

Amin Doostmohammadi University of Oxford

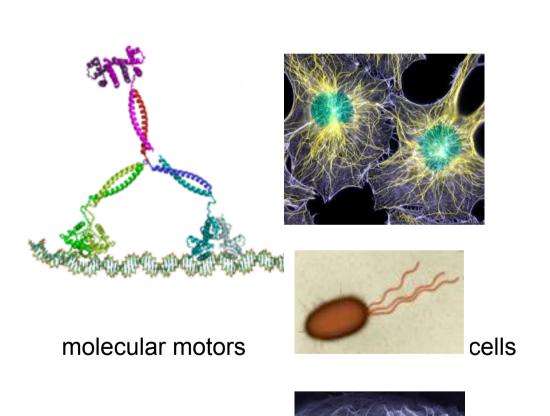
Sumesh Thampi Matthew Blow Benoit Ladoux Thuan Beng Saw Vincent Nier Philippe Marcq

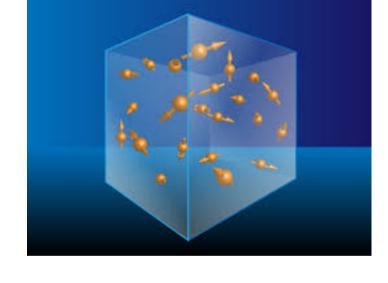
Tyler Shendruk
Oxford =>Rockefeller

Kristian Thyssen Eindhoven

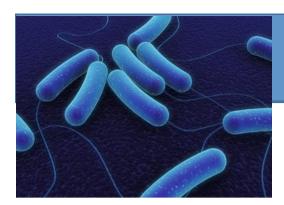
Active particles convert energy to motion

Energy enters the system on a single particle level



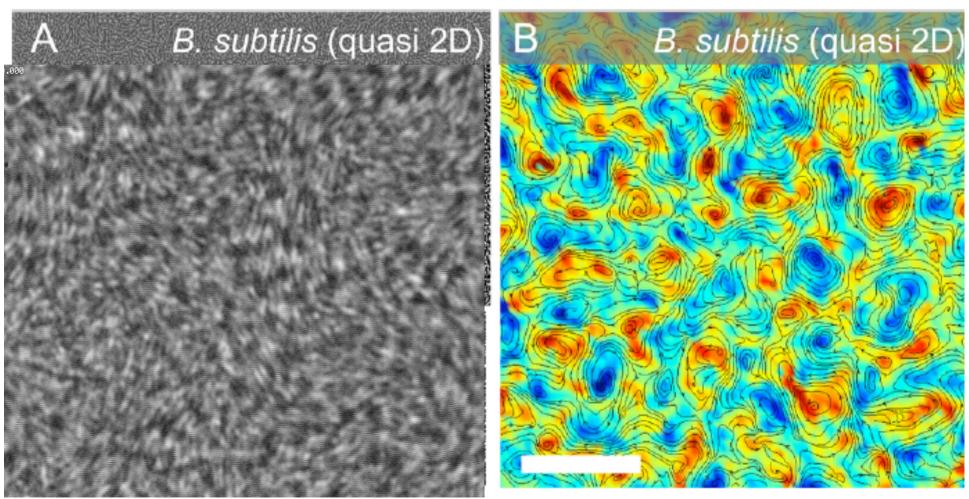


active colloids



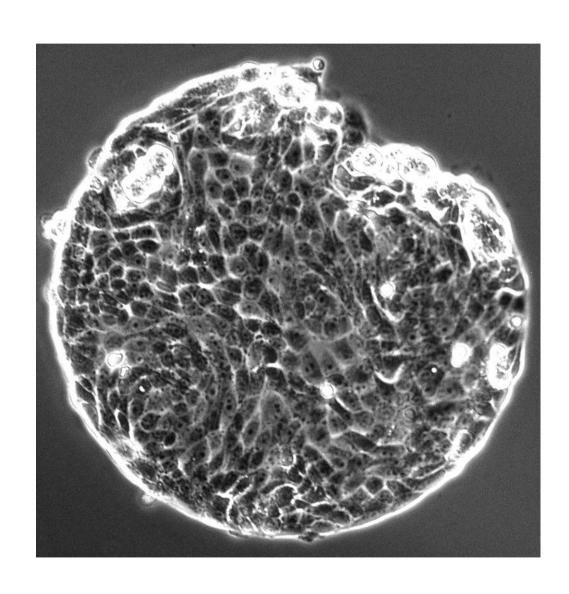
Active turbulence

vorticity



Wensink, Dunkel, Heidenreich, Dresher, Goldstein, Lowen, Yeomans, PNAS 2012

Active turbulence of cells?

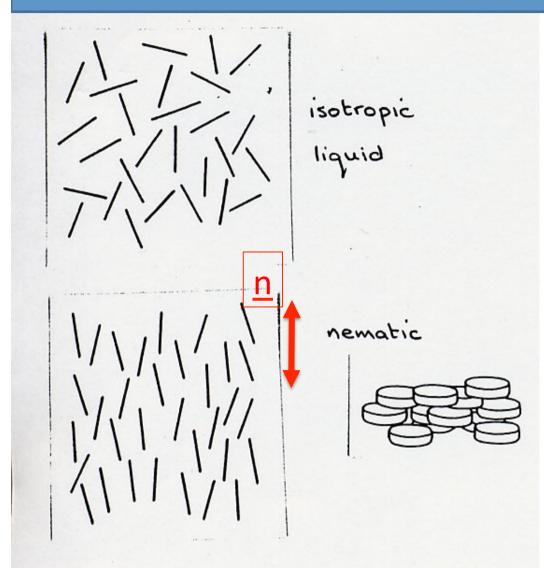


- 1. Dense active matter and active turbulence
- 2. Confining active matter

 Ceilidh dance and transition to active turbulence
- 3. Cells as active nematics

 Topological defects in confluent cell layers
- 4. Cells in channels

Liquid crystals

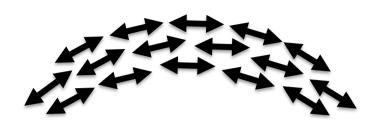


nematic symmetry

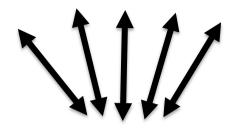
nematic order parameter <u>n</u> tensor order parameter Q

