Binary mixtures of active and passive particles on a frictional substrate

Aditi Simha

IIT Madras

Pritha Dolai, Shradha Mishra (IIT BHU)

Equilibrium binary mixtures

Pure active systems on a frictional substrate

Our system: governing equations

What we are interested in knowing and measuring?

Results

Conclusions

Equilibrium binary mixtures

- Phase separate even for purely repulsive interactions
- Binary mixture of hard spheres effective attraction due to depletion
- Dense hard sphere mixtures phase separate for size ratios
 > 5 [T. Biben, Hansen (PRL) 1991].
- First order phase transition [D. Frenkel and Ard A. Louis, PRL (1992)] .

Purely repulsive self-propelled particles

- At large densities, a system of self-propelled particles interacting solely via steric repulsion, phase separate into a concentrated fluid or liquid phase and a gas-like dilute phase [Tailleur and Cates, 2008; Fily and Marchetti, 2012; Fily et al., 2014]
- Mechanism motility induced phase separation
- Self-propelled discs on a 2D substrate [Fily et al , 2014] distinct regimes:
- homogenous fluid phase
- phase separated fluid
- frozen phase

φ_s =0.5

Fily et al., Soft Matter, 10, 2014.

The System

- Assymetric mixture of active and passive particles.
- Active particles have constant self-propulsion speed $v_{\scriptscriptstyle 1}$
- Orientation changes randomly over a time scale $\tau = v_r^{-1}$
- No translational noise in both species
- All interactions soft and repulsive

Governing equations

Equations of motion of active particles

$$\partial_t \mathbf{r}_i = v_1 \hat{\boldsymbol{\nu}}_i + \mu_1 \sum_{i \neq j} \mathbf{F}_{ij}^1, \ \partial_t \theta_i = \eta_i^r(t).$$

•
$$\hat{\boldsymbol{\nu}}_i = (\cos\theta_i, \sin\theta_i), < \eta_i^r(t)\eta_j^r(t') >= 2\nu_r \delta_{ij}\delta(t-t').$$

Equation of motion of passive particles

$$\partial_t \mathbf{r}_i = \mu_2 \sum_{i \neq j} \mathbf{F}_{ij}^2$$
 .

- Particles are athermal.
- $\mathbf{F}_{ij} = F_{ij}\hat{\mathbf{r}}_{ij}$ with $F_{ij} = k(\sigma_i + \sigma_j r_{ij})$ if $r_{ij} \le \sigma_i + \sigma_j$ and $F_{ij} = 0$ otherwise where $r_{ij} = |\mathbf{r}_i \mathbf{r}_j|$.

Length and time scales

Time scales

- v_r⁻¹ time over which orientation of active velocity changes
- μk^{-1} elastic time scale
- σ₁/v₁ time taken by an active particle to travel 1 radius

Lengths

- σ_1 radius of active particle
- average distance
 between particles
 = (L²/N)^{1/2}

* angular Peclet number

 $Pe = v_1 / \sigma_1 v_1$

* activity $v_0 = v1/(\sigma_1 \mu k)$ * asymmetry in size: $s = \sigma_2/\sigma_1$

Dilute phase: dynamics of passive particles

- Velocity distributions: $\phi_{\rm b} = 0.1, \phi_{\rm s} = 0.1$
- Scale with activity

Diffusivity

- Mean square displacement initial ballistic regime diffusive regime -long times $\phi_b = 0.1$
- D scales with activity
- D increases linearly with size
- D decreases beyond a critical size ratio s.

Dense mixtures

Velocity distribution of active particles

- Peaked at the self propulsion speed
- Particles slower as ϕ_{s} inreases
- Small hump at low velocities

 $\phi_{\rm b} = 0.1$ 0.3 0.04 0.02 0.2 P(v_s) 0.5 . 0.05 0.1 0 0.1 0 0.05 0.1 0.15 0.2 0 V_s

ϕ_{s}	$\phi_{m b}$	$\phi^{\it eff}_{\it s}$
0.3	0.1	0.333
0.3	0.2	0.375
0.3	0.35	0.4615
0.3	0.076	0.325
0.4	0.076	0.433
0.5	0.076	0.541

s = 5

Velocity distribution of passive particles

Effective interactions

• Radial distribution functions between pairs of particles

$$\phi_{\rm b} = \phi_{\rm s} = 0.3$$

Interaction potential: $F(r) \sim - \ln g_{hh}(r)$

Phase diagram

- Phase 1: active particles aggregate in small not so dense clusters
- Phase 2: active particles aggregate in dense large clusters

Number fluctuations

Cluster Formation

- Pure active system: \bullet homogenous fluid or phase separated phase
- Passive particles enhance • clustering/aggregation of active particles.

n

s = 5

 $\phi_{s} = 0.3$

Cluster size distribution

- for small ϕ_s , CSD fits to $f(n) = exp(-n/n_o) / n$
- *n*₀ mean cluster size
- For large ϕ_s , CSD follows a power law
- power law $\sim 1/n^2$

Cluster size distributions: variation with ϕ_s , activity

Cluster size distribution: variation with asymmetry

$$\phi_{\rm b} = \phi_{\rm s} = 0.3$$

s = 10

s = 5

s = 2

$$\phi_{\rm b} = \phi_{\rm s} = 0.3$$
 $v_{\rm o} = 0.125$

Results

• Dilute mixtures

Passive particles : velocity distribution scales with activity, diffusivity varies linearly with size, decreases for large sizes

Active particles: slower in the presence of passive particles, velocity distribution developes a small peak at small v_s for large ϕ_s . Passive particles enhance this peak.

• Dense mixtures

No phase separation as in equilibrium binary mixtures.

Active particles hamper clustering of big passive particles

Motility induced clustering: passive particles enhance aggregation of active particles. Small particles hamper formation of dense clusters, large particles enhance cluster formation, in particular, large dense aggregates.

Thank you