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For the critical exponents near the sol-gel phase transition, classical theories like those of Flory and 
Stockmayer predict one set of exponents, whereas scaling theories based on lattice percolation 
predict different exponents. The two groups of theories differ in their treatment of intramolecular 
loops, space dimensionality and excluded volume effects. In this article, the differences and similari- 
ties between the results of the competing theories are reviewed. For example, a gel fraction like 
(p - p~)~ vanishes for conversion factors p very close to the get point Pc, the weight average 
molecular weight diverges as (Pc - p)-r for p very slightly below pc, and the radius of macromolecu- 
les at the gel point p = Pc varies as the Q-th power of the number of monomers in that macromole- 
cule. Classical theories predict/3 = y = 1 and Q = 1/4 whereas the percolation theory gives/3 = 0.45, 
y = 1.74 and 0 = 0.40. We also generalize the percolation concept to include interaction effects and 
concentration fluctuations; in this case the sol-gel phase transition may be connected with a phase 
separation. 

Some experimental results are reviewed to check whether the percolation theory agrees with 
reality; no clear answer has been found so far, due to experimental difficulties. For instance, for the 
viscosity a power law (Pc - P) -°s  which agrees with one of the percolation ideas has been estab- 
lished in several experiments; the shear modulus of the gel vanishes roughly as (p - p c )  3 in some 
experiments, which agrees better with the classical theory. 
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Gelation and Critical Phenomena 

A. Introduction 

105 

M. Gordon suggested some time ago t) that the behavior of gels at the sol-gel phase 
transition should be investigated more closely. And indeed shortly thereafter ~' 3) theoreti- 
cal predictions were published according to which the critical exponents for these phase 
transitions should differ drastically from those of the widely accepted "classical" 
theories 1, 4.5). These speculations 2' 3) were based on the analogy with other phase transi- 
tions like the liquid-gas critical point, and in particular with the percolation problem and 
its recent advances. 

Thus, this review explains critical exponents and percolation theories and compares 
these theories, preferred by physicists, with the classical approach (Flory-Stockmayer 
type theory 4, 5)) used by chemists, and summarizes experimental evidence both in favor 
and against the theoretical predictions. Since most readers are well acquainted with 
classical theories we emphasize here recent developments of percolation theories. Due to 
the rapid development of the situation since 1979, some earlier reviews 6'7) are partly 
outdated now. We hope that the same can be said soon about the present article, too. 

B. What are Critical Phenomena 

B.I. Preliminary Remarks 

In the sol-gel phase transition, an infinitely large macromolecule is formed. Critical 
phenomena are those which occur exactly in the phase transition or asymptotically close 
to it. Let us explain this definition in detail (Eq. (10) gives a summary): 

We discuss a solution of molecules ("monomers") with functionality f >_ 3 (in gen- 
eral); from each molecule may emanate zero to f bonds to neighboring molecules and 
thus this molecule may participate in the formation of a large cluster which is called a 
macromolecule. Two monomers in the same cluster or macromolecule are thus con- 
nected directly or indirectly (through other monomers in the same cluster) by such bonds 
whereas two monomers in two different macromolecules are not connected by such 
bonds. We denote the number of monomers in one macromotecule by s and then call this 
macromolecule also an s-cluster; an isolated monomer without bonds to its neighbors is 
thus designated as an 1-cluster with s = 1. (For simplicity, we also call s the mass of the 
macromolecule, i.e. we set the molecular weight of the monomers equal to unity in the 
theoretical discussions.) Under certain conditions, an "infinite" cluster can be formed, 
i.e. a network which extends from one end of the sample to the other. 

The concept of an infinite cluster makes sense only in the thermodynamic limit of very large 
samples; otherwise, there is no sharp phase transition. If the mass s of the largest cluster in the 
sample is proportional to the system size and if the latter goes to infinity we call the cluster infinitely 
large. For usual system sizes there is either one or no cluster whose mass is much larger than the 
mass of any other cluster. Such a special cluster is large enough for most scientific considerations. 

This infinitely large macromolecule is called a gel; a collection of finite clusters is 
called a sol. A gel usually coexists with a sol: the finite clusters are then trapped in the 
interior of the gel. 
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Gelation is the phase transition from a state without a gel to a state with a gel, i.e. 
gelation involves the formation of an infinite network 4' 6, 9). 

The conversion factor p is the fraction of bonds which have been formed between the 
monomers of the system, i.e. the ratio of the actual number of bonds at the given 
moment to the maximally possible number of such bonds. Thus, for p = 0, no bonds 
have been formed and all monomers remain isolated 1-clusters. In the other extreme, 
p = 1, all possible bonds between monomers have been formed and thus all monomers in 
the system have clustered into one infinite network, with no sol phase left. Thus for small 
p no gel is present whereas for p close to unity one such network exists. Therefore, there 
is in general a sharp phase transition at some intermediate critical point p = Pc, where an 
infinite cluster starts to appear: a gel for p above Pc, a sol for p below Pc. This point 
p = pc is the gel point and may be the analog of a liquid-gas critical point: For p below Pc 
only a sol is present just as for T above T¢ only a supercritical gas exists. But for p above 
pc, sol and gel coexist with each other; similarly for T below Tc vapor and liquid coexist at 
equilibrium on the vapor pressure curve. Magnetism experts may prefer the analogy with 
the Curie point: For T above Tc, no spontaneous magnetization exists (corresponding to 
no gel), whereas below Tc this remanence is non-zero (corresponding to the gel above 
Pc). However, we do not assert that these thermal phase transitions and gelation have the 
same critical behavior. Also, in gelation there is no phase separation: Whereas the vapor 
is above the liquid, the sol is within the gel. The liquid-gas transition is a thermodynamic 
phase transition whereas gelation deals with geometrical connections (i.e. with bonds). 
At least in simple gelation models the temperature plays only a minor role compared with 
its dominating influence on the thermodynamic phase transitions. Such simple gelation 
theories often make the assumption that the conversion p alone determines the behavior 
of the gelation process, though p may depend on temperature T, concentration tp of 
monomers, and time t. Sections C.V. and D. will deal with more complicated models 
where temperature and concentration are more important variables. 

This review will emphasize one particular approach to gelation theory, the percolation 
model. It can be explained simply as follows: Monomers are thought to occupy the sites 
of a periodic lattice, and between two nearest neighbors of lattice sites a bond is formed 
randomly with probability p. Figure 1 shows the resulting macromolecules at the gel 
point for the two-dimensional square lattice (Pc = 1/2), an example which can be easily 
produced by a programmable pocket calculator. We will compare the results of this 
percolation theory with those of the "classical" theories which, in their simplest form 4), 
allow the same random process of bond formation to be performed on a tree-like struc- 
ture, the Bethe lattice or Cayley tree of Fig. 2. Most of our review deals with irreversible 
gelafion, where a bond, once formed, is not easily broken again. 

Critical phenomena are phenomena occurring for p very close to or identical with the 
gel point Pc. Thus the critical behavior happens in "asymptopia" (R. A. Ferrell), i.e. in 
the limiting region of p asymptotically close to Pc. Of course, any real experiment can 
never reach this purely mathematical limit, but one can try to come as close as possible to 
asymptopia. Similarly, social justice is difficult to accomplish completely, but one can try 
to improve society in that direction. Similarly, chemistry is usually concerned with "pure" 
materials which do not exist in reality; in experiments one therefore uses "chemically 
pure" substances, i.e. those which are as clean as possible. As usual in thermodynamics, 
we deal also in gelation theory with the limit of very large systems, and in some cases with 
systems in complete thermal equilibrium, two other asymptotic limits which may be 
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Fig. 1. Example of percolation at the gel point, p - 1/2, in a square lattice. Each bond which has 
been formed is shown as a short line connecting two monomers; the monomers are not shown. One 
sees some nearly "infinite" macromolecules, where infinite means that they span the whole sample. 
Each bond is formed with probability p 

Fig. 2, Structure of the Bethe lattice 
with f = 3 (interior part of the infinite 
system only). Each possible bond is 
shown as a line connecting two mono- 
mers (dots), The Flory-Stockmayer 
theory assumes that each actual bond of 
these possible bonds is formed with 
probability p 
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difficult to achieve. (For a critique of asymptopia see Ref. 11.) Thus none of the limits 
discussed in this article is very special to gelation or percolation theory. 

(These two examples also show that for precision experiments one should try to 
measure data also slightly away from asymptopia even if one wants to know the asymp- 
topic'behavior only. In chemistry, it is more suitable to work with several samples 
differing in a small but well-defined amount of impurities so that one can extrapolate to 
zero impurities. In thermodynamics it is useful, e.g. in computer simulations, to work 
with samples of different size in order that one can subtract the surface effects by 
extrapolating to infinite size. Similarly, knowledge of gelation slightly away from the gel 
point will increase the precision of the results in the asymptotic regime close to Pc since 
then extrapolations are possible.) 

How can we describe critical phenomena quantitatively? We will be interested mainly 
in quantities which become either zero or infinite at the gel point p = Pc; thus we want to 
know how they approach these limiting values. For example, since an infinite mac- 
romolecule appears for p above Pc but not for p below Pc, it is likely that some average 
molecular weight or degree of polymerization diverges, if p approaches Pc from below 
(denoted as p --~ p~-, in contrast to p ~ pc + for the opposite direction). Let us look at the 
weight average degree of polymerization, DPw (which corresponds to the weight average 
molecular weight Mw; we are mostly interested in proportionalities only). A simple 
behavior for p slightkv below Pc would be 

DPw oc 1/(p~ - p) (p ~ p~-) , 

in analogy with the Curie-Weiss law of the paramagnetic susceptibility or the van der 
Waats result for the compressibility. More generally, one may postulate 

DPw ~ (Pc - P)-~ (P-~PU) 

with a suitable constant y which is called a critical exponent, The asymptotic proportion- 
ality factor C in the equality 

DPw = C(p¢ - p)-r  (p ~ pg) 

is called a critical amplitude. Only may also measure the degree of polymerization above 
Pc in the sol coexisting with the get; then the critical behavior may be described by 
another (or the same?) critical exponent and critical amplitude: 

DPw = C'(p - pc) - /  (p --~ pc+). 

If very accurate experimental data are available or if one has achieved an exact solution 
of a theoretical model, one can find out also the leading correction terms like 

DPw = C(p~ - p)-~ + C~(p¢ - p)-Y~ + C2(pc - p)-Y: + "" ( p ~  p~-) 0) 

with y > )'1 > Y2 > "". These relations are not the only possibilities; for example, a 
quantity may diverge as log(p - Pc), in which case one may identify the corresponding 
critical exponent with zero since log(p - Pc) diverges more slowly than any finite power 
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of  p - Pc. Conversely,  an infinite exponent  may describe an exponential  increase, as in 

e x p ( -  const/(p - Pc)). A combinat ion of powers and logarithms is also possible, as in 

(Pc - P)-lllog(Pc - p)]2/7 for DPw in the six-dimensional percolation theoryS); at present,  

there is no reason to bel ieve that  these complications occur in the usual three-dimen- 

sional gelation. Since all three-dimensional  gelation theories known to us are compatible 

with expansion (1) we assume from now on its validity as a limit; but Ref.  11 pointed out 

that the form of Eq.  (1) in general  remained unproven.  Exact  solutions of  theoretical  

models  are presently known for the t ree approximation of  Fig. 2 and similar "classical" 

approaches,  and for ext reme space dimensionalit ies d like d = 1 and d _> 68,10), 

In the analysis of experimental data, including Monte Carlo results found by computer simula- 
tion, the accuracy in most cases is insufficient to allow a reliable determination of the many parame- 
ters of Eq. (1). One still gets useful results by a double logarithmic plot of the measured quantity 
against I P  - Pol. For example, if DP~ = C(pc - p)-7, then log(DPw) = const - 7" log(p~ - p); the 
slope of the straight line fitting the data gives a critical exponent. Such a log-log plot reveals that 
data should be particularly accurate near the gel point. In particular, a small shift in Pc results in 
large shift in the critical exponent. If Pc is not known one may take, as a first approximation, that 
value which fits best a straight line in the log-log plot. An early example of this kind of analysis was 
given by Peniche-Covas et al)  2~. Preferably, one should have more than one quantity measured in 
the gelation experiment. Then, one can fix Pc from the best fit of data and use the same Pc for the 
other properties. If DPw (or a similar quantity) has been measured on both sides of the phase 
transition, it is particularly simple and often quite efficient to assume its critical exponent (but not 
the critical amplitude!) to be the same on both sides. (This symmetry of exponents on both sides of 
the phase transition is known to be correct in exactly solvable simple models like the two-dimen- 
sional Ising model or gelation on the Bethe lattice of Fig. 2 and consistent with numerical evidence 
in numerous other cases.) Then, one can shift Pc, if not known more reliably from other measure- 
ments, until the two straight lines, fitting the log-log plots above and below p~, have the same slope. 
This is the best value of pC; the method also gives automatically a good estimate for the critical 
exponent y = 7' as the slope, and finally the distance between the two parallel lines of the log-log 
plot is the logarithm of the ratio C'/C of the two critical amplitudes above and below Pc, which is also 
of great theoretical interest in the existing models TM, 

These simple methods provide, of course, only an effective critical exponent in the sense that 
this exponent depends on p - Pc. If accurate data give, despite a correct choice for Pc, a clear 
curvature in the log-log plot, then one tries to extrapolate the slope smoothly to its value at the 
critical point. Only if experimental data were of infinite accuracy and extended into the region 
infinitely close to the gel point would a true asymptotic exponent be obtained accurately, as is 
known from all real experiments. (Theoretically, the exact solution 4) of gelation on the Bethe lattice 
of Fig. 2, DPw = (1 + p)/(1 - 2p), allows the effective critical exponent 7~f = -dlog(DP~)/  
dlog(p~ - p) to be determined for all p between 0 and p~ = 1/2, with 7~f~ = 1.50, 1.07 and t.01 at 
p = 0, 0.4 and 0.49, respectively, as compared with y = 1.7 obtained with the percolation theory.) 
In practice, an accuracy of the order of 10% for an exponent can be reached if experiments have 
been made to determine this exponent, with moderate relative accuracy for its data points, and if 
this set of points extends over a decade in distance from p~. The analysis becomes unreliable if the 
correction exponent 0q in Eq. (1)) is very close to the leading exponent (7) or if logarithmic factors 
occur as discussed above; we assume that in general this is not the case for three-dimensional 
gelation. The accuracy is also lowered appreciably if one has to reanalyze ~4) data read off from 
published figures and if no tabular data or log-log plots are available. The accurac 3' is improved 
when suitable data extend over several decades in p - p~ in order to fit also the correction terms in 
Eq. (1). Such detailed analysis was first performed ten years ago on the lambda transition of 
superfluid helium ~5~. However, for gelation we have not yet reached the same experimental state of 
art. We can only suggest that in future experiments efforts should be made to get many data near the 
suggested gel point and to determine the position of this gel point as accurately and consistently as 
possible. 

None  of  the problems with asymptopia is new since they occur also in thermal  phase 

transitions like the liquid-gas critical point  or  the magnet ic  Curie point ment ioned above,  
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only that p - Pc is replaced there by Tc - T. Thousands of experimental and theoretical 
papers on the determination of critical exporients have appeared during the last twenty 
years; they are summarized in various books 15). For a few models, exact results have 
become available after numerical investigations had been made before, and usually the 
deviation of the true result from earlier estimates was of the order of the error bars 
published with the estimate. The "new" ideas 2' 3, 7, t4) suggesting deviations from classical 
theory in the critical exponents are nothing but applications of experiences from other 
phase transitions to gelation. 

Another type of critical exponents is less commonly used in thermal phase transitions 
but suitable for gelation theory; experimentally, they are more difficult to measure. 
These exponents are defined by taking p = pc and by considering various mac- 
romolecules which are found in the system. Each such cluster consists of s monomers 
where s varies from unity to infinity. Now we study cluster properties as a function o f  

mass s at f ixed  p = Pc. For example, the total number Ns of such macromolecules or s- 
clusters at the critical point, might be written as 

Ns ~ s -~ (s-* oo) , (2) 

asymptotically for very large but finite mass s. In other words, instead of the limit p ~ Pc 
we consider the limit s ~ ~.  If measured experimentally, as in 16), they serve as a more 
fundamental test of theories than other quantities derived from averages made over all 
macromolecules. 