$$Q_{ij} = \langle n_i n_j - \frac{\delta_{ij}}{3} \rangle$$

Viscoelastic



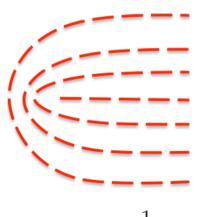
Bend



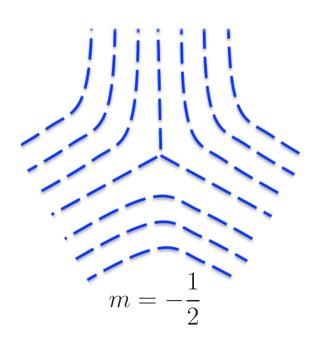
Splay

$$\mathcal{F} = K(\partial_k Q_{ij})^2 / 2 + AQ_{ij}Q_{ji} / 2 + BQ_{ij}Q_{jk}Q_{ki} / 3 + C(Q_{ij}Q_{ji})^2 / 4$$

Topological defects



$$m = +\frac{1}{2}$$



$$(\partial_t + u_k \partial_k) Q_{ij} - S_{ij} = \Gamma H_{ij}$$

$$S_{ij} = (\lambda E_{ik} + \Omega_{ik})(Q_{kj} + \delta_{kj}/3) +$$

$$(Q_{ik} + \delta_{ik}/3)(\lambda E_{kj} - \Omega_{kj}) - 2\lambda(Q_{ij} + \delta_{ij}/3)(Q_{kl}\partial_k u_l)$$

$$E_{ij} = (\partial_i u_j + \partial_j u_i)/2$$

$$\Omega_{ij} = (\partial_j u_i - \partial_i u_j)/2$$

$$H_{ij} = -\delta \mathcal{F}/\delta Q_{ij} + (\delta_{ij}/3) \text{Tr}(\delta \mathcal{F}/\delta Q_{kl})$$

$$\mathcal{F} = K(\partial_k Q_{ij})^2 / 2 + AQ_{ij}Q_{ji}/2 + BQ_{ij}Q_{jk}Q_{ki}/3 + C(Q_{ij}Q_{ji})^2 / 4$$

$$\rho(\partial_t + u_k \partial_k) u_i = \partial_j \Pi_{ij}$$

$$\Pi_{ij}^{viscous} = 2\mu E_{ij}$$

$$\Pi_{ij}^{passive} = -P\delta_{ij} + 2\lambda(Q_{ij} + \delta_{ij}/3)(Q_{kl}H_{lk}) - \lambda H_{ik}(Q_{kj} + \delta_{kj}/3)$$
$$-\lambda(Q_{ik} + \delta_{ik}/3)H_{kj} - \partial_i Q_{kl}\frac{\delta \mathcal{F}}{\delta \partial_j Q_{lk}} + Q_{ik}H_{kj} - H_{ik}Q_{kj}$$

$$(\partial_t + u_k \partial_k) Q_{ij} - S_{ij} = \Gamma H_{ij}$$

couples nematic order and shear flows

relaxation to minimum of Landau-de Gennes free energy

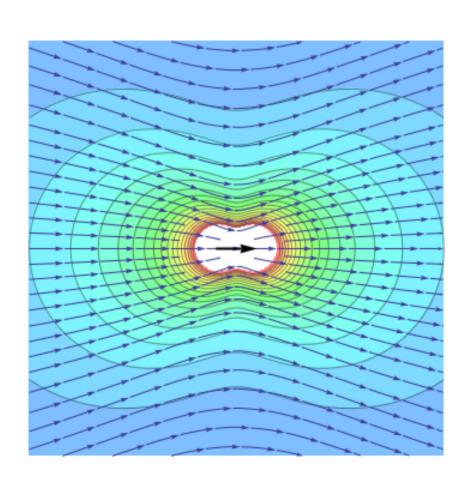
$$\rho(\partial_t + u_k \partial_k) u_i = \partial_j \Pi_{ij}$$

viscous + passive

Hydrodynamics of active systems

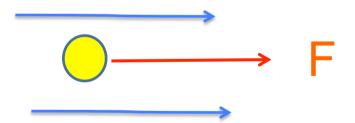
Stokes equations

$$\nabla p = \mu \nabla^2 \mathbf{v} + \mathbf{f}$$



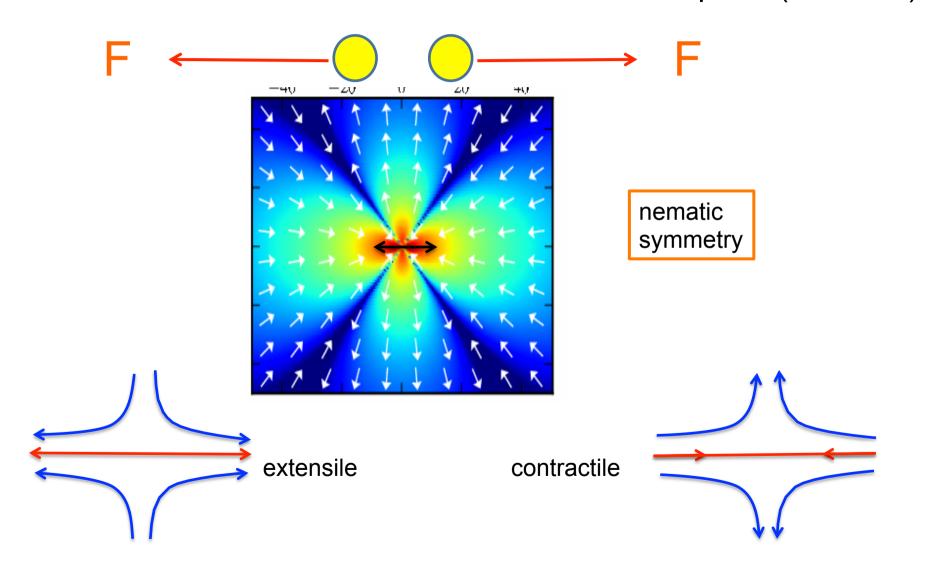
Stokeslet

$$\mathbf{v} = \frac{\mathbf{f}}{8\pi\mu} \cdot \left(\frac{\mathbf{I}}{r} + \frac{\mathbf{rr}}{r^3}\right)$$



