not lie in solving problems but in
their trivialization....To the theorizer, the only mathematics that
will survive are the definitions. Great definitions are what
mathematics contributes to the world...Theorems are tolerated
as a necessary evil...



Who is better?

If I were a space engineer looking for a mathematician to help
me send a rocket into space, I would choose a problem solver.
But if I were looking for a mathematician to give a good
education to my child, I would unhesitatingly prefer a theorizer.
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Practical remarks relevant to studying
mathematics at undergraduate level



Two broad aspects

I Problem solving

I Understanding concepts

We have been emphasizing the second aspect in this lecture
. . . It can be argued that it is the more important task of the two
. . . but -

It is vaguely defined and hence easy to fool oneself that one is
thinking profound things while being fairly foolish about them.
For a beginner, I offer the possibly less accurate but far more
useful practical rule

If you cannot solve problems in a subject, you do not
understand the concepts.



More practical suggestions

I At B.Sc. level, it suffices if you learn

1. Real analysis (Apostol level),

2. Linear algebra (Strang level),

3. Basic algebra (Herstein level).

I + some useful skills: basic programming and basic statistics.

I Pick a good text. May also use resources such as lecture
videos.



More practical suggestions

I Learning a subject means being able to

1. read the text,

2. solve problems,

3. write solutions.

I If unable to solve problems, go back to reading the text
again. Repeat as many times as needed.

I Test yourself by solving old papers of JAM, NBHM, GATE, . . .

I An hour spent unsuccessfully trying to solve a problem is
time well-spent.



Thank you!

And enjoy the rest of the summer school!