A third form of exponents should not be called "critical" but is also defined by 
asymptotic limits. For example, the suitably defined radius Rs of macromolecules consist- 
ing of s monomers each may vary as 

Rs oc s ~ (s--~ 0% p fixed) (3) 

not only at p = Pc but also for fixed p far away from Pc with ~ = ~(p). In particular, the 
limits p ~ 1 and p ~ 0 can and have seen studied theoretically. There is good reason to 
believe 17) that the exponent ~) defined by Eq. (3) assumes in simple models only three 
different values as a function of p: It has one value at the gel point which is related to the 
other critical exponents; a second for all p below Pc (i.e. 0 < p < Pc) which is equal to 1/2 
and a third one equal to 1/3 for all p above Pc (i.e. Pc < P < 1). In the latter two cases, this 
exponent is not related to the critical exponents at the gel point 17' 18, 34) 

We mention the radius, since it forms a bridge to well-studied pseudocritical expo- 
nents for linear polymer chains, f = 2. Numerous experiments (for experimental and 
theoretical data see Ref. 19) on the radius of gyration Rs of linear polymers in a monodis- 
perse solution as a function of the number s of monomers in the chain have been carried 
out. A simple random-walk approximation for these chains gives R~ oc s, i.e. Q = 1/2. 
According to Flory's treatment of the excluded volume effects Q = 3/5 (see Ref. 4) 
whereas present estimates are close to 0.59 in three dimensions 19). When the chains 
collapse ~9 = 1/3, as for gelation (percolation) above Pc. All these exponents describe the 
asymptotic limits ~ ~ only. Thus, the exponents and the relevant problems with asymp- 
topia are nothing new to polymer science, We believe that the classical gelation theory 
(Flory-Stockmayer theory 4' 5) is the analog of the random-walk approximation, relating 
however only to branched polymers instead of linear ones. Recently, the application of 
Flory's idea of the excluded volume effects of chains to gels yielded an exponent ~) which 
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is different from that obtained by certain classical theories (~ = 1/4) but which is in 
almost perfect agreement with the percolation theory TM. Thus, one can use one Flory 
theory against the other! 

B.II. Compilation of Quantities and Their Exponents 

After these preliminary remarks, we now discuss the quantities and the corresponding 
exponents which can be measured near the gel point or which have been studied using 
theoretical gelation models. (Eq. (10) summarizes these definitions.) First we repeat that 
the conversion factor p is the number of actual bonds divided by the number of possible 
bonds. The mass s of an s-cluster is the number of monomers in such a macromolecule. 
We allow the space dimensionality d to vary, according to 1 < d < 6, though usually we 
have d = 3. 

The average number ns of s-clusters (normalized as number per f-functional mono- 
mer) defines at the gel point the critical exponent r and the critical amplitude q0 by 

n~(p = Pc) = qos -* (s ~ ~)  (4a) 

Since nss is the probability that a given monomer is part of an s-cluster, the weight 
average degree of polymerization DPw (or weight average molecular weight Mw) is 
defined as 

DPw = X s2ns/X Sns (4b) 
$ S 

and must be distinguished from the z-average DPz = Xs3ns/ys2ns (from now on X denotes 
the sum over all finite s = I, 2 . . . .  but excludes the infinite cluster s = oo). As already 
mentioned, the exponents V and y' with their amplitudes C and C' are defined by 

nPw = C(pc - p)-r  (p--* p~-) (4 c) 

DPw = C'(p - pc) -r '  (p---~ p+) .  (4d) 

The probability G that an f-functional monomer belongs to the infinite network is equal 
to the gel fraction and is non-zero only for p above Pc. The exponent fl and its amplitude 
B are defined by 

G = B(p - pc) p (p---~ p+) .  (4e) 

If one can measure G and DPw but not p - Pc, one may 21) plot DPw as a function of G, 
where both parameters are measured simultaneously during the formation of the gel. 
Then trivially from Eqs. (4d, e) one can eliminate the undesired p - Pc and write 

DPw oc G 1-~ ; ~ = 1 + y/fl (G ---> 0) . (4 f) 

Each monomer must belong to either a finite cluster of size s (including s = 1), or to 
the infinite network with s = oo. Thus the sum over all probabilities equals unity: 

G + Enss = 1 . (4 g) 
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The "susceptibility" g = Zs2ns, i.e. the second moment of the duster size distribution, 
diverges with the same exponents and amplitudes as DPw: 

X = C(p¢ - p)-r  or = C'(p - p J - / .  (4h) 

Since G = 0 at the critical point, Zn~(pc)s = 1 in the denominator of expression (4 b). (In 
two dimensions 1°), X seems easier to be analyzed than DPw.) 

The quantities defined so far are purely topological and give no information about 
length scales. But also such lengths have been studied. The spatial extent of a cluster is 
conveniently defined by the radius R~ of gyration:2): 

S 

R~ = l ~ r ~  oc sZ~ (s--) ~ ,  p fixed) (5 a) 
Si= 1 

for p above, at and below Pc; this sum runs over all s monomers in the macromolecule 
where ri is the distance of each monomer center from the center-of-mass of the mac- 
romolecule. Essam showed 23) that the so-called z-average of the radius, defined by 
Eq. (5 b), gives the correlation length ~, i.e. the spatial extent of the connectivity func- 
tion g(r) (g(r) is the probability that two monomers at distance r belong to the same 
macromolecule). More precisely, expressed in d dimensions, 

yr2g(r) ddr _ ~2 = Xs2nsP@Zs2n~ _ (R2)z.  (5b) 

This typical cluster radius ~ diverges at the gel point: 

= ~o(Pc - P)-~ or = ~ (p  - pc) -¢  (P --~ Pc) • (5 c) 

In the definition of X and ~, several sums over all cluster sizes s were used which 
diverge at the gel point. The terms in these sums like S2nsR~ may first increase with 
increasing s, then reach a maximum, and finally decrease rapidly with rising s for all 
P =# Pc in all gelation theories known so far. Thus there exists a typical duster mass s~ 
(corresponding roughly to the typical cluster radius ~ = Rs~) with the largest contribution 
to these sums (provided they diverge at Pc)- More quantitatively, we define s~ as the z- 
average degree of polymerization, analogously to Eq. (5 b): 

s~ = ~S3ns/XS2ns ~ DPz.  (6 a) 

Luckily, all current theories predict that the position of the maximum in these two and all 
other diverging sums, like ZsSns, is proportional to this s¢ for p --~ pc. This concept of a 
typical cluster mass s~ is useful for qualitative arguments concerning the critical behavior 
of various quantities: Sums like Y sSnsR~ can be evaluated correctly, apart from propor- 
tionality factors, if we replace all its summands by their values at the gel point and then 
let the sum run from s = 1 to s = sg only. While critical amplitudes cannot be estimated 
reliably by this approximation, the critical exponents are correct if the sum diverges at 
the gel point. For this purpose, one needs to know how s~ diverges: 

s~ ~ tP - Pd-t/° (p ~ pc).  (6b) 
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(For simplicity, we assumed the same critical exponent  on both sides of the phase transi- 

t ion.) More details are given in Refs. 22, 23. We leave it as a possible exercise to the 
reader to prove, with the above approximation, that the weight average of the square 
radius, (P~)w, in contrast to the z-average, diverges with a critical exponent  
2v  - (r  - 2)/0 as a function of IP - pc l .  

Finally, the exponents ¢ and 0 can be defined for all p :~ Pc, not only close to the gel point, by 
the asymptotic decay of cluster numbers 22' 23): 

n~(p) oc s-%xp(- const • s ¢) (s ~ oo, p ~ pC) (6 c) 

where the constant depends on p. (With p = pc, const = 0 and 0 = r we recover Eq. (4 a).) Similar to 
Q for p 4: Pc, these exponents are in the percolation theory not related 17' is. 2:) to other critical 
exponents like fl, y or 6 and assume one value for all p below Pc and another for all p above Pc, 
according to the present state of knowledge. 

Equation (4 a) gives only a result for the cluster numbers ns at p = Pc and Eq. (6 c) does not 
indicate how the constant in the exponential function depends on p - Pc. The reader can derive its 
critical exponent by assuming that Nature (or mathematics) is kind to us22'23): Then we have a 
similarity law for p ~ Pc and s ~ ~ in the sense that the ratio ns(p)/ns(pc) may depend on the ratio 
s/s t only, and not on p - Pc and s separately. Since s/s~ oc [p - p:l -v° • s, or (s/st) ° ~ + (p - p:)s °, 
one may rewrite this similarity postulate as 

rh(p)/n~(p~) = f((p - p~)s °) (P ~ Pc, s ---, oQ) (6d) 

with a suitable scaling function f(z), which rapidly becomes zero for the argument z ~ _+ oo. This 
assumption is valid for all current gelation theories for d < 6 and has come historically from a 
generalization of the Fisher droplet model 24) for liquid gas critical points and also from a generaliza- 
tion of the Flory-Stockmayer theory 2~). This similarity law also is the secret behind the approxima- 
tion mentioned before in Eq. (6 b). 

Experimentally,  much more obvious than all these microscopic quantit ies are the 
macroscopic elasto-hydromechanical  properties: the viscocity r /o f  the sol below p~ and 
the elasticity of the gel above pC. (For the critical exponent  of the viscosity it should not  
matter  much whether in the theory, we use ~/ or the intrinsic viscosity.) These are 
presently the two most thoroughly studied quantities near the gel point from the experi- 
mental  point  of view whereas the theory is still in bad shape here (see below). Since the 
gel point is the onset of some kind of solidification, ~/of the sol and E of the gel should 
diverge there or vanish, respectively: 

r/ ~ (Pc - p)-k (p--~ p~) (7 a) 

E oc (p - pc) t ( P ~ P c - - ) .  (7b)  

These definitions refer to the zero-frequency limit only; for oscillatory motions both 
quantities will depend on the product  of oscillation frequency and a characteristic time, 
which presumably diverges at Pc and about  which little is known. 

Finally, we always assumed implicitely that the gel is formed continuously, i.e. the gel fraction 
vanishes continuously at the gel point. In solutions, as a function of chemical potential the gel 
fraction may also jump to zero discontinuously if the system jumps over the miscibility gap. In the 
language of phase transition theory, this would be called a first-order transition, and we ignore its 
properties in this review which deals with continuous transitions for gels (cf. Chap. D.). 

This rather long compilat ion of independent  exponents can be shortened appreciably 
if we assume the similarity equat ion (6 d) to be valid. Then,  using Eq. (6 b) and the 
approximation described before, one can express fl, y, ~' and 6 in terms of o and r, as 
explained e.g. in reviews 22' 23): 
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fl = (~ - 2)/0, y = ~,' = (3 - v)/a, 5 = 1/(r - 2) 

whereas 

v =  v' = Qla 

(8 a) 

(8b) 

with @ taken at p = Pc. The scaling relations s) are valid for all current gelation theories 
and have so far not  been  contradicted by reliable experiments. Then one has to work with 
only three exponents @, a, r near  the gel point,  in addition to the less well understood 
mechanical exponents k and t. Assuming "hyperscaling", the number  of free exponents 
can be reduced further by one 

@(P = Pc) = (I + 1/6)/d (9a)  

in d dimensions,  or, from Eq. (8): 

d v =  2fl + 7 = f l ( 5  + 1 ) .  (9b) 

Such hyperscaling relations are also known from other phase transitions; a short intro- 
duction to scaling in the case of thermal phase transitions is given in the appendix of 

Ref. 7. In contrast to scaling relations (Eq. (8)), the hyperscaling relation (9) involving 
the dimensionati ty d cannot  be used in Flory-Stockmayer theories and similar ap- 

proaches. 
Derivation of Eq. (9 a): We assert that very large but finite clusters (s -> s~) have for p above Pc 

the same internal structure as the gel, and that analogously to assumption (6d) the cluster radius 
l~(p), divided by its value R~(pc) at the gel point, is for large molecules near Pc a function of s/s~ 
only. In particular, in the cluster interior of these very large macromolecules the probability of a 
monomer to be part of the cluster equals the probability G of that monomer to be part of the infinite 
cluster. Then, in d dimensions that "mass" s of the very large but finite cluster equals the product of 
the "density" G oc (p - p¢)~ and the cluster volume ~ R~. The above similarity assumption allows to 
apply this equality (apart from a constant factor) even at s = s~: 

s ~ ( p  - po)~R~ o~ (p  - p o ) ~ #  o: s -O~s~ 

with @ = t)(P¢), or @ -- (1. + aft)M, from which Eq. (9a) follows. 
The reciprocal of the radius exponent o may be defined as a fractal dimension =-: _,6~ d~, since the 

mass s varies with (radius) j;-°, According to Eq. (9 a), this effective dimension of large but finite 
macromolecules right at the gel point is thus smaller than the Euclidean dimension d of the space by 
a factor I + 1/6 which varies from 1 to 1.5, depending on the theory and dimensionality used. One 
may alternatively define the dimension df by requiring that for p = Pc in a large but finite cube of 
length L the number of monomers in the largest cluster (aspiring to become the infinite cluster) 
varies with L as Laf; then, according to the percolation theory  22'23) we have again df = 1/0 = 
d/(1 + 1/8). 

A reader who is not  interested in all the theoretical ramifications discussed in this 
article and merely wants to know what are at present the most important  and controver- 
sial exponents  may restrict himself to fi, ~,, v, 0, k and t, as summarized through 

G ~ (p - pc) #, DPw ~ Mw oc [p - pd-r ,  (R~)z ~ ]p - pc[ -~, r/ oc (Pc - p ) - k ,  (10) 
E oc (p - pc) t, Rs(p~) ~: s e 

He should keep in mind that the hyperscaling law of Eq. (9 b), which can be rewritten as 
d0(pc) = (2fl + y)/(fl + ~,), is valid in the percolation theory but not  in the classical theory 
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of the Flory-Stockmayer type, and that in all theories and experiments these various 
exponents of Eq. (10) are defined only asymptotically close to Pc, or for asymptotically 
large s. He may then immediately proceed to Table I with the various predictions for the 
exponents (Sect. C.I.). 

B.III. Universality 

Twenty years of research into critical phenomena occurring in thermal phase transitions 
has given two main results15): Scaling and universality. The ideas of scaling (including 
hyperscaling) have just been introduced. The principle of universality states that the 
critical exponents are independent of many details of the materials and models investi- 
gated. In other words, Nature likes its critical exponents so much that once it has 
invented a set of exponents it is selling it to us over and over again. And this principle is 
the main reason why critical exponents, as opposed e.g. to the positions Pc of the gel 
point, are so important. 

More precisely: 
The many materials and models which exhibit a continuous phase transition 
can be grouped into a much smaller number of universality classes such that 
within one such class the critical exponents and other "universal" quantities 
are the same. 

Let us take an example from thermal phase transitions: At a liquid-gas critical point the 
density difference A between liquid and vapor on the coexistence curve, normalized by 
the density at the critical point, approaches zero continuously, similar to the gel fraction 
G near the gel point. For temperatures slightly below that critical temperature, we may 
write 

A = B(I - T/To) ~ ( l l )  

with a critical exponent fl and a critical amplitude B, as in Eq. (4 a). Experiments per- 
formed on fluids such as helium, xenon, carbon dioxide, and water have shown according 
to Ref. 27 that within the experimental accuracy of a few percent the exponent fl ~ 0.32 
is the same for all these liquid-gas critical points, and also for the three-dimensional 
lattice gas (Ising model). (Half a century ago z7) fl was about ten percent higher for CO2; 
for a different opinion, cf. Gordon et al.U).) The critical temperature Tc varied from 
material to material by more than two decades, and also the amplitude B changes 
appreciably when quantum or polarity effects are important. But the exponent fl stayed 
the same. Moreover, the same fl was also found (within small error bars) for different 
lattices in the lattice gas model (simple cubic, fcc, bcc . . . .  ). 

One may also look, for this example of liquid-gas critical points, at the predictions of 
the classical van der Waals equation. This approximation allows T~ (and the critical 
density) to vary arbitrarily but it always gives fl = 1/2, as the universality principle 
requires. In addition, also the amplitude B of the van der Waals equation is always the 
same, an effect known as the classical law of corresponding states. Therefore, universal- 
ity is nothing but a generalization of the law of corresponding states; it also allows the 
critical amplitudes to be varied and fixes only the critical exponents whereas the law of 
corresponding states fixes both exponents and amplitudes. 
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Why is universality valid? Renormalization group methods TM 23, 28) have given since 
1970 a theoretical explanation; we confine ourselves here with a qualitative picture: As 
we saw in Eq. (5 c), the average extent ~ of fluctuations (or clusters) diverges at the 
critical point; this is also the case for thermal phase transitions. Thus, close to the critical 
point the system averages over a length ~ much larger than the size of a single molecule or 
the range of its interaction. Therefore, molecular details become unimportant when ~ has 
become sufficiently large, i.e. near the critical point. This argument makes not only 
plausible the universality principle but also indicates that exceptions exist if the range of 
interaction is infinite. We also see from this discussion that universality, critical expo- 
nents, etc. should not be applied far away from the critical point where ~ is small. 

Of course, the universality statement in the form of Eq. (11) is more a definition than 
a law until we have clarified how to determine in practice the universality class. Which 
parameters are relevant and change the universality class and which details are irrelevant 
for this classification? Now the universality principle becomes unreliable. Special cases 
have often been found where, unexpectedly at that time, the exponents suddenly 
changed. In the Baxter model 29), the critical exponents even varied continuously if a 
suitable parameter changed continuously. But these exceptions are relatively infrequent 
and occur mostly in rather complicated systems; for a problem as simple as the ordinary 
liquid-gas critical point all three-dimensional materials and models have the same critical 
exponents, within some error bars. We hope that ordinary gelation also belongs to the 
simpler cases where universality holds and will give more complicated examples in 
Chap. C.V. and D. 