Hydrodynamics of active systems

Swimmers are force free => flow field is dipolar (stresslet)



$$(\partial_t + u_k \partial_k) Q_{ij} - S_{ij} = \Gamma H_{ij}$$

couples nematic order and shear flows

relaxation to minimum of Landau-de Gennes free energy

$$\rho(\partial_t + u_k \partial_k) u_i = \partial_j \Pi_{ij}$$

viscous + passive

$$(\partial_t + u_k \partial_k) Q_{ij} - S_{ij} = \Gamma H_{ij}$$

couples nematic order and shear flows

relaxation to minimum of Landau-de Gennes free energy

$$\rho(\partial_t + u_k \partial_k) u_i = \partial_j \Pi_{ij}$$

viscous + passive + active stress

$$\Pi_{ij}^{active} = -\zeta Q_{ij}$$

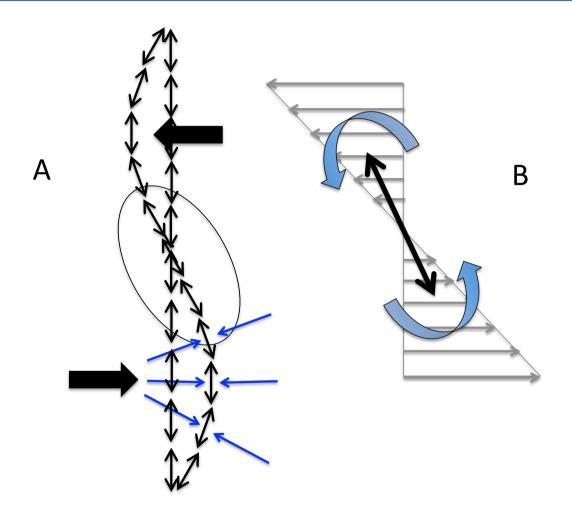
1. Active stress => active turbulence

Active contribution to the stress

Gradients in the magnitude or direction of the order parameter induce flow.

nematic state is unstable to vortical flows

Instabilities in active nematics



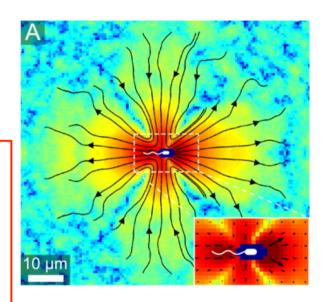
Extensile active nematics – unstable to bend deformations Contractile active nematics – unstable to splay deformations

Active turbulence

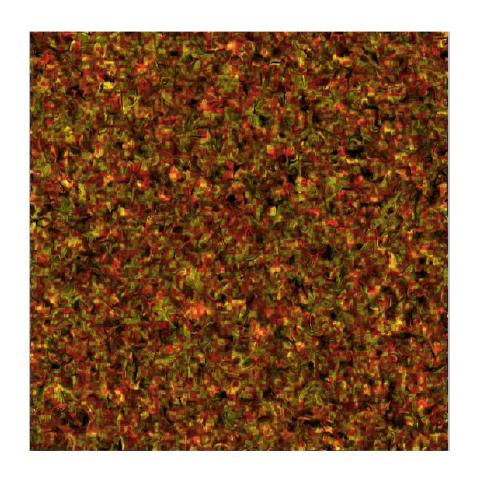
Active systems have nematic symmetry because they are force free

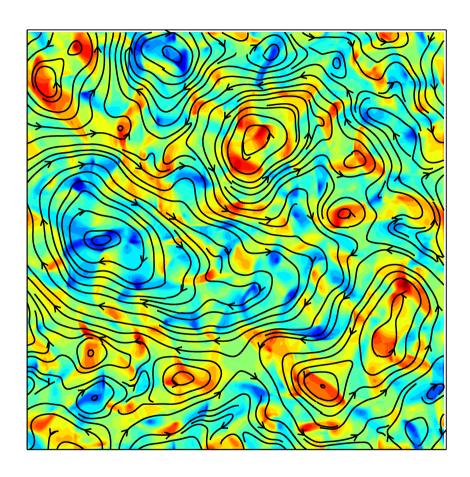
Ordered nematic state is unstable to flow