Since the hyperscaling Eq. (9) relates critical exponents to the dimensionality d 
different exponents are obtained for various d: the dimensionality d is a very relevant 
parameter affecting the universality class provided Eq. (9) is valid. In "classical" theories 
similar to the Flory-Stockmayer methods hyperscaling cannot be applied and even this 
dependence on space dimensionality d vanishes: The classical theory is more universal 
than the scaling (renormalization) theory. 

Specifically for gelation, we will discuss in Sect. C.V. various modifications of the 
simple percolation model of Fig. 1 and check if the exponents change. In most cases, they 
do not; in particular, the lattice structure (simple cubic, bcc, fcc, spinels 22' 23, 30, 34)) is not 
an important parameter since different lattices of the same dimensionatity d give the 
same exponents within narrow error bars. More importantly, percolation on a continuum 
without any underlying lattice structure has in two and three dimensions 31) the same 
exponents, within the error bars, as lattice percolation. In the classical Flory-Stockmayer 
theory which does not employ any periodic lattice structure, the critical exponents are 
completely independent of the functionality f of the monomers or the space dimensional- 
ity d. But if the system is not isotropic 32) or if the get point is coupled with the consolute 
point of the binary mixture solvent-monomers 33'77), the exponents may change as dis- 
cussed in Sect. D. 

For practical purposes, we thus regard the simplified universality assertion "expo- 
nents are independent of microscopic details" as a 90% principle since it usually works. 

Thermal phase transitions show that dynamic properties like transport coefficients or relaxation 
times may have different exponents for different materials and models even if the static equilibrium 
properties have the same exponents. Thus the static universality classes are split into smaller 
dynamic universality groups. Conversely, certain exponent ratios like y/v or fl/v may remain constant 
even iffl, y, and v are a fimction of a parameter 29). Nothing seems to be known yet about whether or 
not gelation and percolation exhibit similar effects. 
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The analogy between gelation and liquid-gas critical points (or Curie point for ferromagnetism) 
should not be construed as an assertion that gelation belongs to the same universality class as liquid- 
gas critical phenomena. In fact, all current theories (for d > 1) give a gel fraction exponent fl 
different from the corresponding exponent fl for the difference between liquid density and vapor 
density (or for the spontaneous magnetization). Flory 4), for example, found fl = 1 whereas, accord- 
ing to the van der Waals equation, fl = 1/2. 

The exponents are not the only universal quantities. Also certain combinations of critical 
amplitudes are expected to be universal even though each amplitude separately varies with the 
material 13'a5). For the present state of the art, in gelation we need here only the ratio C'/C of 
"susceptibility" amplitudes, i.e. DPw (or Mw) below p: divided by DPw (or Mw) above Pc at the same 
distance from p¢, within the limit of very small distances. This ratio is universal in all current 
theories, though its numerical value is controversial. To anticipate further experimental develop- 
ments, we mention here the more general universality postulate 2~) for the duster numbers of 
Eq. (6d): 

n~(p)/ns(pc) = fu(ql(P - Pc) s°) (12) 

where the function f~ and the exponents o and T are the same for all members of the same universal- 
ity class. Only the amplitudes q0 and ql depend on the material or model (q0 and r enter, via 
Eq. (4a), the ~(p¢) appearing in Eq. (12)). One may derive from Eq. (12) and the definition of 
DPw, Eq. (4b, g), that the parameters q0 and q~ cancel from the amplitude ratio C'/C, i.e. 

C'/C is universal. (13) 

In general ~3' 3s) whenever a relation between critical exponents exists, due to scaling, one can also 
form a universal combination of critical amplitudes. For example, the scaling law y' = ~ corres- 
ponds to Eq. (13), and hyperscaling, dv = y + 2fl, corresponds to a universal combination of the 
amplitudes ~0, C and B z 35). 

Very important is the fact that the position Pc of the gel point is not universal: Just like 
the amplitudes alone, Pc is not independent of materials and models. For  example, in the 
Stockmayer theory of f-functional gelation, Pc = 1/(f - 1) obviously depends on f; con- 
sidering lattice percolation in two dimensions for the square lattice of Fig. 1 Pc = 1/2 
whereas for the triangular lattice Pc = 2 • sin(:r/18) = 0.3472922, 23) As a consolation for 
the lack of exact universality for Pc, one can offer the critical volume fraction 36), which is 
not exactly the same but nearly the same for a broad class of different lattices and models 
with the same dimensionality. 

This universality concept explains why we are interested so much in critical expo- 
nents, more than in critical amplitudes, the value of Pc, or the behavior far away from Pc. 
The latter non-universal quantities depend on microscopic details; thus, if a theory does 
not fit experimental results for the non-universal quantities one may change some details 
in the theory until the theoretical curve fits the experimental curve with reasonable 
accuracy everywhere. Such a good fit does not necessarily mean that this improved 
theory describes the qualitative essentials of the phase transition mechanism correctly. 
On the other hand, a more or less elegant and simplified model may describe correctly 
the essential phase transition mechanism and give the correct critical exponents; how- 
ever, it would be an accident if it yielded the correct value of pc or other non-universal 
quantities. It is the exponent rather than Pc which determines the universality class of the 
material or model. 

The welt-known Flory-Stockmayer theory can be used as a simple example: Depend- 
ing on the value of the functionality f, we can shift Pc over a large interval; for more 
complicated mixtures we may even give f a fractional value 12). These changes are impor- 
tant for many aspects of gelation. However, as far as critical phenomena are concerned, 
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none of them causes a change in the critical exponent fl for the gel fraction away from its 
Flory-Stockmayer value fl = 1. Thus theories for different f, while giving different Pc, 
still feature the same exponents since they describe the same essential mechanism for the 
phase transition. 

From the experimental point of view, critical exponents offer a scheme to group 
numerous materials into a few universality classes, just as for example the concept of the 
functionality f allows to characterize many different molecules by a single parameter. 
This f does not tell us everything about the structure of the molecule and its technical 
application but chemistry has always regarded f as an important and useful parameter. 
We submit that for a classification of critical phenomena occurring in (continuous) phase 
transitions, critical exponents are an important and useful parameter for the classification 
of different materials and transition mechanisms. For other types of phase transitions, 
like in magnets, this search for exponents is widespread, and we suggest to follow this 
method also for gelation. 

The situation may be compared with Kepler's laws for the motion of ptanets about the 
sun. If the force between planet and sun varies with (distance) -~, then for a = 2 the 
motion is ellipsoidal. For other values of this "critical exponent" a, the motion is differ- 
ent and more complicated. "Non-universal" quantities like the mass and shape of the 
planet are less important if we are interested only in the motion of the planet as a whole 
and in Kepler's laws. The crucial quantity is the exponent a. Of course, to predict next 
week's weather we need much more information, and a reliable theory then becomes 
extremely difficult. Clearly, Kepler's laws and the exponent a for gravitational force do 
not tell us everything we want to know about the planetary system; they have played, 
however, an important role in the development of science. Similarly, critical phenomena 
and their critical exponents do not tell us everything we want to know about gels, but 
they may play an important role in our understanding of the phase transition. The 
position of the critical point is less important for this aspect, just as the mass of a planet is 
less important for Kepler's laws. 

Thus the remainder of this review will concentrate in finding out which theory pre- 
dicts the best critical exponents relating to critical phenomena, and what type of experi- 
ments determining the exponents exist. Further details, in particular gelation outside the 
region of critical phenomena, are left to other reviews and to future research (apart from 
some results in Chap. D.). 

C. Comparison of Classical and Percolation Theories 

C.I. Classical Theory 

The Flory-Stockmayer theory 4' 5) assumes that each bond between two monomers is 
formed randomly, and it neglects cyclic bonds, excluded volume effects, and steric hin- 
drance. Thus for example, the probability for one of the f bonds emanating from a 
monomer to be formed is always p, independent of how many of the other f-1 bonds have 
been generated. Since cyclic bonds are excluded, it is not allowed that, say, an active 
bond connects monomer A with monomer B, another monomer B with monomer C, and 
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a third bond is formed between C and A, thus closing a loop of three bonds. Because of 
this randomness and neglect of cyclization the Flory-Stockmayer theory does not take 
into account that two different molecules cannot be at the same place (excluded volume 
effects) or are influencing the bond formation probability locally due to the space they 
are filling. Thus this theory assumes point-like monomers, and the resulting mac- 
romolecules are a "graph-like state of matter" in the concept of Gordon and his col- 
laborators 11). The dimensionality d is not important in this approximation. (For an incon- 
sistency of this approximation if d = 3 see end of Sect. C.III.) Figure 2 shows the bond- 
ing possibilities for such a system for the simplest case where f = 3: Each line between 
two points in the figure either represents a bond which has been formed (with probability 
p) or a bond which is still open (with probability 1 - p). Neither temperature nor 
concentration enter this simple model; everything is fixed by f and p. 

It is obvious that Fig. 2 represents a drastic simplification of reality for complicated 
molecules 9). The merit of this theory is that it gives a good qualitative picture of real 
gelation, the first indication for the universality principle that complicated molecular 
details are not very relevant for the main results. Physicists call Fig. 2 a Bethe lattice, and 
this gelation process is then called percolation on a Bethe lattice 37). The macromolecules 
are also designated as Cayley trees since, like trees in a forest, they have no cyclic links 
between their branches. Many other problems of theoretical physics, besides percolation, 
have been studied on Bethe lattices. When critical exponents were found they usually 
agreed with those obtained by using simple approximations for real lattices like mean 
field (or molecular field) approximation, Landau ansatz for phase transitions, van der 
Waals equation, etc. We will thus also denote them as "mean field" approximations. 

A warning for experts: A non-negligible fraction of monomers is located on the surface of the 
Bethe lattice, even within the thermodynamic limit, as one can see already from Fig. 2. We are 
interested here in the Bethe lattice as an approximation for real three-dimensional space and thus 
neglect the complications arising from this surface 38). This is achieved by considering the central site 
of Fig. 2 as a representation of all monomers in the real system. 

The critical point in the Flory-Stockmayer theory is 

Pc = 1 / ( f -  1) (14 a) 

The average cluster number ns (per monomer) also can be calculated exactly 4' 5, 37) and 
involves binomial coefficients; if we replace the factorials by Stirling's formula we arrive 
at12, zs) 

ns oc s-5/Zexp(- const • s) ( s ~  oo) (14b) 

where the proportionality factor and the constant in the' exponential depend on p. For 
p ~ 1 and p -~ O, this constant approaches infinity, and it vanishes at the critical point 
since 

const(p) m (p - pc) 2 (p---~ p~) (14c) 

We see that near the critical point the Flory-Stockmayer solution Eq. (14 b, c) is a spedal 
case of the scaling assumption in Eq. (6d): With r = 5/2, a = 1/2 and ns(pc) ~ s -5/2 = s -* 
we take the scaling function f(z) in Eq. (6 d) as f(z) = exp( -  az 2) with a constant a and 
then get from Eq. (14 b, c) 
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ns(p)/ns(p¢) = e x p ( -  a(p - p¢)2s) (14d) 

This is in agreement  with Eqs. (14b,  c). 
Since the Flory-Stockmayer theory is a special case of Eq. (6 d) it also obeys all the 

scaling laws resulting from it, except hyperscaling. Since r = 5/2 and o = 1/2 we get from 
Eq. (8) immediately 

f l=l,y=y'=l,~=2, v=2Q. (14 e) 

Inspection of Eq. (14b) shows directly ~ = 1 and 0 = 5/2 independent  of p. Because of 
the symmetric nature  of Eq.  (14 c) one has C '  = C for the amplitudes of DPw. 

Using the Flory-Stockmayer approximation, additional calculations give 39) 

e = 1/4 ( l a f )  

This implies that the radius of very large macromolecules varies with the fourth root of 
their mass, again independent  o fp .  Thus,  from Eq. (14e) we obtain v = 1/2. Finally, the 
elasticity of the gel vanishes at the gel point  with (p - pc) t with t = 3 according to 
Dobson  and Gordon  2' 40, 41 k We now call "classical" all theories whose results are in the 

same universality class as the Flory-Stockmayer theory, i.e. whose critical exponents 
agree with Eq. (14 e, f). (Future research may make it necessary to distinguish between 
theories that agree with Eq. (14e) but  not  with Eq. (14f) and/or not with t = 3 but  at 
present  that does not  seem necessary.) Thus, Table 1 gives, in its "classical" column, a 
summary of these exponents.  

Table 1. Predictions of universal quantities (critical exponents and one amplitude ratio) 

Exponent Equation d = 2 d = 3 Classical Quantity 
Percolation Percolation 

fl 4 e 5/36 0.45 1 Gel fraction 
y 4 c, d 43/18 1.74 1 DPw 

4f 91/5 4.9 2 DPw = DPw(G) 
v 5 c 4/3 0.88 1/2 Corr. length 
k 7 a ? ? ? Viscosity 
t 7 b 4/3 ? 1.7? 3 Elasticity 
o 6 b 36/91 0.46 1/2 Typical size 
r 4 a 187/91 2.20 5/2 n~(p = Pc) 
0(P = Pc) 5 a 48/91 0.40 1/4 Radius 
0(P < PC) 5 a 0.641 1/2 1/4 Radius 
•(P > Pc) 5 a 1/2 1/3 1/4 Radius 
~(P < Pc) 6 c 1 1 1 log ns 
~(P > Pc) 6 c 1/2 2/3 1 log ns 
O(p < p~) 6 c 1 3/2 5/2 Prefactor n~ 
0(p > Pc) 6c 5/4 -1/9 5/2 Prefactor n~ 
C'/C 13 0.005 0.1 1 DPw ratio 

For percolation, scaling and hyperscaling is used whenever it determines an exponent more accu- 
rately than direct data. Rational numbers indicate (presumably) exact results, numbers with a 
decimal point are numerical extrapolations with an estimated error typically of the order of one unit 
in the last digit given. Data from earlier reviews 22,23) and recent research 1°' I8,49,51,52,56,58,65,131), 
Question marks are explained in Sect. C.IV 
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Readers familiar with thermal phase transitions like the liquid-gas critical point will 
not be surprised about 7 = 1 in a classical theory. Quite generally, Bethe-lattice 
approaches 15) give simpte critical exponents like integers or 1/2. It is important to note 
that fl = 1 for gels, in contrast to fl = 1/2 according to the "classical" theories of thermal 
phase transitions. However,  one can already see from Eq. (7) of Flory's second paper  2) 
that, dose  to Pc, the gel fraction vanishes linearly with p - Pc, i.e. fl = 1. Table 2 
summarizes these analogies between thermal phase transitions and Table 3 compares, 
also for the classical case, the critical exponents. We see that the analogy is somewhat 
loose since the critical exponents are not the same: Gelation does not belong to the same 
universality ctass as liquid-gas phase transitions. However, the general structure of the 
theory is similar, and the scaling laws relating the various exponents, i.e. Eq. (8), are the 
same. 

Many modifications of the Flory-Stockmayer theory, e.g. the cascade formalism TM 12), 
have been published. To some extent they allow for loops in the bond formation process. 
Refs. 1, 9, 11 give more references and details on theories which are based on an 
improved simple Flory-Stockmayer theory. The position of the gel point then shifts away 
from Pc = 1/(f - 1), i.e. the gel point is not universal. In general, however, the exponents 
remain the same. For exceptions see Refs. 42, 43; for example, in a solution at thermal 
equilibrium, when the critical consolute point is also a gel point the degree of polymeriza- 
tion DPw may vary with (T - To) -1 above is critical temperature but with (To - T) -1/2 

Table 2. Analogies between gelation, liquid-gas critical 
points, and ferromagnetic-paramagnetic transitions 

Gelation Critical Fluid Curie Point 

DPw ~¢ Z 
G A M0 

p - p c  x c - T  x ~ - x  

A is the relative density difference between the liquid and 
its vapor, M0 the spontaneous magnetization, n the isother- 
mal compressibility, Z the susceptibility and ¢ the correla- 
tion length. These analogies do not mean that the numeri- 
cal values of corresponding critical exponents are the same 

Table 3. Comparison of gelation (percolation) exponents (left part) with exponents in thermal 
phase transitions (right part) for both classical and "modern" theories 

random-percolation model Ising-magnet or lattice-gas model 
d = 2 d = 3 classical d = 2 d = 3 classical 

fl 5/36 0.45 1 1/8 0.32 1/2 
43/18 1.74 1 7/4 1.24 1 

v 4/3 0.88 1/2 1 0.63 1/2 

Numbers with decimal points are numerical estimates, fractions are (presumably) exact. As 
explained in Eq. (16) and on p. 126, classical exponents are exact for dimensionalities above 6 (left 
part) and above 4 (right part) 
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below is temperature, even in a Bethe-lattice approximation 43). Burchard 42) reported 
results obtained by the application of a cascade theory to heterogeneous systems which 
lead to 7 = 2, v = 1/2. (For simplicity, we ignore these few exceptions when dealing with 
classical or similar theories.) Nearly all these theories in terms of the Flory-Stockmayer 
theory seem to fall into the "classical" universality class with fl = 7 = 1, etc. Let us cite 
just two examples which dealt explicitely with critical exponents: Fisher and Essam 37) 
took into account the possibility of the formation of small cycles in bond formation by 
investigating the so-called Bethe cactus. Many features turned out to be different now 
but the critical exponents, which still could be calculated exactly, remained exactly the 
same. Recently, Burchard and collaborators 44) found that local heterogeneities cause 
important changes but the asymptotic exponent 7, which could be calculated exactly, was 
again exactly unity. Thus, Table I seems to give in its "classical" column a reasonable 
summary of the critical exponents found during the past 40 years in most of the research 
on gelation theory. 