What happens instead is active turbulence



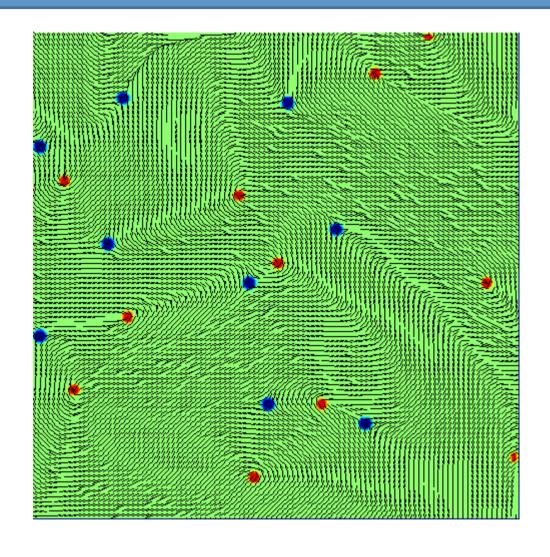
Active turbulence is characterised by





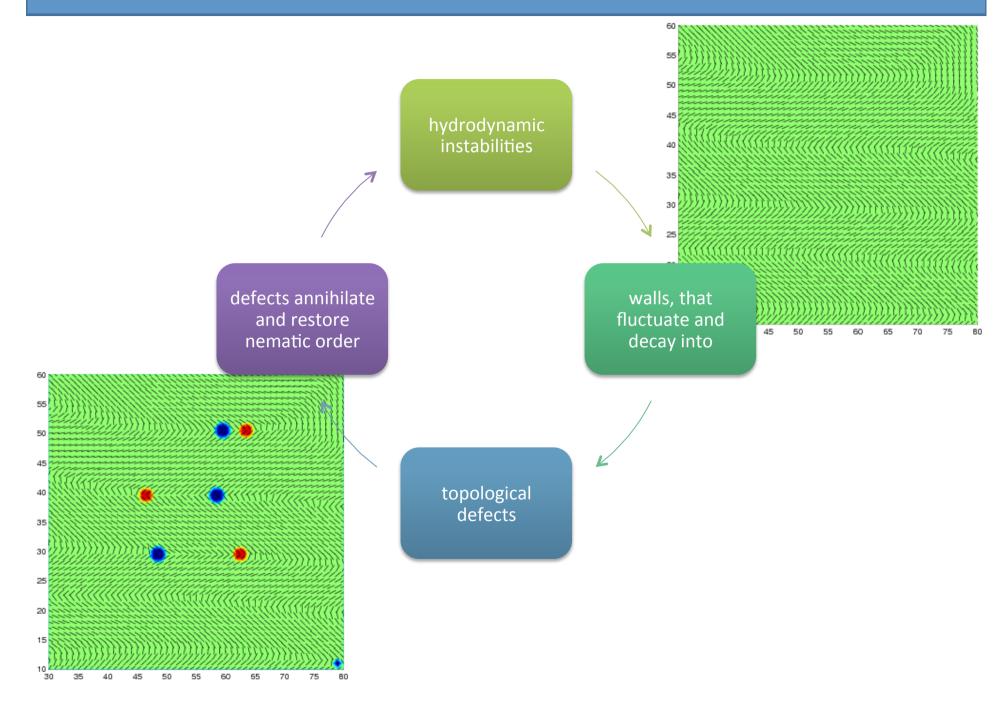
Flow jets Vorticity

Active turbulence: topological defects are created and destroyed



Topological defects

Active turbulence

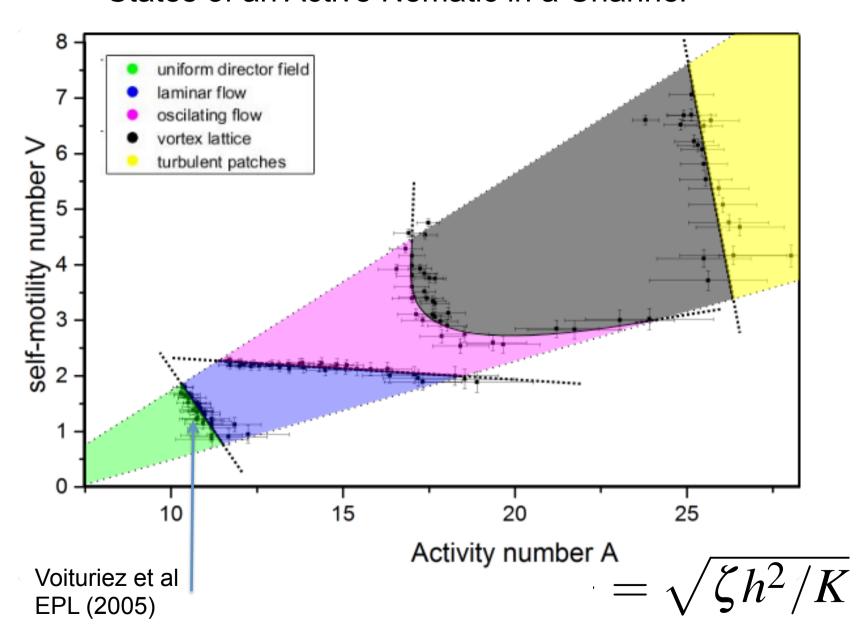


- 1. Dense active matter and active turbulence
- 2. Confining active matter

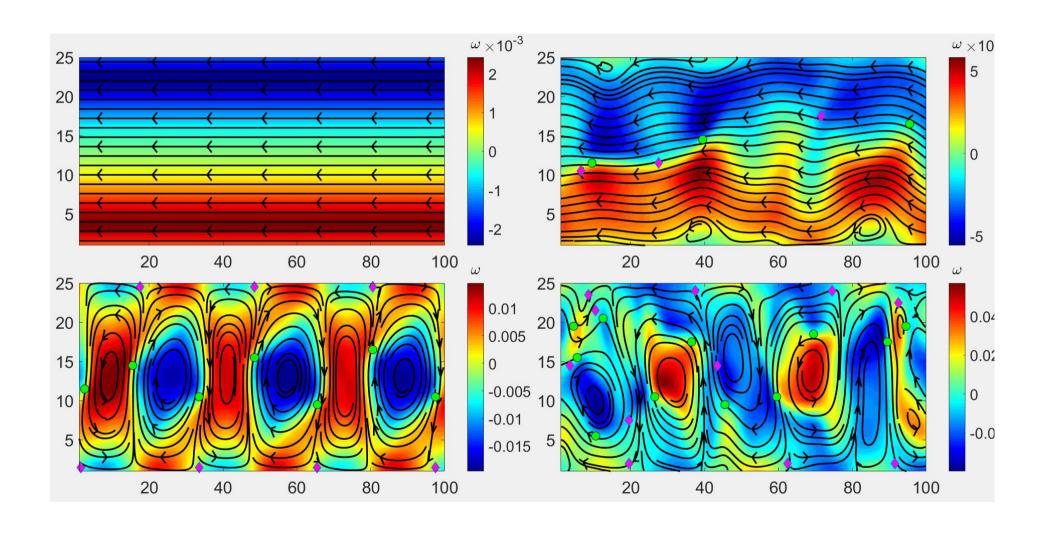
 Ceilidh dance and transition to active turbulence
- 3. Cells as active nematics

 Topological defects in confluent cell layers
- 4. Cells in channels

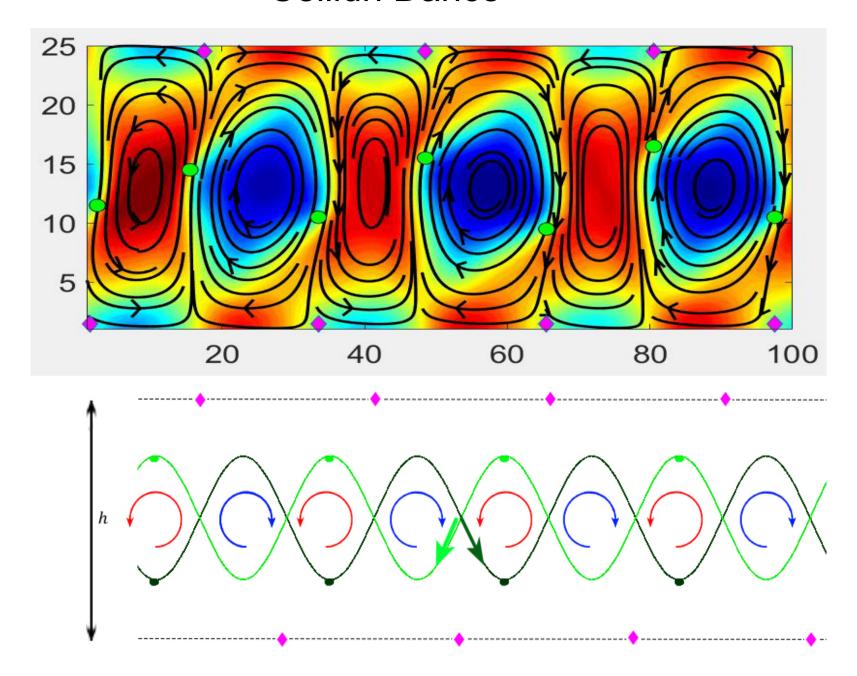
States of an Active Nematic in a Channel



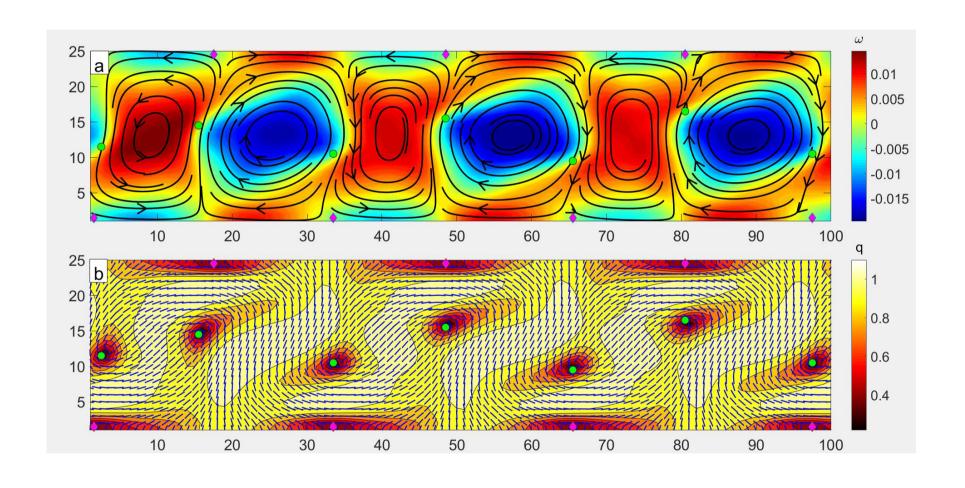
States of an Active Nematic in a Channel