C.H. Random Percolation 

The percolation theory (or more precisely, random bond percolation on nearest-neigh- 
bor lattices) assumes that each bond between two nearest-neighbor sites on an infinite 
periodic lattice is formed randomly with probability p. Detailed reviews, which are 
partially outdated, are available 22'23), and even a movie about percolation has been 
made 45). Its possible applications range from quark matter in high-energy physics and the 
extraction of crude oil from porous media 46' 47) to, perhaps, gelation! 

The critical exponents of the two- and three-dimensional percolation are listed in 
Table 1. They have been found by using a variety of methods which are generally also 
applied in thermal phase transitions, and are listed in increasing order of accuracy but 
with decreasing versatility: 
a) Monte Carlo simulations 22) with the help of random numbers, as in Fig. 1 or our 

Appendix, give the amplitude ratio C'/C with an accuracy of about 20%; lattices 
containing up to 108 sites (and more) have been investigated, giving e.g. the two- 
dimensional v with an accuracy of about 2% 1°' 48). 

b) In series expansions 23), the properties of small clusters are exactly determined (s up to 
20) and suitable extrapolations by means of ratio methods, Pad6 approximants etc. 
are made. The three-dimensional fl = 0.45 + 0.02 is an example 58). Also, the first 
non-classical percolation exponent, 7 = 19/8 + 0.03, was determined by Sykes and 
Essam 53) in 1964; it agrees within 0.014 with the ratio 43/18 in Table 1. 

c) In phenomenological renormalization (or finite size scaling or Nightingale renormali- 
zation) the properties of narrow strips in two dimensions are studied and extrapolated 
to infinite lattices. Thus, it was confirmed that v = 4/3 with an accuracy of 0.2% 49). 
Three-dimensional results can be hoped for in the future (B. Derrida, priv. comm.). 

d) Exact results beyond classical theory include inequatitiesS°)(¢ = 1 above and 
= 1 - 1/d below Pc). Correspondence with other exactly solved phase transitions 

gavelS,51) 0 and Q in two and three dimensions (0 = 1/d above Pc from Ref. 17). 
While methods c, d and, to some extent, also b are mainly suitable for the determina- 

tion of the asymptotic behavior close to the gel point, the Monte Carlo method is a 
computer simulation similar to a real experiment and can, in principle, be applied to all 
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Fig. 3. Dependence of gel fraction on bond 
formation probability p. Results of a test run 
with the program given in the Appendix, in 
a simple cubic lattice of size 503, The arrow 
indicates the gel point Pc = 0.248 + 0.001 for 
infinite lattices. For better results in larger 
systems see e.g. Ref. 10 
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cases; it is, however, difficult to use it close to the gel point. Figure 3 shows a simple test 
performed with a CDC Cyber 76 computer which took only about half a minute; as in a 
real experiment it shows the gel fraction G as a function of p over the while range of 
interest, i.e. from p = Pc (= 0.248 + 0.001 from (65)) to p = 1. As explained in Sect. 
B.III. this behavior over the whole interval of p is not universal; if we had used a 
different three-dimensional lattice, we would have obtained a somewhat different curve. 
Only the critical exponent r ,  which is difficult to get from Fig. 3, would have been the 
same within its error bars. (Using more suitable data on a larger lattice, Nakanishi and 
Stanley found by means of the same method fl = 0.42 + 0.02.) For log-log plots of such 
Monte Carlo "experiments" see e.g. Refs. 22, 56. 

Between method c and d is the den Nijs-Pearson-Nienhuis et al. conjecture about the 
Potts model in two dimensions (which includes percolation and the lattice gas as special 
cases) 52). It assumes a simple form for the variation of the exponents and fits its parame- 
ters for exactly solved models. Since 
(i) one exponent predicted by this formulation of the model agreed exactly with an exact 
solution found later, 
(ii) the other exponents agreed generally within 0.2% with the numerical results 
obtained later by B16te et al. 49), and 
(iii) theoretical arguments (no rigorous proof) can be given for this approach 
(Nienhuis52)), this conjecture is now widely believed to be exact. 

The two-dimensional r ,  y, 6, v, ~r, r, and Q(Pc) given in Table 1 are based on this 
assumption (and scaling and hyperscaling). These are not the first "exact but not rigor- 
ous" results obtained by use of the percolation theory. Already in 1964, Sykes and 
Essam 53) found Pc = 1/2 for the square lattice of Fig. 1 but only in 1980 was Kesten's 
mathematically rigorous and complete proof published 54). It may also be time-consuming 
to prove (or disprove?) v = 4/3 for the same problem. (For the explanation of the 
question marks in Table 1 see Sect. C.IV.) In Table 1 the majority of the percolation 
values are listed as (presumably) exact; only a minority is based solely on numerical 
extrapolations or computer experiments, with all their dangers menacing us from the 
dark of asymptopia 11). Table 3 merely repeats the most important exponents to compare 
them with the lattice gas (Ising model) for d = 2 (rigorous exact solution) and d = 3 
(numerical extrapolation from Borel transforms of renormalization group results55)). 

Comparing the results in Table 1, we see that the classical exponents typically differ 
from three-dimensional percolation exponents by a factor of about two. Even experi- 
ments of moderate accuracy may distinguish between two such drastically different pre- 
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dictions. We draw the reader 's  at tention particularly to the amplitude ratio C' /C for DPw, 
which is about  1/8 or 1/11 in the three-dimensional  percolation 1°'561 but  unity in the 
classical theory. Since other alternatives to the classical theory are less developed at 
present,  the three-dimensional  percolation theory is now leading the field of challengers 

against the classical theory. 
We mentioned already in Sect. B.III. that continuum percolation ~1) without a lattice structure 

gives, within narrow error bars, the same exponents as lattice percolation. Thus, if we place circles 
or spheres randomly into a two- or three-dimensional space, the resulting overlaps denote a bond 
formation: this c6ntinuum percolation problem seems to fall into the same universality class as the 
above mentioned random percolation on lattices. The reason seems to be that for bonds between 
nearest, next nearest, third-nearest neighbors etc. on a lattice the critical exponents are presumed to 
be independent of this maximum bond length. In the limit of very large maximum bond lengths 
("long-range interaction") for percolation, in contrast to the phase transitions, we may have the 
same exponents57~; but now the lattice structure has become irrelevant and we arrived at continuum 
percolation. This is not very surprising: The lattice structure is also irrelevant for liquid-gas transi- 
tions (e.g. real xenon behaves very similarly to a lattice gas 27)) and for linear polymers for which self- 
avoiding walks on a lattice, computer simulations of chains in a continuum, and experiments all gave 
the same excluded volume exponent within a tolerance of about 1% ~9) However, the amplitudes 
(front factors) are different for lattice and continuum percolation since they are not universal 
quantifies. 

How Close is Close to the Critical Point?, asks the title of a recent review on thermal critical 
phenomena 64). The same question is also asked for percolation. Is it likely that classical exponents 
are valid close but not extremely close to the gel point, and then in an extremely small region about 
Pc percolation exponents are found, analogous to the situation in the superconducting phase transi- 
tion or for long-range interactions in Ising magnets. At present, no material or model is known so far 
for which experiments or numerical data like Monte Carlo simulations or exact solutions give a clear 
evidence for such a crossover from classical exponents (moderately close to Pc) to percolation 
exponents (extremely close to Pc). It would be interesting, of course, to study systems where, as a 
function of a continuously varying parameter, one can go smoothly from the Bethe lattice limit to, 
say, square lattice percolation, and where one should expect that as a result of this variation the 
width (in 1 - P/Pc) of the true critical region increases from zero (Bethe lattice) to about 0.1 (square 
lattice). It has been suggested 3' 59) that the concentration in dilute solutions, or the length of the 
primary chains in vulcanization (crosslinking) are such suitable parameters. While these theories 59) 
may be correct they have not yet been confirmed directly. However, a very simple model was 
recently reduced exactly by Ord and Whittington 62) to random percolation; they proved that the 
width of the critical region approaches zero if the average length of the primary chains involved in 
crosslinking tends to infinity. Monte Carlo simulations on usual lattices have given exponents in the 
range 10 -2 < I1 - p /pc l  < 10  -1 which agreed with those obtained from other methods. No Monte 
Carlo experiment is known so far which allows classical gelation exponents. 

We  see that the percolation theory is only a generalization of the classical gelation 
theory using lattices other  than the Bethe lattice, with other critical exponents,  and 
concerning applications other than polymers. Thus, one should not  ask who first applied 
the percolation theory to gelation, since the Flory-Stockmayer theory was simply the first 
example of what was called later percolation theory 61). Later additional works on critical 
exponents,  starting with the publication from London  in 196453/, led to the assertions 2' 3) 
that the application of the Flory-Stockmayer or classical gelation theory results in a 
wrong description of the critical behavior.  

C.III. Isaacson-Lubensky-Flory Approximation 

In  order to demonstra te  that the percolation theory has at least some relevance for 
branched macromolecules,  we now discuss the Isaacson-Lubensky theory 2°~, These 
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authors, by using a suggestion of de Gennes TM, applied Flory's ideas 4) of the excluded 
volume effects of linear polymers to the excluded volume effects of branched polymers; 
the agreement with the lattice percolation theory is excellent. Also, this method shows 
the importance of the dimensionality d. 

We denote by 

Rso oc s o° (s --+ oo) 

the radius of gyration in a theory which neglects excluded volume effects. Thus, Q0 = 1/2 
for linear polymers (random walks, chains at the theta point 4)) and Q0 = 1/4 for branched 
polymers (classical gelation theory, Eq. (140). Now we look at a dilute solution of 
macromolecules which are no longer approximated by points; this limit corresponds to p 
below Pc in gelation and to conditions far from the collapse transition for chains. The 
influence of the excluded volume is found by minimizing, with respect to the polymer 
radius Rs, the sum of the elastic energy E,,  which attempts to make Rs equal to Rso, and 
the repulsive "excluded volume" energy Er which tries to stretch the molecule as far as 
possible: 

Ee oc ((Rs - Rso)/R~o) 2 ; Er oc s(s - 1)/R~ a (15 a) 

in d dimensions. The expression for Er comes from the approximation that each of the s 
monomers in the macromolecule feels an average interaction from all the other s - 1 
molecules, which are spread over a volume oc R~. Minimization of the total energy 

2 2 s2/Rg (s--, ®) Etot = Er + Ee oc Rs/Rso + const • (15b) 

gives 

Rs oc (seR~o)l/(a+2), or ~o = (2 + 2~oo)/(d + 2) (15c) 

For linear polymers, O0 = 1/2 leads to the well-known Flory formula O = 3/(d + 2) (= 0.6 
in three dimensions). For branched polymers (sol below the gel point, Ref. 34), we have 
O0 = 1/4; then Eq. (15c) gives the main result: 

Q = 5/(2 d + 4) . (15 d) 

This result agrees exactly with the three-dimensional percolation 18) theory, O = 1/2 for all 
p below Pc, and differs only by 0.016 from the latest numerical estimate in two dimen- 
sions, Q = 0.6408 + 0.0003 (Derrida and de Seze, Ref. 131). 

Moreover, we see that for d larger than some upper critical dimension d c the repulsive 
term vanishes for s ~ oa, thus the elastic term dominating asymptotically. Then, Rs/R~o 
approaches unity, and O = O0, i.e. there is no excluded volume effect in the exponent. 
This happens whenever Rsao in the repulsive energy term increases more rapidly than s 2 
with mass s, i.e. if d > dc -= 2/~0. Therefore, the limiting dimension is 

dc = 4 (linear) and de = 8 (branched, p < Pc) (16) 
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Thus for l inear polymers, the classical theory gives correct exponents if d > 4, just as in 
usual thermal phase transitions. For dilute branched polymers, however, i.e. p < Pc, 
classical exponents  are correct for d > 8 only. 

In the more concentrated solutions of branched molecules right at the gel point,  a 
screening factor oc s -v2 is introduced 2°) into the repulsive energy, giving dc = 3/2 ~0 = 6 in 

a completely analogous calculation; Q now equals (3/2 + 2 00)/(d + 2) = 2/(d + 2) which is 
in excellent agreement  with three-dimensional  percolation but  slightly too small in two- 
dimensional  percolation,  and in strong contrast to the classical Q = 1/4. It should be 
noted that the "upper  critical dimension" dc can also be determined,  with the same result 
dc = 6, as that dimension where classical theory and hyperscaling are compatible, i.e. 
where dv = y + 2fl classically. Below this dc, hyperscaling is valid whereas above it 
classical exponents  hold. 

With additional assumptions this result leads to good estimates for other exponents or exponent 
ratios at the three-dimensional gel point. Let us assume the validity of the (hyper-)scaling relations 
(Eq. (9)) which are based on similarity assumptions valid also in the classical theory and on the 
assertion that the interior of a very large cluster has the same structure as the infinite network. Then, 
with O(Pc) = 3/5, Eq. (9 a) gives 6 = 5 in three dimensions. Thus, from Eq. (9b) we obtain y = 4/3 
and dv = 3v = 6/3 = 3/27. The resulting 7/v = 2, which means DPw oc (R~)~, is exact in classical 
theory and a good approximation for random three-dimensional percolation; the other ratio 7//3 = 4 
is compatible with percolation but four times larger than the classical ratio. 

Clearly, the result 0 = 1/4 of the classical theory cannot  be true (de Gennes  39)) for real 
three-dimensional  gets; it shows that the classical theory does not take into account 
correctly the excluded volume effects in polymerization. With the definition of Rs one 
can generally show that at least half of all cluster points are contained within a sphere of 
radius v~-R~ surrounding the center of mass. (It should be noted that the cluster density 
profile in random percolation is not  Gaussian 22' 63).) Thus, the average number  of mono-  
mers per cm 3, the density, in the interior of the cluster is at least const • s/R~ oc sl-3Q for 
s ~ oo. This density cannot  diverge in reality, which means that the true exponent  Q has 
to be at least 1/3 (or 1/d in d dimensions).  The classical theory is therefore internally 
inconsistent,  independent  of all experimental  problems, as far as the asymptotic radius 
exponent  is concerned. For very dilute solutions this inconsistency might show up only 
for extremely large clusters, but  finally for s ~ oo deviations from the classical result 

must occur, even for p far away from Pc. 
For future applications we mention some Monte Carlo results on cluster radii in the simple cubic 

lattice. Let R~ be the radius of gyration, R~ the average distance of a monomer from the cluster 
center, R~ the inverse of the average inverse distance between two molecules in the cluster, and L~ 
the average spanning length (averaged over the three-lattice directions). Table 4 compiles unpub- 
lished (site) percolation results at intermediate cluster sizes. We see that the effective exponent, if 
the data are plotted double-logarithmically, is larger than the theoretical prediction Q = 0.4 at the 
three-dimensional percolation threshold. Using a more efficient computer program and extending 
the data to larger clusters, Hol163) found a curvature in his log R~ versus log s plot and an effective 
exponent 0 decreasing with increasing cluster size, as shown in Fig. 4 for p = Pc and p --~ 0. These 
Monte Carlo experiments give the reader an impression of the quality of such numerical data since 
the theoretical result O(P = 0) = 1/2 was found only after these simulations. 
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Table 4. Comparison of various definitions for cluster radii 
(see text) at intermediate mass s in simple-cubic site percola- 
tion at p = Pc = 0.31. (Similar results were also obtained for 
p ~ O . )  

s R~ R~ R~' L~ 

10 1.39 1.30 1.63 2.32 
20 1.95 1.82 2.08 3.77 
30 2.39 2.22 2.43 4.86 
40 2.79 2.58 2.74 5.81 
50 3.04 2.82 2.97 6.55 
60 3.28 3.04 3.18 7.15 
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Fig. 4. Dependence of the effective radius ex- 
ponent O -= d log(R0/d log s on reciprocal duster 
mass s (Holl6a)). The arrows indicate exact or 
presumed asymptotic values for s ~ ~. The up- 
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C.IV. Viscosity and Elasticity Problems 

We now explain why we used only question marks into Table 1 for the critical exponent  k 

of  the sol viscosity, r/oc (Pc - p)-k; if not  stated otherwise,  our discussion refers to three 
dimensions. (For  polydisperse samples near  the gel point,  the concept  of the ratio of  the 

intrinsic viscosities of  a branched and a linear polymer  is somewhat  impractical for the 

calculation of  the viscosity exponent  k. We express the viscosity contribution of  each 
cluster size in terms of  cluster radius R~, cluster mass s, and cluster number  ns (nor- 
malized as number  per  monomer) .  Note  that nss is the fraction of mass contained in 
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macromolecules having the degree of polymerization s; their volume fraction is denoted 
by ~ . )  

For a monodisperse suspension of solid spheres occupying a volume fraction ~ in a 
liquid of viscosity t/0, Einstein showed in 1905 that the total viscosity is 

(5  t r/ = t/0 1 + - ~ q ~ + . . .  (17 a) 

for small concentrations ~p. In the case of gelation, we have a polydisperse suspension of 
clusters with the volume oc R 3 which fill a volume fraction ~bs oc Rs3ns of the sample. If we 
approximate the viscosity by a linear superposition of the viscosities of each single clus- 
ter, neglecting cluster-cluster interactions, and if we apply the Einstein formula consider- 
ing the cluster as a solid sphere ("excluded volume limit") then we simply have to replace 
q~ in Eq. (17 a) by Z ¢~ oc Z R3ns 

r/lr/0 = 1 + const • Y~ R3ns. (17b) 

In both the classical and random percolation theory, Rs3ns varies as s3e-rf((pc - p)s  °) with 
a scaling function f decaying rapidly for large arguments (see Eq. (6 d)). In the classical 
theory, the radius exponent Q is 1/4 and the number exponent r is 5/2 whereas 3 ~ = r - 1 
in percolation according to Eqs. (9 b, 8 a). Then, for large s the s-power in front of the 
function f varies for Rsans with s -1 in the percolation theory and with S -7/4 in the classical 
theory. Therefore, in the classical theory the contribution of large clusters to the viscosity 
is small even at the gel point, and the viscosity remains finite there, as mentioned already 
by Dobson and Gordon 39). In the percolation theory the sum diverges logarithmically at 
the gel point. Thus, 

~1 oc log(pc - p) (percolation) ; ~ ~ const (classical) ; (17c) 

the exponent k is zero in both cases for this excluded volume approximation in the 
(unrealistic) dilute limit. More details are found in Ref. 66. 