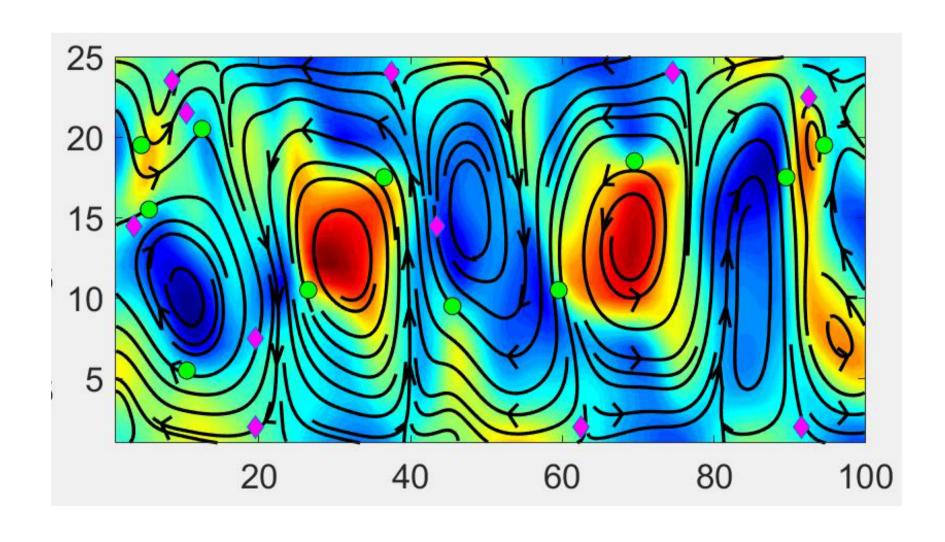
Ceilidh Dance



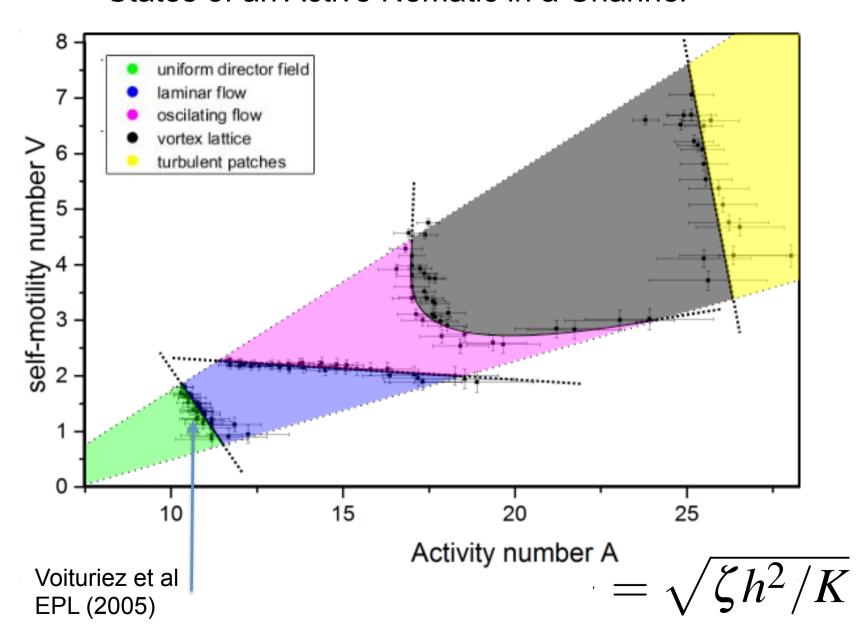
Vortex lattice and active topological microfluidics