Is this result (17 c) reliable? For this purpose, we estimate the next, quadratic term in 
the "virial expansion" of Eq. (17 b). From Batchetor's work 6s), we find for moderately 
concentrated suspensions 

5 
r//~/0 = 1 + ~ E~s + Y Y K s , ~ s ,  + . . .  (17d) 

where the double sum runs over the two cluster sizes s and s'. Presumably one may 
approximate the interaction function Ks,s by a constant of the order of unity: 

5 
~/~]0 = 1 q- "~- " ~ s  -F (~t/~s) 2" const .  (17e) 

Now, we see that in the classical theory the quadratic term is as important as the linear 
term, and for the percolation theory the quadratic term even diverges more strongly 
(oc log2(pc - p)) than the linear term. Therefore, the whole "virial expansion" in powers 
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of the concentrations ¢ seems to break down near the gel point; since the mac- 
romolecules interact with each other too strongly (entanglement etc.) the above approxi- 
mation becomes unreliable. 

In another theory 67) the contribution of an s-custer to the viscosity varies with R~s instead of R~ 
("Rouse approximation"). Thus, 

r/#/0 = 1 + const. ~ R~sn~ + . . .  (17f) 

a sum which diverges close to the gel point with (p: - p)~-:v as one can see, using the trick described 
on p. 112. Thus, the viscosity exponent k is about 1.3 in the percolation and zero (logarithmic 
divergence of r/) in the classical theory. However, for very large macromolecules dominating very 
close to the gel point, this Rouse limit seems to be more deletrious than the excluded volume limit of 
Eq. (17 b) according to Sievers 66), in agreement with a remark made by Zimm and Stockmayer 39). 
Moreover, the problem of cluster-cluster interactions also remains unsolved, in this approximation. 
(If one measures the intrinsic velocity by diluting the sol, the disturbing influence of duster-cluster 
interactions is weakened.) 

A completely different and perhaps better approach 67) is based on an analogy of 
viscosity with elasticity, resistor networks, and superconductors. The viscosity below Pc is 
the counterpart of the elasticity above Pc. According to the proponents of both the 
percolation 2, 3) and the classical 41) theory, the elastic constant of the gel varies with the 
conductivity of a random mixture of conductors (fraction p) and insulators (fraction 
1 - p). This conductivity or elasticity has the exponent t = 3 according to the classical 
and t -~ 1.7 according to the percolation theory. (For two-dimensional percolation 
perhaps t = v = 4/3.) (All conductivities are defined by the current flowing between two 
large plates. The current flowing out of a single wire tip depends on whether the tip 
points to a conductor which is part of the infinite conducting network or only to a finite 
cluster of conductors; thus, the conductivity for such point measurements varies with 
(p - pc) t-B, corresponding to (p - pc) 2 in the Bethe lattice.) Thus, it seems plausible 
that the viscosity of the sol, i.e. the counterpart of the elasticity of the gel, varies with the 
conductivity in a random mixture of superconductors (fraction p) and normal conductors 
(fraction 1 - p); surely, it is infinite in the gel, corresponding to infinite conductivity in 
the presence of an infinite network of superconducting links. According to the percola- 
tion theory this conductivity varies with (Pc - p)-S where S coincides with t in two and is 
about 0.7 in three dimensions; the classical exponent is presumably zero. (Fore more 
information on conductivities see Refs. 22, 23.) Thus, in this theory, the viscosity 
diverges as 

r /~  (Pc - p)-0.7 (18) 

for the three-dimensional percolation. 
However, the picture is hardly an exact theory; moreover, it was recently questioned 

whether the elasticity of the gel really varies with the conductivity of random resistor 
networks1°7); instead, the elasticity exponent was defined as 7 + 2fl (which happens to be 
again 3 in the classical theory, but is about 2.6 in the percolation theory). Then, also the 
identification of viscosity with superconductor mixtures may be questionable. Even if this 
is not the case, entanglement effects may lead to a change in the viscosity exponent as 
compared to the conductivity exponent. Therefore, we use question marks instead of 
giving numerical predictions for k in Table 1. But Table 5 summarizes, with increasing 
order of reliability, the viscosity exponents determined by means of these three approxi- 
mations, for both the percolation and classical theory. 
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Table 5. Results of various approaches to the sol vis- 
cosity exponent k 

Approximation Percolation Classical 

Rouse 1.3 0' 
Zimm 0' 0 
Supercond. 0.7 0'? 

Zero corresponds to a finite limit of the viscosity, zero 
with a prime to its logarithmic divergence. The first 
least reliable line refers to the Rouse approximation, 
Eq. (17f), the second line to the excluded volume 
(Zimm) approximation, Eq. (17 b), the last and most 
reliable line to the superconductor analogy of Eq. (18) 

In the paragraph preceding Eq. (18) we already mentioned the widely accepted 
idea 3, 41) that the elasticity of the gel has a critical exponent of the conductivity for 
resistor-insulator mixtures, and we listed these exponents. A theory which relates this 
exponent to the others, say v or ~, and to the dimensionality d is still lacking 22' 23), at least 
for general d. Table 1 lists the presently known exponents for this conductivity; since the 
conductivity-elasticity analogy was recently questioned 1°7) we added question marks to 
the percolation prediction. 

C.V. Variations of Percolation 

Other types of percolation which differ from the random-bond percolation described 
above, will be discussed briefly with respect to their critical exponents. These variants 
may have no direct relevance to gelation but may be a guide for the efficiency of other 
models which may be developed in the future for gelation and which are at least similar to 
one of the models reviewed here. In most cases, the critical exponents are not changed 
unless drastic modifications, which influence the system in its long-range behaviour, are 
introduced. 

C.V.1. Random-Site Percolation 

This is a variant of the random-bond percolation described in Sect. C.II. It is not directly 
relevant to gelation but is often used, particularly in Monte Carlo simulations, to calcu- 
late critical exponents more easily or with higher precision. Sites on an infinite lattice in 
this model are supposed to be randomly occupied by particles with probability p and pairs 
of nearest-neighbor particles are considered to be bound. 

Therefore, while in bond percolation the sites are always occupied and bonds 
between them may or may not be formed, in site percolation the sites may or may not be 
occupied whereas bonds between them always exist. For a given lattice it is not possible 
to express random-site percolation in terms of random-bond percolation, except in the 
Bethe lattice 37). Nevertheless, it is commonly believed on the basis of quite accurate 
numerical evidence that site and bond percolation belong to the same universality class. 
(For details see Refs. 23 and Nakanishi and Reynolds1°6).) 
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C. V.2. Random-Random Percolation 

In the usual random percolation, the bonds or sites are regularly located on a lattice, and 
the only randomness is connected with the question whether or not this bond (site) is 
formed (occupied). Additional randomness is introduced if the sites are no longer placed 
on a lattice but arbitrarily in space. Then we have "continuum" percolation and, since 
this problem is of particular value for gelation, we have already mentioned in Sect. C.II. 
that it belongs to the same universality class as random percolation 31). In that case, for 
two dimensions circles of a fixed radius are placed randomly on a plane and are supposed 
to form a bond if they overlap. A further degree of randomness has been introduced by 
allowing the radius of these circles to vary randomly, a model which might be relevant for 
mixtures of monomers with different functionalities. Even then, the critical exponents 
are compatible with those of ordinary percolation 69) as expected 7°). 

C. V.3. Correlated Percolation 

This variant of random-site percolation considers the more general case in which the 
particles, instead of being randomly distributed, are correlated due to interactions 
between them. The most studied case is percolation in the lattice gas (Ising model) where 
the particles interact via an attractive nearest-neighbor force and are distributed in ther- 
mal equilibrium 65'7a-76). For any temperature T there is a density percolation threshold 
pc(T). (Since in this model p is the density of occupied sites and not the probability of 
bond formation, it is of no direct relevance to gelation but represents an intermediate 
step in the more complicated model which is discussed in Chapter D.) In the limit T ~ 
(or zero interaction) the particles are distributed randomly, and pc(O0) is thus the ran- 
dom-site percolation threshold. When T decreases, attractive interactions facilitate the 
formation of clusters; therefore, pc(T) decreases with falling T while the clusters become 
more compact 79' 80). 

In two dimensions an interesting case occurs in which the line of percolation points 
p~(T) ends at the critical point of the lattice gas 77' 82), as shown in Fig. 5 a. This special 
point is a multicritical point where both density fluctuations (critical opalescence) and 
connectivity properties (average molecular weight) become critical. For d > 3 65, 74, 82) 

and for the Bethe lattice 72'75'76), the percolation line starts from the random limit 
pc(T = ~ )  < 1/2 and ends at an even lower density on the coexistence curve below To, as 
shown in Fig. 5 b. Since site percolation is not directly relevant to gelation we shift the 
discussion of the coexistence curve to the site-bond problems presented in Chapter D. 
We regard Fig. 5 as an indication that interactions in site percolation do not change its 
behavior drastically as a function of p, i.e. T is unimportant. 

Along the whole percolation line pc(T) the critical exponents are the same as for 
random percolation, according to theory and the Monte Carlo experiment 33'77'78' 83, 84), 
except for the special point p = 1/2, T = Tc in two dimensions, where percolation and 
critical point coincide. At this point, the following inequalities between percolation 
exponents and lattice gas exponents have been proved82): 
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where the symbols with asterisks refer to the percolation exponent at that point, and the 
tilde marks to the ordinary lattice gas exponent of Table 3. In agreement with such 
inequalities, series expansions 85) give 7" = 1.91 + 0.0i, which is larger than the exact 
lattice-gas susceptibility exponent ,~ = 1.75, but perhaps related to the latter s6). The 
renormalization group method 77) confirms with 1% accuracy this series value, and also 
predicts that the correlation length exponents for percolation and lattice gas agree here, 
v* = ~ = 1. (The crossover exponent, which describes the change of the critical behavior 
from this special point to random percolation behavior is given by the lattice gas "gap" 
exponent/~ + ? = 15/8.) 

Percolation in the two-dimensional lattice gas is very instructive in connection with 
the universality concept: If percolation occurs at finite lattice-gas correlation length, the 
critical exponents are the same as for random percolation. This can be easily understood 
if one takes into account that near the percolation threshold the lattice-gas correlation 
length ~ is much smaller than the typical cluster radius ~*; thus, the large clusters average 
over the effects of correlation. This argument breaks down only at the critical point of the 
two-dimensional lattice-gas where both ~* and ~ vary simultaneously; in fact, we have 
seen that at this point some exponents do change. 

A warning: According to Stoll and Domb 33), a supposedly ratio of universal 
amplitudes, determining the shape of the scaling function in Eq. (6 d), depends on T 
even at temperatures above To. 

The reason why in two dimensions the transition line (Fig. 5 a), does not end below Tc 
as is the case with higher dimensions (Fig. 5 b) is due to topological properties of all two- 
dimensional systems. For d = 2, the probability that an infinite cluster of occupied sites 
coexists with an infinite cluster of empty sites is zero sL s2) whereas in three dimensions 
this coexistence is possible. A phase diagram of the type of Fig. 5 b, would necessarily 
contain a large region in which such a coexistence occurs, for example above Tc in the 
interval pc(T) < p < 1 - pc(T). 

In percolation occurring in a lattice gas, care must be taken to differentiate between the critical 
behavior of percolation and that of the lattice gas. While there is an entire line pc(T) of percolation 
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points where the cluster size becomes infinite, there is only one critical point of the lattice gas 
(T = To, p = 1/2) where thermal properties like the compressibility become singular. 

The reason why the divergence of the duster size does not necessarily induce critical density 
fluctuations (critical opalescence) is that dusters are composed of two contributions: one is due to 
density correlations while the other is purely geometrical. For a given density p of occupied sites, 
these particles are joined to dusters not only because they attract each other but also because they 
are constrained to a given volume. For T = ~o, the attraction becomes negligible and the density 
correlations vanish; nevertheless, the mean cluster size DP~ is different from unity and may even 
diverge, as discussed in Sect. C.II. 

For other questions related to these lattice-gas clusters besides percolation see also Ref. 88, in 
particular for the dynamics. 

C. V. 4. Anttferromagnetically Correlated Percolation 

Repulsive lattice-gas interactions have also been studied 33' 71, 72, 78, 87, 89). The main feature 
is that repulsive interactions inhibit duster formation and pc(T) increases from the ran- 
dom percolation threshold pc(T = oo) to higher values. In this case, even in two dimen- 
sions the lattice-gas critical point is not a percolation point, and the critical exponents 
never change along the whole percolation line 89). 

C. V.5. Potts'-Correlated Percolation 

This is a generalization of the lattice-gas correlated percolation. In the lattice gas every 
site can be either occupied or empty; in the Q-state of the Potts model 9°), every site can 
be occupied by one of Q different sorts of particles, having e.g. different colors, The 
particles interact via nearest-neighbor attractive interactions which assume a value J, if 
they have the same color and otherwise a value zero. This model has the interesting 
property that for any dimensionality d there exists a value Q = Qc such that the model 
exhibits second-order transitions for Q betow Qc and first-order transitions above Qc. 
The value of this critical Qc decreases from 4 in two dimensions 91) to 2 for d -> 4 92). 

Thus, a ciuster distribution of all these colored particles gives a "polychromatic" 
correlated percolation problem, which in the limit of infinitely high temperatures degen- 
erates to a random polychromatic percolation 93). (A different polychromatic correlated 
percolation model 94) for supercooled water will be discussed later.) 

Potts'-correlated percolation was recently studied in two dimensions by the renor- 
malization group 95). For any color there is a percolation critical density which ends at the 
Potts critical point where all colors percolate at the same time. For Q below Qc, at this 
Potts critical point (similar to the critical point of the lattice gas) the exponent v* of the 
typical cluster radius coincides with the exponent ~ of the Potts correlation length while 
the exponent y* of the weight-average cluster size is larger than the ~ value of the Potts 
susceptibility. For Q above Qc, a first-order percolation transition is found at the same 
Potts critical point where also the thermal transition becomes first order. 

C. V.6. Multiple-Coordinated Percolation 

Recently, another type of correlated percolation has been introduced in connection with 
the unusual properties of supercooled water 94' 96). Consider a lattice with coordination 
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number z in which a fraction p of bonds are formed randomly. The sites can be par- 
titioned into z + 1 separate species (colors again, if you wish) according to the numbers 
i = 0, 1 . . . .  z of bonds emanating from each site of the species concerned. Though bonds 
are distributed randomly, the sites are correlated in this model. For example, if all z 
nearest neighbors of a given site belong to the species i = z, then this site itself also 
belongs to that species i = z. In this sense, this model is a type of polychromatic corre- 
lated percolation. 

The main difference between this model and the one described in Sect. C. V. 5 is that 
in the previous case the length describing the correlations between different sites diverges 
(with exponent 0 at the Ports critical point whereas in the present case the correlations 
extend over at most one lattice spacing. Accordingly, one would expect that this type of 
polychromatic percolation belongs always to the same universality class as random perco- 
lation, and Monte Carlo calculations 96) as well as renormalization group methods 97) have 
confirmed this expectation. 

(The exponents also seem to be the same in a variant where sites are occupied 
randomly and one looks only at those sites surrounded by at least i occupied neighbors, 
i = 1 , 2  . . . .  zgS).) 

C. V. 7. Chain Percolation 

A percolation model, that has been introduced in connection with vulcanization of 
chains6Z, 99,100,103), is the case in which two different species of bonds, say A and B, are 
placed on a lattice with concentrations CA and CB, respectively. Species A has the same 
properties as the usual bonds in random percolation whereas on species B is imposed the 
restriction that no more than two bonds of the same species B can be formed on the same 
site. Thus, species B forms polymer chains while species A acts as a crosslink. In the limit 
CA = 0, C~ ~: 0, the system reduces to self-avoiding chains, described by exponents 19) 
different from percolation. The opposite limit, CA :/: 0, CB = 0, is the usual random- 
bond percolation. In the intermediate case, it was found 62'99) that percolation in which 
dusters are composed of sites connected by bonds of either species belongs to the same 
universality class as random percolation, unless the particular situation is realized in 
which percolation occurs when the typical size of chains made out of B bonds only 
diverges. In this case, there is a crossover from random percolation exponents to self- 
avoiding walk exponents 19), similar to the situation in lattice-gas correlated percolation. 
(These chains of B atoms must be distinguished from the sometimes chain-like structures 
formed randomly in the usual percolation process.) 

C.V.8. Restricted Valence Percolation 

To describe steric hindrance effects in gelation one may study percolation on a lattice in 
which bonds are restricted in a way that no more than v bonds can enamate from the 
same site, or no site may have more than v nearest neighbors TM. Similarly, valence 
saturation may occur for the monomers in the gelation process. The case v = 2 is similar 
to self-avoiding walks 19), while for larger v one expects random percolation exponents, as 
confirmed by the Monte Carlo methods 1°1) in two and three dimensions. Then, on a large 
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scale, a large cluster looks like a monomer with multiple valencies, and the restricted 
valence at the monomer  length scale does not affect the critical behavior. 

C. V.9. Bootstrap Percolation 

Similarly to the case described in Sect. C.V.6, for bootstrap (or environmental) percola- 
tion one considers only those sites as occupied which are surrounded by at least i parti- 
cles. But now all lattice sites are first occupied randomly with probability p and then all 
those sites having less than i occupied neighbors are made unoccupied. This process is 
repeated until the lattice is completely empty or every remaining occupied site has at 
least i occupied remaining neighbor sites. (i = 0 corresponds to random site percolation.) 
The solution of this problem on the Bethe lattice and Monte Carlo simulation in two and 
three dimensions give either the same universality class as random percolation (low i), or 
different critical exponents (intermediate i), or even a first-order phase transition, where 
the gel fraction jumps from zero to a finite value 1°2). The physical reason for such jumps 
is based on the fact that after the coalescence of two clusters suddenly many more of their 
originally occupied sites can remain occupied in the ensuing reduction process, i.e. they 
are stabilized. Therefore, when an infinite cluster appears, this positive feedback may 
stabilize so many new sites that the infinite cluster, instead of being born "tiny" with zero 
density at p = Pc, is born already large with a non-zero density at Pc. (The limit i = z = 
coordination number is trivial1°2): For p = 1, all sites of the lattice are and remain 
occupied; for all p below unity, all sites will be removed in the "culling" process.) 

C. V.IO. Oriented Percolation 

Broadbent and Hammersley 61) proposed a percolation model in which neighboring sites 
may be joined randomly by two directed bonds; one transmitting in one direction, the 
other in the opposite direction. A limit on the square lattice is reached when randomly 
occupied bonds may transmit only upwardly or to the right. This model has exponents 
differing from those of random percolation 32' 1~); applications to gelation are missing at 
present. More general models which describe a distribution of diodes and resistors have 
also been introduced 1°5). (In the literature oriented percolation is also called directed 
percolation.) 

A summary of these ten examples shows how the random percolation problem can be 
modified: The critical exponents change only if the modification introduced can be seen 
on a scale which may become infinitely large, as in particular at the critical consolute 
point of phase separation. Otherwise, the modification concerns only "inessential" 
details and does not change the critical exponents. In some sense, the correlated site- 
bond percolation model described in Chapter D is only a further generalization of mod- 
ifications 1 and 2 above providing similar results for the critical exponents. 
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D. Solvent Effects 

D.I. Site-Bond Percolation 

The theory of random-bond percolation in Sect. C.II. assumes that every site is occupied 
by a monomer,  and bonds between monomers are formed randomly. In a real gel, 
besides the f-funtional monomers,  also solvent molecules are usually present. In order to 
take this solvent into account in a first approximation, one can allow the sites to be 
occupied by a monomer with a probability ~b (mol fraction) and to be occupied by a 
solvent molecule otherwise, with probability 1 - ~p. Two nearest-neighbor monomers 
may form a bond with probability p whereas no bonds emanate from or lead to the 
solvent molecules. The original random-bond percolation model is thus transformed into 
a random site-bond percolation 1°6) in which the clusters consist of randomly distributed 
monomers connected by random bonds. 

As Fig. 6 shows, for any concentration @ of monomers above the site percolation 
threshold (which is 0.312 in the simple cubic lattice, as opposed to the bond percolation 
threshold Pc = 0.248), there is a percolation threshold p¢(q~) for the bond formation 
probability: For p above Pc(@), an infinite network of bonds between monomers exists. 
Thus, one has a whole percolation line in a @ - p diagram, which ends for p = 1 at the 
site-percolation threshold for @, and ends for @ = 1 at the bond-percolation threshold for 
p. There is strong evidence that the whole percolation line is described by the usual 
random-percolation exponents 1°6). Note that even for p = 1 not all f bonds of all mono- 
mers are formed since the solvent molecules remain inert and may isolate the monomers. 

D.II. Correlated Site-Bond Percolation 

If we assume that the monomers of the site-bond problem described above are no longer 
distributed randomly but instead are distributed as in a lattice gas (interactions between 
nearest neighbors) in thermal equilibrium at temperature T, then we obtain Ising-corre- 
tated site-bond percolation 43' 65, 77, 83, 84), the most general percolation problem discussed 
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so far in detail. From the point of view of pure theory, or of Monte Carlo simulations, it is 
practical 65) to regard temperature T, bond probability p, and monomer concentration q~ 
as three independent variables and to study phase transition surfaces in this T - p - q~ 
space. (The special plane p = I corresponds to Fig. 5 above, the limit T = oo to Fig. 6.) 
At  a fixed temperature T above the critical consolute temperature To, i.e. in the one- 
phase region one has curves similar to the T = oo limit of Fig. 6; only the end point at 
p = 1 is shifted slightly to lower concentrations q~ if the temperature is diminished. 
Reference 66) gives the quantitative results for these percolation line in the simple cubic 
lattice on the basis of Monte Carlo simulations. (At  temperatures appreciably below the 
phase separation temperature To, the system is separated into one phase with very few 
monomers where even for p = 1 no gelation is possible, and another phase with very few 
solvent molecules where the system is approximated well by random-bond percolation, 

= 10  
What is the meaning of the coexistence curve discussed here and earlier (Fig. 5)? In our models 

first f-functional monomers and inert solvent molecules are distributed as if no chemical bonds are 
formed at all. At temperatures below the consolute temperature To, the system is then separated 
into two phases: In one phase nearly all molecules are solvent molecules, preventing any gelation to 
happen there later; in the other phase, nearly all molecules are f-functional monomer molecules, 
arranged nearly as on a periodic lattice, with only a few holes (solvent molecules) between them. 
Then, after equilibrium between these various molecules without chemical bonds has been estab- 
lished, we assume that, due to a very quick reaction, chemical bonds are formed with probability p 
before the molecules have changed appreciably their position. Then, the gel curve, i.e. the phase 
transition line separating the region of finite macromolecules from that of infinite macromolecules, 
simply gives the critical concentration Pc where for the given distribution of monomers and solvent 
molecules an infinite network is formed from neighboring monomers. The model does not take into 
account that, subsequent to the chemical reaction, the motion of monomers and solvent molecules is 
changed and that therefore also the coexistence curve and the critical temperature will be shifted by 
chemical reactions. In the special case of correlated site percolation (Fig. 5) where p = 1 all bonds 
between neighboring monomers are defined as being formed very quickly before the molecules can 
move appreciably. This special case is not directly relevant to gelation but important as a simpler 
special case of the more general models discussed in the following. 

To apply these theories to gelation we have to distinguish between two types of gels, 
reversible and covalent gels. For  simplicity, we call the reversible gels "weak" and the 
irreversible or covalent gels "strong ''1°7). 

D.II.1. Reversible Gels 

In "weak" or reversible gels the bonds may form and break in thermal equilibrium 
("annealed bonds"). The probability p for two monomers at nearest-neighbor distance to 
form a bond depends on the other two variables temperature and concentration (or even 
on other variables if they exist): 

p = p(T, @) or p = p(T) 

This model was solved analytically for the Bethe lattice 43), and with the simple approxi- 
mation p = 1 - e x p ( -  const/T) one can determine its behavior on the simple cubic lattice 
from Ref. 65. These Monte Carlo results are shown in Fig. 7. They agree qualitatively 
with the phase diagram in the Bethe lattice 43) and also with the experimental data of 
Tanaka et al. mS) using a gelatin-methanol water system. As already found for correlated 
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Fig. 7 Phase diagram of a monomer-solvent binary mixture, of weak gels and three different sol- 
vents chosen such that the consolute point is in the gel (left), on the getation line (center) and in the 
sol (right). Taken from Monte Carlo simulations in the simple cubic lattice 65) together with the 
approximation p = 1 - exp(- const • TilT), and const = 1, 0.443 and 0.25 respectively from left to 
right 

site percolation in Fig. 5, we have two phase transition lines: First, a line of percolation 
thresholds separates the high-temperature region of the sol only from the low-tempera- 
ture region where a gel exists; second, a phase-separation curve, topped by the consolute 
critical point, indicates where the system starts to split into a monomer-rich and a mono- 
mer-poor phase. A feature common to the experiment l°s), the Bethe lattice solution 43), 
and the Monte Carlo simulation on the simple cubic lattice 65) is the existence of a 
maximum temperature at the concentration 0 = 1 for the percolation line: Above this 
maximum temperature, gel formation is impossible. If p is below the percolation 
threshold pc for random-bond percolation (i.e. if T is too high), then even at the 
maximum monomer concentration (~ = 1) the number of bonds is insufficient for the 
formation of an infinite network. This maximum temperature can be found by solving 
p = p(T, ~ = 1) with p = Pc from random-bond percolation. (At low temperatures we 
have a gel in the monomer-rich phase and a sol only in the solvent-rich phase.) 

By adjusting the parameters of the function p = p(T) or p = p(T, q~), which corres- 
ponds experimentally to a change in the solvent, an interesting situation described by the 
central part of Fig. 7 results, where the sol-gel boundary meets the phase separation 
curve exactly at the critical consolute point. In this case, the Bethe lattice theory 43), which 
corresponds to the Flory-Stockmayer model, gives classical exponents for random-bond 
percolation along the whole sol-gel boundary. This is true even for the special case where 
the critical consotute point and the end point of the gelation line coincide; then, one has 
to use the concentration @ and not the temperature T as a variable to define critical 
exponents. 

In contrast, different forms of the renormalization group theory 77' 83) show that ran- 
dom-percolation exponents are obtained along the entire gelation line except at the 
critical consolute point, if the latter is also the end point of the gelation line. In the latter 
case, the critical exponents are given by the lattice-gas exponents, i.e. the weight average 
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degree of polymerization diverges as the lattice-gas compressibility ~ (T - To) -124, and 
the z-average radius of macromolecules varies with the lattice-gas correlation length 
oc ( T  - ' r e )  -0'63 (where we used the numerical values for the exponents in three dimen- 
sions). 

The free energy reveals no singularity along the whole sol-gel transition line except at the critical 
consolute point (if this line meets this point at all). Therefore, at these gel point we have no phase 
transitions in the ordinary, thermal sense; only the connectivity properties become critical. This 
absence of singularities in the free energy or in its derivatives reflects 1°7~ the fact that in a weak gel 
the appearance of an infinitely large but reversible macromolecule does not necessarily produce a 
dramatic change in the system. For example, the viscosity does not necessarly diverge: A small 
sphere wilt eventually penetrate into and through the infinite network, due to the ability of the 
reversible bonds to break and form again in the course of time. 

In weak gels, the gel resembles a highly viscous liquid 6~. Instead of interpreting the percolation 
threshold as a sharp critical point of the sol-gel transition, it is more appropriate, e.g. for the 
viscosity, to consider it as the center of a transient region in which one passes smoothly from the 
fluid (sol) to the viscous (gel) phase. Of course, in the highly viscous region, the relaxation time 
required to reach equilibrium is very long. Only for times much longer than this relaxation time can 
the bonds be considered as fully reversible (annealed). For times much shorter than this relaxation 
time such gels behave more like strong gels 1~. 

As a consequence, the consotute monomer density ~ is much smaller than that calculated for an 
annealed gel 1°9~, due to the presence of large molecules with a long lifetimes (~bc o: M -lf2 where M is 
the typical molecular weight of a molecule). 

We repeat that the position of the gel point is not a universal quantity. Therefore, the phase 
diagrams shown in Figs. 5-8 should not be regarded as quantitative predictions from which one can 
judge the validity of the classical or percolation theory. It is the exponents defined at or near these 
phase transition lines which are universal and which allow a clear distinction and classification of 
competing theories. However, a complete and correct theory must predict both the correct expo- 
nents and the correct phase diagram. 

D.II.2. Irreversible Gels 

In strong or covalent gels the bonds are permanent.  These gels are obtained by quench- 
ing the system at a given quenching temperature T. While monomers and solvent are in 
thermal equilibrium-controlled by their interaction forces, a fraction p of chemical bonds 
may be formed quickly and randomly, at least in a Gedanken experiment. Once these 
bonds have been created, the system no longer consists of single monomers but of 
permanent clusters (monomers, dimers, trimers, . . . )  possibly including an infinite per- 
manent network. Later,  the temperature T may change, inducing even first-order transi- 
tions 11°~ (gel collapse), but the dus ter  distribution will always be the same independent of 
the varying thermodynamic temperature.  It can be obtained from the correlated site- 
bond percolation model  described above, using for T the temperature at which quench- 
ing (the bond formation) took place. 

We stress here the main difference: Weak gels are determined by one equilibrium 
temperature T. By changing this temperature,  the bond probability p, the free energy 
and the dus ter  distribution change. In strong gels there is a quenching temperature 
which, together with p and q~, determines the duster  distribution; it may differ from the 
thermodynamic temperature,  which changes the free energy after the macromolecules 
have been formed permanently,  but does not influence p. 

While in weak gels p depends on T, in strong gets it is an independent variable. 
Therefore, in weak gels (Fig. 7), we can change the point where the gelation line and the 
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Fig. $ Schematic phase diagram of a monomer-solvent binary mixture, of strong gels and three 
different bond formation probabilities p chosen such that the consolute point is in the gel (left, 
p > p*), on the gelation line (center, p = p*) and in the sol (right, p < p*). p* is for the nearest- 
neighbor lattice gas defined on p. 65. The "quenching" temperature at which the bonds are formed 
is shown; later T may change. Moreover, also the consolute point and the shape of the coexistence 
curve (shown'here as a parabola) may change after bonding has taken place, due to the presence of 
large macromolecules 

phase separation line meet only by changing the solvent. In a strong gel, this meeting 
point can be shifted also for a given solvent by choosing a suitable and fixed value for the 
bond formation probability p, as in Fig. 8. It has been shown 65' 77, 83) that this point, 
where the two lines meet,  coincides with the critical consolute point if 

p = 1 - e x p ( -  W/2 kT~) -= p* 

where W is the effective lattice-gas interaction energy and Tc the critical consolute 
temperature. (An energy W/2 is needed to replace in a pair of monomer neighbors, 
surrounded everywhere by solvent molecules, one of the monomers by a solvent. In the 
simple cubic lattice, W/kTc = 0.8867 and thus p* = 0.358.) This p* value also holds for 
weak gels, p being however a function of the other variables; thus, different solvents are 
necessary to obtain p = p*. Another  difference is that strong gets, in contrast to weak 
gels, do not have a maximum temperature for the gelation line; this sol-gel transition line 
may extend up to an infinite temperature (which simply means a random distribution of 
monomers and solvent molecules). 

An interesting aspect of strong gels, which has not received much attention experimentally, is 
that quenching and bond formation occur exactly at the critical consolute point. In this case, the 
resulting size distribution of macromolecules keeps up permanently with the highly correlated dis- 
tribution of monomers in the solution (although the consolute point may be shifted after the bonds 
have been formed, due to the presence of large molecules) In particular, if an infinite network is 
formed, it should exhibit unusual elastic properties about which little is known at present. 