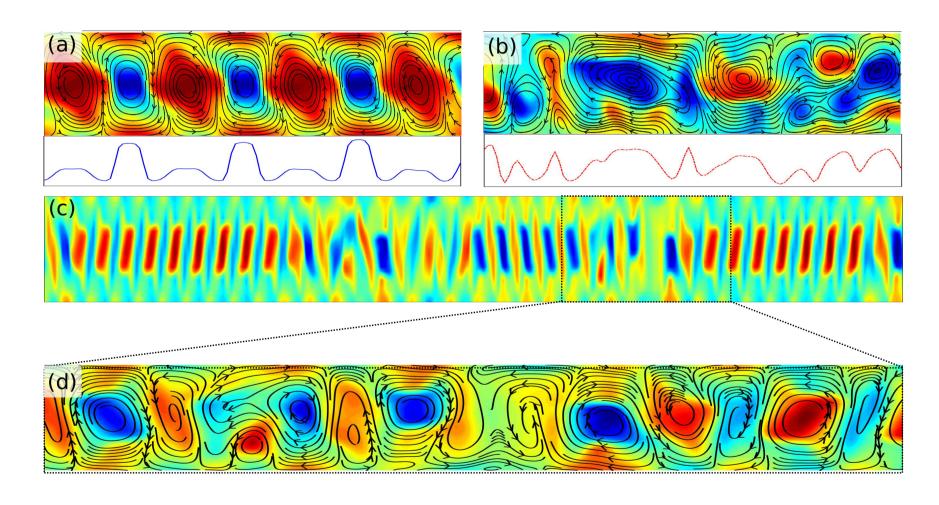
Transition to Turbulence



States of an Active Nematic in a Channel

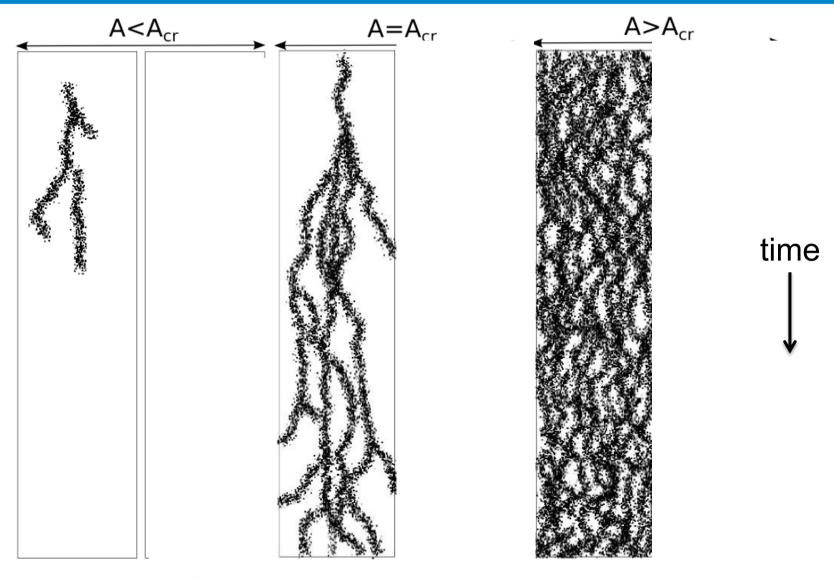


Vorticity distribution



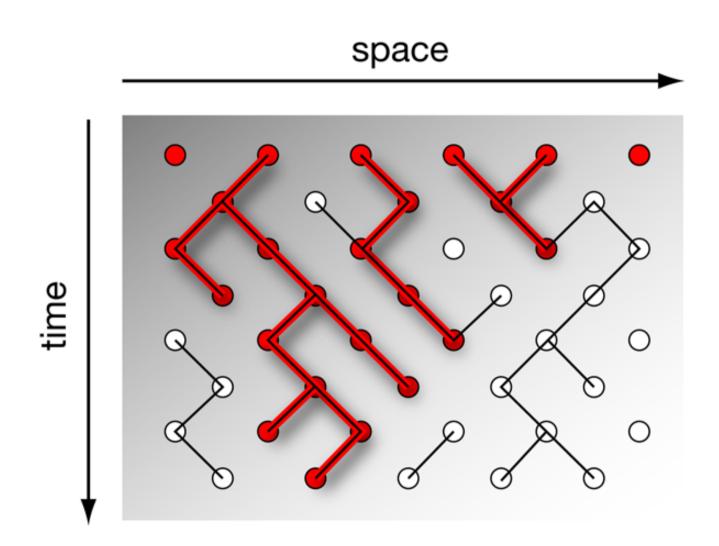
Measure the enstrophy – |vorticity|²

Enstrophy kymograph



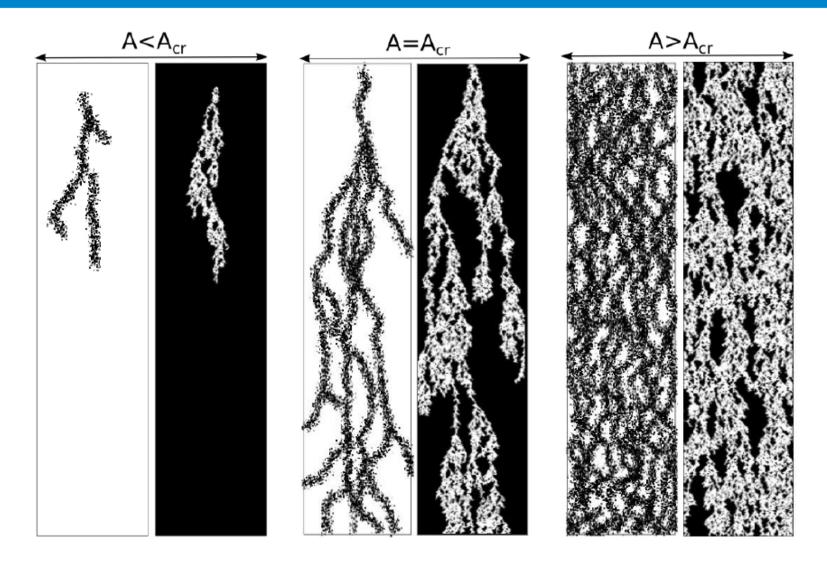
left hand panels: active nematic

Directed percolation



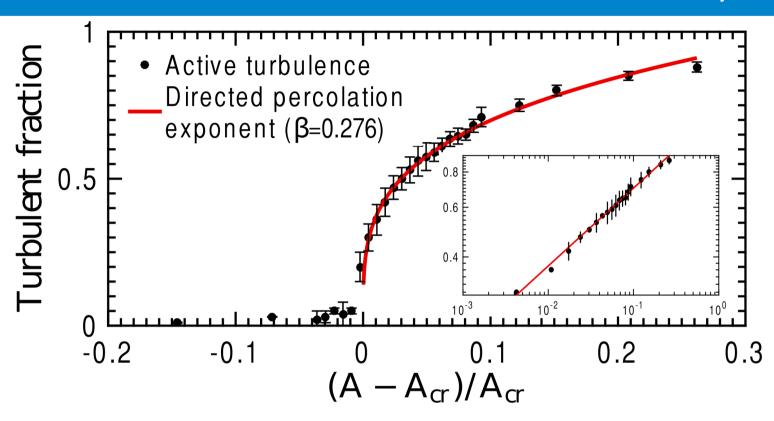
probability p that a site is occupied

enstrophy kymograph



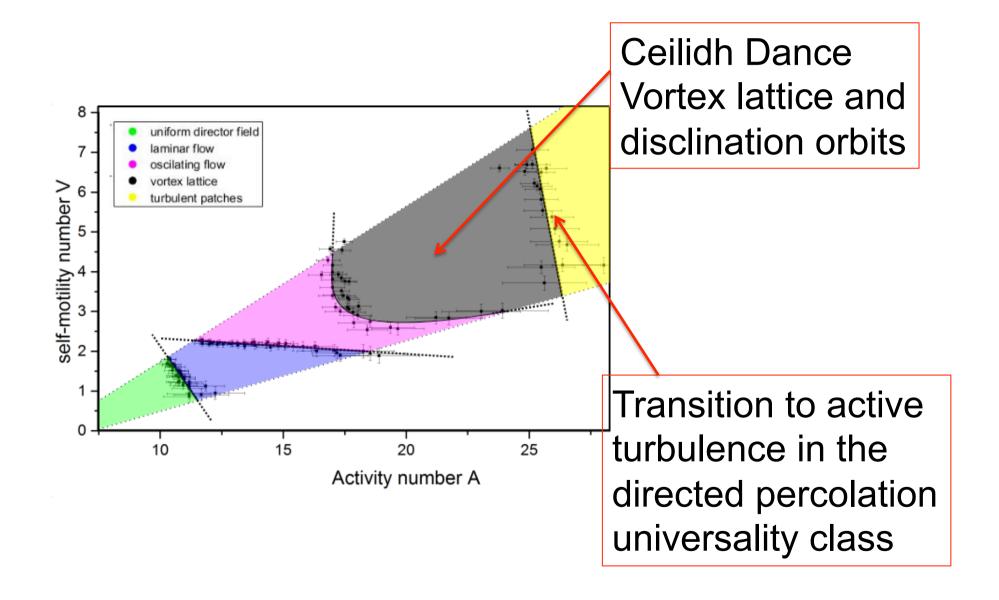
left hand panels: active nematic right hand panels: directed percolation

Turbulent fraction as a function of activity



Critical exponents	eta
Active turbulence at zero-Reynolds number	0.275 ± 0.043
Couette experiments for inertial turbulence (12)	0.28 ± 0.03
(1+1) directed percolation (28)	0.276