What are the critical exponents of gelation? Similarly to weak gels, along the whole 
sol-gel transition we expect 77' 83, 8~) random-percolation exponents, except for p = 1 - 
e -wrzkT on the coexistence curve where lattice-gas exponents dominate. A third set of 
exponents is found by approaching the point p = p*, T = Tc and ~p = q~c (critical conso- 
lute point) through variation of p and keeping fixed T and ~ at their critical values Tc and 
~¢. Then, the typical cluster radius varies as 

o~ [p* - pl-~B (p ~ p*) 
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and the weight average degree of polymerization as 

DPw oc IP* - Pl -y~ (P --~ p*) 

Renormalization methods gave in two dimensions 77) VB = 2.02 and 7B -- 3.54 whereas s3) 
7B = 2VB = 4/(d - 2) near d = 6 dimensions; the latter result is believed to be true for 
4 -< d --. 6. For details of the cluster size distribution we refer to the original papers s4). 

A further difference between weak and strong gels: While in weak gels the free energy does not 
reveal any singularity at the percolation threshold, in strong gels it seems to exhibit such a singular- 
ity 1°7), showing that in this case the sol-gel phase transition can also be considered as a thermal phase 
transition, with a non-analytic free energy. The permanent nature of the "strong" bonds makes the 
phase transition more obvious than the temporary nature of the "weak" bonds. 

E. Critique of Theory 

The structure of a monomer is clearly more complicated than assumed in the first parts of 
Chap. C., where a monomer was simply considered as a point with f arms both in the 
classical and lattice percolation theory. In reality, the interactions between atoms will 
influence the probability of bond formation. Then, gelation occurs no longer randomly, 
and correlations between various bonds exist. We have reviewed in Chap. C. V. and D. 
existing theories of non-random percolation; a simplified summary shows that purely 
geometric restrictions to and thermal correlations between the bonds to not change the 
critical exponents whereas phase separation does. Thus, one may expect sometimes 
different but in most cases the same exponents if more realistic gelation models are 
investigated instead of random-bond percolation on a lattice. 

We have already mentioned that the lattice structure, while used for most percolation 
studies, is not really necessary 31) and that even without the help of a lattice the critical 
exponents seem to have invariable lattice values. According to the simple classical theory 
this is not the case since the radius of trees on a periodic lattice (with excluded volume 
effects) increase for large cluster masses s at least with s TM (in d dimensions) whereas in 
the classical theory on a continuum a Caley tree has a radius varying asymptotically with 
s TM, independent of d. 

An  important ingredient of gelation reality, namely dynamics, is missing in these 
classical and percolation theories we have reviewed here. The probability of a bond to be 
formed is not necessarily random but may depend on the history of the sample. In 
particular, the role of molecular mobility has been ignored in our description. Let us 
discuss here two extreme cases: zero mobility and infinite mobility of macromolecules. In 
the first case, the monomers can be assumed to be fixed on the sites of a lattice, and we 
have the same situation as discussed in Sect. C.II. In the opposite limit of infinite mobility 
it seems reasonable to assume that every macromolecule of mass s can form a bond with 
every other molecule of mass s' within the sample, and that the rate at which such 
coagulation occurs is Kss,nsns,. (K is a coagulation constant and n the number of clusters.) 
In this case, the solutions of the resulting coagulation equations 16' 111) show that the 
cluster size distribution ns in the course of time may be different from both the classical 
and percolation theory and depends strongly on the form of the coagulation coefficient 
Kss,. More work in this direction with emphasis on critical phenomena would be desir- 
able. 
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Reality is presumably between the two limits of zero and infinite mobility. If two 
neighboring macromolecules are joined together, then near that place no other coagula- 
tion is likely to occur for some time. A numerical study of time-dependent correlation 
effects would be useful. (Some percolation models 112' ~13) which were not intended for 
gelation indicate that exponents resulting from a growth process may differ from those of 
a random process. Grassberger's dynamical model 13~) seems to give random percolation 
exponents for long times.) 

An important though incomplete step in this direction of dynamical percolation for 
gels was the Monte Carlo simulation of Manneville and de Seze t14) for additive copoly- 
merization initiated by radicals. Two-functional and four-functional monomers were 
mixed randomly on a cubic lattice and fixed there, with a small concentration of mobile 
free-radical activation centers. The result of this simulation was that the critical exponent 
v for this chemical process agreed with that of random percolation for intermediate 
concentrations of 4-functional monomers,  but was stightty (significantly?) higher for 
lower concentrations. We regard this work 1~4) as the most realistic of all existing compu- 
ter studies on gelation and urge that it be improved further. And rather generally, we 
believe that the dynamic aspects of percolation should be investigated in detail for 
gelation and other applications. 

Summarizing these theoretical sections of our review, we can say that many percola- 
tion models belong to the universality class of random-bond percolation on a periodic 
lattice which is different from the universality class of the classical Flory-Stockmayer 
theory. (A literature review of the critical exponents relating to modifications of the 
Flory-Stockmayer theory is still lacking; we have only given some examples.) However, 
exceptions do exist. Therefore, it is possible that for certain gels both competing theories 
(simple classical and simple percolation theory) are wrong as far as critical exponents are 
concerned. In this case we believe that the more general scaling idea still remains valid, 
i.e. the exponents are related to one another as in Eqs. (8, 9): 

d Q / t r = d v = y + 2 f l =  ( r - 1 ) / a  

though the exponents do not have the values listed in Table 1. For example, the state- 
ment r - 1 = dQ in d dimensions relates the radius exponent • to the cluster-number 
exponent r and is valid much more generally than the specific (not exactly determined) 
prediction Q = 0.4 in three dimensions. It is the scaling laws like Eqs. (8, 9) and not the 
specific exponent values for definite models which can be regarded as the most general 
result of modern phase transition research 15). 

Let us see now if experiments can decide which theory is right and which is wrong. 

F. Experimental Determination of Exponents Near the Gel Point 

It was shown in the preceding sections that most three-dimensional versions of the 
percolation theory have the same critical exponents. They differ only if phase separation 
occurs during the percolation process, Thus, if gelation can be described by the percola- 
tion theory, the exponent values must be independent of the chemical system studied. 
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This is a theoretical result but what is the experimental situation? In this section, we will 
try to answer this question but we do not intend to give a complete review of experimen- 
tal results obtained on gelation systems. We will systematically take no account of experi- 
mental results which are intimately tied to a theory in order to verify it. In fact, we will try 
to point out the physical quantities which can be measured, how we can measure them 
and what are the experimental difficulties. 

We will divide this section into 2 parts. The first one will deal with measurements 
performed on samples of a given p called "quenched samples" in which the chemical 
reaction was stopped and the system dissolved; the second group of measurements, 
called "in situ', has been performed in a reaction bath without any chemical manipula- 
tion. 

F.1. Experiments Performed on "Quenched Samples" 

In this section we consider quantities which necessitate chemical manipulations preceding 
the experimental determination. The chemical reaction must be stopped by freezing or 
deactivation of the reacting groups. (For details on chemical procedures see following 
references and Refs. 1, 39.) The sample is then dissolved in a known quantity of solvent 
the cluster distribution remaining unaffected. The swelling of clusters occurring during 
dissolution of the sample in good solvent may increase the radius of gyration. Conse- 
quently, the experimental Rs value will be higher than that predicted by Eqs. (5 b) and 
(5 c). Beyond the gelation threshold, the gel fraction must be extracted whereas the finite 
clusters, which are trapped in the holes of the gel, should not. The gel fraction must not 
be broken into small pieces. The separation of sol and gel is sometimes very difficult to 
achieve experimentally. 

Let us, first of all, review the measurable quantities. 

F.L1. Measurable Quantities 

From Section B,II. we know that the system is highly polydisperse and the number of 
clusters ns having s units can be approximated by: 

2y + 3fl 1 
ns oc s - ~  r -  - 2 + - - .  

In this approximation s has two extreme values, as explained above (Eq. (6b)): s = 1 
(monomer) and s = s~ = number of units in the largest finite duster of the system; this 
number varies for small Ap -= [p - Pc[ according to 

s¢cc Ap-(y+~), (Eqs. (6a) and (66)) 

In this section, we will derive proportionalities for the mean molecular weights that can 
be determined experimentally, using the corresponding average degrees of polymeriza- 
tion. We will replace the discrete sum used in the preceding sections by an integral 
because near Pc, s~ ~, 1. 
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By definition, the number average molecular weight is: 

s~ 

f snsds 
1 

IVln oc ~ 
s~ 

f nsds 
1 

Mn is finite for Ap ~ 0. Thus, the osmotic pressure, which depends on MR, does not 
exhibit any discontinuity near the gelation threshold Pc. 

The weight average molecular weight, which is defined by 

s~ 

f s 2 n s d s  

1 
Mw oc - -  o¢ Ap-r , (19) 

se 

f snsds 
1 

is determined by light scattering measurements, Mw diverges as Ap ~ 0. 
Using the same method, we can measure the z average radius of gyration: 

s~ 

f s/nsR 2ds 

(R2)z oc 1 
s~ 

f s nsds 
1 

where R~ is the radius of gyration of an s cluster in the reaction bath, 

V 
1~ ~ s 2q with • - - -  at p = p c  

thus (R2)z oc Ap-2Q(r+~) 

and (R2)z o: Ap -2v (20) 

The radius of gyration ~ of the largest cluster s~ is given by ~2 ~ Ap-2V (Eq. (5c)); 
therefore, (R2)z oc ~2 (Ref. 23). 

The intrinsic viscosity, 

[ 7 ]  _ r / - r / 0  , 

lira c---, 0 r]0C 

is difficult to calculate (c is the concentration). It can be approximated by: 
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s, 
. R z 

f sns ds 
s 

1 

s~ 

f snsds 
1 

where z = 3 if we assume total hydrodynamic interactions inside clusters (Zimm clusters) 
and z = Up + 2 if we assume no hydrodynamic interaction (Rouse clusters). 

In the case of Zimm clusters, the intrinsic viscosity is [g] o: Ap-(3~-(r'+2¢)) ; therefore, 
[~] cc log Ap, if hyperscaling (Eq. (9 b)) is used. Then, we have 

[q] o: log(Mw). (21) 

In the case of Rouse clusters, the resulting intrinsic viscosity [~7] o: Apf1-2v varies strongly 
at p 66,6~). Using values for fl and v as listed in Table 1, we find: 

[t/] ¢¢ Ap -1"3 

[r/] oc M~/75 " (22) 

Expression (22) corresponds accidentally to [V] of linear polymers in good solvents where 
hydrodynamic interactions occur. 

Beyond the gelation threshold, the gel fraction G, obtained after extraction 

G o c A p  a , 

is measured by weighing. 
Static quantities such as (R2)z, Mw, and G can be calculated by using the percolation 

or mean field theory. To predict the dynamic quantity [rl], we must know the static one 
and the type of the hydrodynamic interaction. 

F.L2. Light Scattering Results 

Light scattering is measured as function of a momentum transfer k defined by: 

4zr . 0 
k = --~-- sm-~-- , 

where 2 is the wavelength of the incident beam in the medium, 0 the scattering angle (a 
typical value of k is 1.8 x 10-3/~ -1 for 2 = 5000 A and 0 = 90°). 

Assuming monodisperse molecules with radius of gyration P~ and molecular weight 
M, one has H6) for the scattered light intensity I: 

cI~.~o m ~ -  1 + , ifkZR 2-< 1; 
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here, c is the monomer concentration. For a polydisperse sample (cf. Sect. F.I.5.), if 
k2R ~ < 1, the curve cI¢~0 = f(k 2) has a slope proportional to (R2)z/Mw and an intercept at 
k = 0 proportional to 1/Mw, if k2R 2 >> 1, the curve cI~'10 = f(k 2) has an intercept at k = 0 
proportional to 1/2 M n. 

Light scattering experiments should be performed in dilute solution. Since the size of 
the clusters may increase during dissolution due to swelling, it is not evident that the 
radius measured can be compared with expression (20). The same difficulty is encoun- 
tered in intrinsic viscosity measurements. 

Light scattering experiments were essentially performed on three kinds of samples: 
a) Polycondensates of decamethylene glycol/benzene-l,3,5-triacetic acid (DMG/BTA). 

The reaction was stopped by neutralization of the carboxy and hydroxy groups 117' 119) 
b) Copolymers of methyl methacrylate with other methacrylates where the reaction was 

terminated by quenching; then, precipitation occurred 11s). 
c) Styrene-divinylbenzene copolymers at complete conversion 21). In these experiments, 

the concentration of initiator was changed whereas the concentration of DVB and 
styrene remained constant; thus, a series of samples at varying distance from the gel 
point was obtained by considering Ap ~ AX/X~ where X = [DVB]/[initiator]. 
In Refs, 21,117-119 the weight average molecular weights and the z-average radii of 

gyration are discussed; it was found that on both sides of the gel point (R2)z o: Mw, in 
agreement with both existing theories. Using expressions (19) and (20), we obtain indeed 

2 v  
(R2)z oc M 2v/~' ' w h e r e - - ~ - 1 .  

), 

However, this result does not mean that the conformation of a cluster is Gaussian. If a 
linear polymer has a Gaussian conformation, the law R 2 oc M is valid at any scale and for 
any pair of the mean values considered (R~ oc Mn, R2w oc Mw, R 2 oc Mz). For solutions of 
non-Gaussian clusters, this relation holds only if the z-average radius of gyration is 
compared with the weight average molecular weight. For example, one can show that 

(R2)w oc k,l(2v-3)/;¢ ~'*w 

This exponent is different from 2 v/7 ~ 1. 

Variations of (R2)z and Mw as a function of Ap are analyzed in Refs. 118, 21, Figs. 6 
or 5 and 6, respectively. No exponent value is given by the authors because the two 
quantities cannot be expressed by any simple power law within the range of Ap studied. 
This may be due to a high inaccuracy in the determination of Pc. 

As noted by the authors themselves tls) (p. 881): " T h e  flattening off of the curve at 
large Mw is caused by the inaccuracy in the determination of the gel point . . .  The 
maximum value for the exponent in Fig. 6 is 1.5" (this corresponds to the exponent 
y = 1.7 in Table 1). Actually, one must realize that the precision of Pc must be much 
higher than the range of Ap on which measurements are performed. It is evident that, if 
Pc is known with a 10 -2 precision and Ap is of the order of 10 -2, the error of Ap is 100%. 
Thus, direct determination of Y and v will be possible only if the precision in the determi- 
nation of Pc is improved. 
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F.L3. Comparison Between Gel Fraction and Light Scattering 
Measurements 

One way to overcome the lack of precision in Ap is to compare the different quantities, 
M~, (R2)z and G. Using the expressions (19, 20, 22) one obtains 

and 

Mw 0c G-r/~ 

In Ref. 21, the z-average radius of gyration and the weight average molecular weight are 
plotted, on a log-log scale, as a function of the gel fraction (Fig. 10, Ref. 21). 

The value of the exponent y/fl = 4.5, determined by the authors, is in good agreement 
with the percolation model (4) and clearly differs from the mean field value (1). The 
authors give two values for the exponent v/fl : 1.65 near get point and 3.3 far from gel 
point. These two exponents, although inaccurate, are closer to the percolation value (2) 
than to the classical value (0.5). 

However, the two difficulties mentioned above must be taken into account: gel 
extraction may be achieved only incompletely, and the radius of the clusters may increase 
by dissolution of the sample. These two facts will increase the experimental values of the 
exponents rift and y/ft. Another problem results from light scattering analysis of high 
molecular weight polydisperse samples (see Chap. 5). 

F.L 4. Intrinsic Viscosity Results 

In Ref. 118 (Fig. 8), the intrinsic viscosity [~/] is compared with the weight average 
molecular weight. It was found that the absolute value of [~1] and the slope of the curve 
(on the log-log scale) are much lower for solutions of branched than of linear polymers. 
This experimental result, together with the percolation expressions for the intrinsic vis- 
cosity (Eqs. (21, 22)) confirm that clusters undergo hydrodynamic interactions. In fact, 
the molecular weight exponent value of It/] is much lower with than without hydrody- 
namic interactions. This result implies that a calculation of the viscosity of the reaction 
bath is correct only if hydrodynamic interactions are taken into account. 

No exponent was determined by the authors but if we use their experimental values 
given in Table 3 of Ref. 118, we find: [~/] oc M~ 17, an exponent value which is not far 
from the percolation value taking into account hydrodynamic interactions (log Mw). 
However, it is also not far from the logarithmic divergence (or finite limit) of the viscosity 
according to the classical theory (Table 5 above). 
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F.L5. Difficulties Encountered in Light Scattering Experiments on 
Polydisperse Samples with High kR Values 

It was shown in Sect. F.I.1. that Mn is roughly a constant and Mw diverges as Ap-L Thus, 
the index of polydispersity, i.e. the ratio Mw/M,, diverges as Ap-L It can be shown that 
(R)n is also a constant near the gel point. For convenience, let us consider an index of 
polydispersity equal to 2 at Ap = 0.1. 

For a polydisperse linear polymer obeying Gaussian statistic, the scattering function 
isl2O): 

1 1 
lim cI - t  oc - -  
c--,0 Mw p (0) 

where p(0)  is the z average of the scattering function of each species s: 

st 

f S2 ns ps(O) ds 
1 

p(0) = 
st 

f s nsds 
1 

2 [e_k2R~ 2 2 with ps(0) = ~ + k R s - 1] 

if k2(R2)z < A, where A is a constant whose value, 4, has been found experimentally: 

limc1-1 oc 1 ( 1 +  k2(R2)z)- 
c-~0 Mw 

if k2(R2)z "> A, 

lim c1-1 oc 1 ~--.o 2'M'n (1 + k2(R2)~) . 

Thus, if k2(R2)z is smaller than 4, we obtain from the inverse of the scattering 
intensity, extrapolated to k = 0, the weight average molecular weight and from the slope 
of the c u r v e  C1-1 = f(k 2) the z average of the square of the radius of gyration. 

If k2(R2)z is larger than 4 and if the index of polydispersity is high (Mw/Mn > 2), then 
the extrapolated value of c1-1 at k = 0 gives a molecular weight average between Mw and 
Mn, The slope also provides an intermediate value of the average squared radius: 

(R2)n .< m 2 < (m2)z . 

The expressions derived above can be extended in the first approximation to cluster 
solutions. The straight line obtained from the plot of c/I versus k 2, using a sample 
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of polydispersity Mw/Mn near 2, lies above the curve for a sample of high polydispersity, 
Mw/Mn > 2, which corresponds, in our case, to Ap < 0.1. 

Therefore, analyzing the results of a light scattering experiment, one must keep in 
mind that the sample is very polydisperse. If one wants to determine (R2)z and Mw, one 
must work at small k2(R2)z values and be sure that experimental points do not lie below 
the extrapolated line. 

F.II. Experiments Performed "in Situ" 

Three quantities were measured, in the reaction bath: shear viscosity r/, shear modulus E 
and ultrasonic absorption. These quantities are easy to measure since no chemical man- 
ipulation is necessary; thus, there is no danger that the system studied is modified. Other 
difficulties are also much easier to overcome. However, the interpretation with respect to 
the percolation or classical theory is more difficult than that of the geometrical quantities 
(R2)z, Mw, or G. 

F.II.1. Measurable Quantities 

In Section C.I.V, it was shown that, below the gel point, the viscosity diverges as 
r/ oc Ap -k. Using the percolation theory, the exponent k = 0.7 if an analogy is made 
between gelation viscosity and electric conductance of a random network of supercon- 
ductors and normal conductors 67). 

Above the gel point, the system becomes elastic and the shear modulus E increases as 
E oc Ap  t, where t = 1.7, according to the percolation theory where an analogy is made 
between E and the electric conductance of a random resistor network 2). 

The mean field approximation yields 

k = 0121) and t = 3 9'41) 

the viscosity having a logarithmic divergence at the threshold. 
Above the gel point, the ultrasonic absorption is proportional to the square of the gel 

fraction divided by the friction of the solvent passing through the polymer network. Since 
the measurements are made at a very high frequency, phonons are absorbed by small 
molecules and f is considered to be constant 122). There is no theoretical justification for 
this assumption. 

F.II.2. Viscosity Measurements 

On the one hand many viscosity measurements were performed 123) in the reaction bath 
but only few of them were stimulated by the desire to measure critical exponents. 

On the other hand some of the viscosity measurements were performed by authors 
interested in critical exponents but having no access to p, i.e. the conversion of the 
reaction. In this case, Ap is assumed to be proportional to (T - Tc)/To where T is either 
the reaction time or the temperature (To being the threshold value). 
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In Ref. 124 the viscosity is measured by rotational relaxation of ferromagnetic parti- 
cles (0.1 ~ - t0/~) embedded in gelation solution. The exponent k is found to be k = 
0.95 + 0.1. 

In Refs. 125, 126 the viscosity is measured with a magnetic sphere rheometer at 
decreasing shear rate (its lowest value is 10 -4 S -1) in different polymeric systems: free- 
radical copolymerization of styrene-meta-divinylbenzene with solvent and polycondensa- 
tion of hexamethyl diisocyanate with polyoxypropylene with and without solvent. These 
experiments yield k = 0.79 in both systems. The standard deviation of experiments 
performed at different shear rates at the gel points is 0.07 in k. Since r/ and E are 
measured in Ref. 126 using the same apparatus and the same sample, T~ is determined as 
the time where r/-1 and E are equal to zero, the precision in T~ being higher than 10-2%. 

In Ref. 127 the viscosity of the polycondensation system DMG/BTA is measured with 
a Weissenberg rheogoniometer at constant shear rate not exceeding 85 s -1. The exponent 
k is found to be 1.03 with a standard deviation of u = 0.05. In these experiments the gel 
time is determined such that the log-log plot of ~/versus AT becomes linear. 

In Ref. 118 the viscosity is measured during the freeradical copolymerization of 
methyl methacrylate by determining the fall rate of a steel sphere (without shear rate 
control), k is determined to be 0.5. 

Thus, the exponent k, defined through r / ~  Ap -k, where r/ is the zero shear rate 
viscosity, lies between 0.5 and 1. 

We will see later that zero shear rate viscosity is difficult to measure near the gelation 
threshold. 

F.II.3. Measurements of the Elastic Modulus 

In the measurements of the elastic shear modulus E and its exponent t (E oc Apt), two 
types of polymerization with different extent of cyclization (Du~ek 9)) were studied: poly- 
condensation and free-radical copolymerization. 

For BTA/DMG polycondensation t = 3.11 is found H), using a Weissenberg 
rheogoniometer (lowest frequency 0.1s-l) ,  and for the polycondensation of poly- 
urethanes prepared from hexamethylene diisocyanate and a polyoxypropylenetriol (with 
and without solvent and using a magnetic sphere rheometer with a frequency near 
2 x 10-2s -1) the exponent t = 3.3 + 0.3 was obtained 126). Therefore, it seems that the 
exponent t for the shear modulus of polycondensation samples is very close to the 
classical exponent value of 3. 

For the free-radical copolymerization of mono- and bisacrylamide samples 128) per- 
formed and with a magnetic sphere rheometer, t = 2.05 + 0.2 and for the free-radical 
copolymerization of styrene and divinylbenzene 126), using the same type of apparatus, t = 
2:1 + 0.3. These exponents are higher than the value of 1.7 predicted by percolation for 
an alternative theory see however Ref. 107 and smaller than the classical exponent t = 3. 
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F.II. 4. Ultrasonic Wave Attenuation 

In Ref. 124, attenuation Aa of ultrasonic waves at 790 MHz in gelatin gel was measured 
as a function of temperature T, and in polyacrylamide gel as a function of reaction time 
T. It was found that the attenuation increased linearly with rising AT for T > Tc. 

It is shown that Aa  oc G2/f, where G is the gel fraction and f the frictional coefficient 
between the solvent and the polymeric network. Assuming that f remains finite for AT 
0, it was concluded that G oc (AT) 1/2, an exponent value which is not too far from 
/~ = 0 . 4 .  

F.II.5. Difficulties of Mechanical Measurements 

We are interested in viscosity and elastic modulus which are stationary" quantities. Let us 
call Tr the longest relaxation time of the polymeric system. In order to measure zero 
shear viscosity and stationary elastic modulus, the experiment must be performed at 
oTR ,~ 1 and OgTR < 1, where a is the shear rate and to the frequency. 

This relaxation time is the time needed for the largest cluster to reorient itself129): 

T~--- r/o Ap-(k+3v) 

where ~ is the macroscopic viscosity. 
Thus, as we approach Pc, the relaxation time TR diverges, and cr must be reduced to 

maintain oTR < 1. 
If OTR > 1, the viscosity measured will be smaller than the stationary viscosity, the 

effective gel time, where I/r/approaches zero, will be longer than the real gel time and the 
k exponent so determined smaller than the "true" exponent. Therefore, a viscosity 
experiment requires several runs to be made on the same material (each one at a differ- 
ent shear rate) to ensure that k is independent of this shear rate. 

This real difficulty of measuring zero shear viscosity near the gel point was taken into 
consideration by Gordon and Roberts 127). In this work (p. 686), the Tc value obtained by 
extrapolation of the modulus and the one obtained by extrapolation of the viscosity are 
compared: Tc "from back-extrapolation of the modulus is generally lower than the value 
from viscosity. This small discrepancy is significant and intelligible because shear rate 
effects will raise the viscometric gel point but lower the gel point from modulus data "127). 

It should be noted that this "shear rate effect on Pc" not only influences the k 
exponent but also all exponent values when Pc is determined through non-zero shear 
viscosity measurements. Actually, we have to point out the predominant effect of the 
precision of Pc on the determination of exponents. 

Effects of mechanical deformations on the destruction of the gel structure and on 
chemical kinetics are difficult to evaluate. From the agreement of the experimental 
exponent values (t = 2.2 or 3.1) obtained by different authors it may be concluded that 
gel structure is not modified by measurements. 
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F.III. Experimental Conclusions 

In this section, we have reviewed the difficulties that can be encountered in carrying out 
experiments which may allow us to answer the question: Does percolation describe 
gelation close to its threshold? The reader might think that it is impossible to give an 
answer to this question. In fact, the determination of the exponent would necessitate an 
improved precision of Pc. 

Fortunately, the determination of exponent ratios v/fl and y/fl can be performed 
without any precise knowledge of Pc and, moreover, exponent values given by each 
theory are so different that one cannot be misled (roughly, 2 and 4, instead of 0.5 and 1). 
In Sect. F. I. 3 the experimental tests 21) of this prediction are mentioned. The experimen- 
tal values obtained (1.65 < v/fl < 3.3 and 7/fl --" 4.5) reveal that the description of the gel 
structure given by percolation is adequate. But more experiments must be performed to 
confirm v/fl and ~,/fl values. 

On the other hand, "in situ" experiments do not give an answer to the question. First, 
because experimental exponent values are scattered. Second, because we do not know, 
exactly what value of the exponent we expect from the mean field or percolation theories 
(is k really equal to zero in the classical theory, Table 5?). Another problem that must be 
solved by theoreticians is the extent (in Ap) of the critical domain where exponents can 
be determined experimentally. 

The problem of exponents just begins to be seriously studied by few experimentators 
(always loudly criticized by others) and there needs a lot of experimental work to be done 
to find out whether percolations models are applicable to gelation and, whether there are 
restrictions to this model. In experiments performed near the gelation threshold many 
difficulties arise. However, similar difficulties have been overcome by experimentators 
studying liquid-gas phase transitions and will certainly be overcome by those working on 
gelation. 

G. Summary 

Since only shorter reviews were published before 6' 7, 21) this review is rather detailed. In 
Eq. (I0), the reader finds the basic definitions, in Table 1 the competing predictions, and 
in Table 2 the qualitative analogy with thermal phase transitions. Scaling and universality 
are nothing new for gelation theory: The classical theory, e.g. of the Flory-Stockmayer 
type, is even more universal than the percolation theory; moreover, it fulfills all scaling 
laws except those where the dimensionality d enters explicitely ("hyperscaling"). Since 
both the classical and percolation theory are oversimplifications, they could both be 
wrong, leaving only relations between the critical exponents intact, as in Eq. (9). In 
particular, complications like in correlated site-bond percolation can occur, due to sol- 
vent effects. The percolation theory, even in that complicated form, still involves sim- 
plifications compared with real materials; but it does take into account excluded volume 
effects and loop formation over large distances. Thus, it removes the inconsistency of the 
classical theory, where radius ~ (mass s) TM cannot be valid for s ~ 0o. One may hope that 
simplifications of the percolation theory on a molecular level do not affect the universal- 
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it)' class, i.e. while they are important e.g. for the value of the gel point Pc, they do not 
affect the asymptotic critical exponents. 

Present experimental evidence is somewhat inconclusive, except for elasticity where 
the classical theory works reasonably well in the majority of cases, and for viscosity 
where existing theories are unsatisfactory on both the classical and the percolation level. 
The exponent k = 0.8 determined for the divergence of the viscosity seems to be the 
most accurately known exponent of gelation at present. 

At present, we do not know which theory is more suitable for which materials. Once 
percolation exponents (or another set of scaling exponents differing from classical values) 
have been reasonably established as being valid asymptotically, one should embark on 
Gordon's programn): Improve percolation theory step by step in extending it to the 
region farther away from Pc and improve classical theory step by step in extending it 
closer to the gel point. 
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H. Appendix: A Percolation Computer Program 

To make clear what we mean by Monte Carlo simulation of random percolation and to 
facilitate future percolation research by polymer chemists, we now give a complete 
Fortran program which calculates how many sites of a simple cubic lattice belong to the 
infinite cluster in a random-bond percolation system of size L × L x L. No large 
computer is needed: This program works for L up to 24 on a small PDP 11/34 computer 
and needs about 10 minutes to cover the whole range p = 0.05, p = 0.10, p = 0.15 . . . . .  p 
= 0.95. It also gives, for masses s = 1 to 12, the numbers N~ of clusters observed. 
(ACCEPT means that the computer is waiting until the user types in the size L he wants 
to work with. And RAN(IR,  JR) gives a random number equally distributed between 
zero and unity). 

The program is not understandable directly. For an explanation of the method, the 
interested reader is referred to the original paper of Hoshen and Kopelman 13°). The 
present version is based on a program written by J. Kert6sz. Figure 3 shows the variation 
of the gel fraction with p, as calculated from this program for L = 50. 

C 
P R O G R A M  KERTESZ 
BOND PERCOLATION IN SIMPLE CUBIC LATTICE 
DIMENSION LEVEL (25,25), N(14000),NS(12) 
LOGICAL TOP,LEFT,BACK 
C O M M O N / N U M B E R / N  
ACCEPT 9,L 
D A T A  N/14000*0/,NS/12*0/ 
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9 FORMAT(12) 
D O 7 I P =  1,19 
P = 1. - IP*0.05 
MAX = 14000 
IR=0 
JR=0 
LPI=L+I  
IF(LPl.GT.25) STOP 1 
INDEX=0 
DO 1 I=I,LP1 
DO 1 J=I,LP1 

1 LEVEL(I,J)=MAX 
DO 3 K=2,LPt 
DO 3 J=2, LP1 
DO 3 I=2,LP1 
MOLD = MAX 
MBACK=MAX 
MLEFr=MAX 
LIJ = LEVEL(I,J) 
LIJM1 =LEVEL(I ,J -  1) 
LIM1J=LEVEL(I-1,J) 
TOP = RAN(IR,JR).LT.P.AND.LIJ.LT.MAX 
BACK= RAN(IR,JR).LT.P.AND.LIJM1.LT.MAX 
LEFT=RAN(IR,JR).LT.P.AND.LIMIJ.LT.MAX 
IF(.NOT.(LEFT.OR.TOP.OR.BACK)) GOTO 4 
IF(TOP) MOLD = KLASS(LIJ ) 
IF(BACK) MBACK=KLASS(LIJM1) 
IF(LEFT) MLEFT=KLASS(LIM1J) 
MNEW = MIN0(MOLD,MBACK,MLEFT) 
LEVEL(I,J) =MNEW 
ICI = 1 
IF(TOP) ICI=ICI+N(MOLD) 
IF(LEFT. AND.MOLD.NE.MLEFT) ICI=ICI+N(MLEFF) 
IF(BACK. AND. MOLD. NE. MB ACK. AND. MLEFT. NE. MB ACK) 

1 ICI = ICI + N(MBACK) 
N(MNEW)=ICI 
IF(TOP.AND.MOLD.NE.MNEW) N(MOLD )=-MNEW 
IF(BACK.AND.MBACK.NE.MNEW) N(MBACK)=-MNEW 
IF(LEFT.AND.MLEFT.NE.MNEW) N(MLEFT)=-MNEW 
GOTO 3 

4 INDEX=INDEX+ 1 
LEVEL(I,J) =INDEX 
IF(INDEX.GE. t4000)STOP 2 
N(INDEX)=t 

3 CONTINUE 
INF=0 
DO 6 IS--1,INDEX 
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NIS=N(IS) 
IF(NIS.LE. 12.AND.NIS.GT.0) NS(NIS)=NS(NIS)+I  
INF=MAX0(INF,NIS) 
N(IS)=0 
WRITE(5,5) P,L,INDEX,INF,(NS(IS),IS= 1,12) 
FORMAT(lX,F6.3,I3,317,1114) 
DO 8 IS=1,12 
NS(IS) =0 
CONTINUE 
STOP 
END 

FUNCTION KLASS(LEV) 
DIMENSION N(14000) 
COMMON/NUMBER]  N 
MS=N(LEV) 
IF(MS.LT.0) GOTO 1 
KLASS=LEV 
RETURN 
KLASS= - M S  
MS=N(KLASS) 
IF(MS.LT.0) GOTO 1 
N ( L E V ) = - K L A S S  
RETURN 
END 
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