Confinement is a way of harnessing active energy



- 1. Dense active matter and active turbulence
- 2. Confining active matter

 Ceilidh dance and transition to active turbulence
- 3. Cells as active nematics

 Topological defects in confluent cell layers
- 4. Cells in channels

Hydrodynamic variables: density, concentration, liquid crystal order parameter, velocity

$$(\partial_t + u_k \partial_k) Q_{ij} - S_{ij} = \Gamma H_{ij}$$

$$\rho(\partial_t + u_k \partial_k) u_i = \partial_j \Pi_{ij}$$

Active stress – cells moving

$$\Pi_{ij}^{active} = -\zeta Q_{ij}$$

Continuum equations of lyotropic liquid crystal hydrodynamics

Hydrodynamic variables: density, concentration, liquid crystal order parameter, velocity

$$(\partial_t + u_k \partial_k) Q_{ij} - S_{ij} = \Gamma H_{ij}$$

$$\rho(\partial_t + u_k \partial_k) u_i = \partial_j \Pi_{ij}$$

Active stress – cells moving

$$\Pi_{ij}^{active} = -\zeta Q_{ij}$$

$$\partial_t \phi + \partial_i (u_i \phi) = \Gamma_\phi \nabla^2 \mu$$

Continuum equations of lyotropic liquid crystal hydrodynamics

Hydrodynamic variables: density, concentration, liquid crystal order parameter, velocity

$$(\partial_t + u_k \partial_k) Q_{ij} - S_{ij} = \Gamma H_{ij}$$

$$\rho(\partial_t + u_k \partial_k) u_i = \partial_j \Pi_{ij}$$

Active stress – cells moving

$$\Pi_{ij}^{active} = -\zeta Q_{ij}$$

$$\partial_t \phi + \partial_i (u_i \phi) = \Gamma_\phi
abla^2 \mu \left| \begin{array}{c} + lpha \phi \end{array}
ight|$$
 Cells dividing

$$+\alpha\phi$$

Continuum equations of lyotropic liquid crystal hydrodynamics

Hydrodynamic variables:

density, concentration, liquid crystal order parameter, velocity

$$(\partial_t + u_k \partial_k) Q_{ij} - S_{ij} = \Gamma H_{ij}$$

$$f_0 u_i$$

Active stress – cells moving

$$\rho(\partial_t + u_k \partial_k) u_i = \partial_j \Pi_{ij}$$

$$\Pi_{ij}^{active} = -\zeta Q_{ij}$$

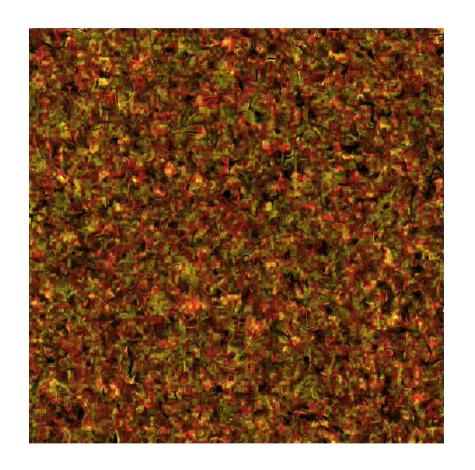
Friction

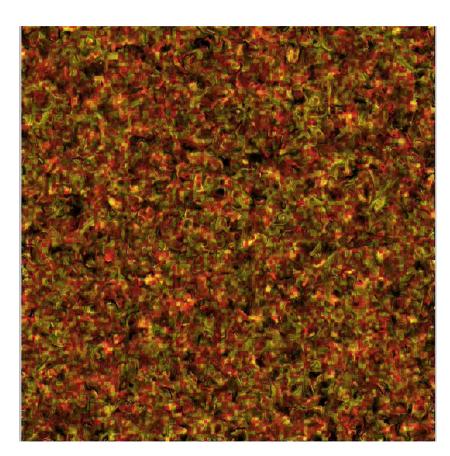
$$\partial_t \phi + \partial_i (u_i \phi) = \Gamma_\phi \nabla^2 \mu \left| + \alpha \phi \right|$$

$$+\alpha\phi$$

Cells dividing

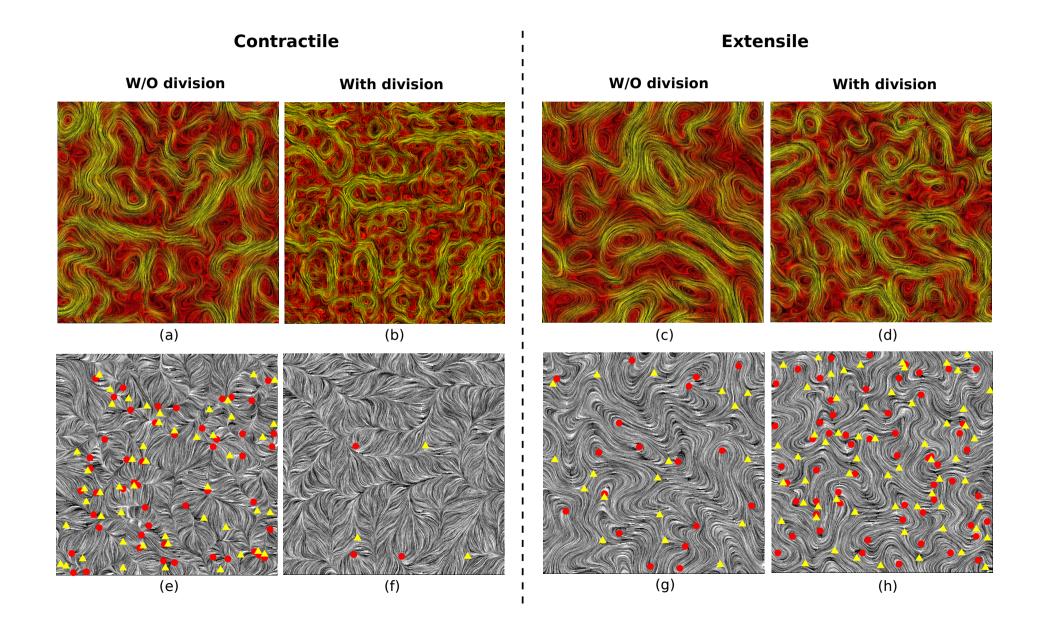
Cell division

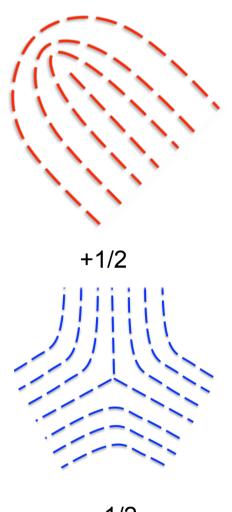


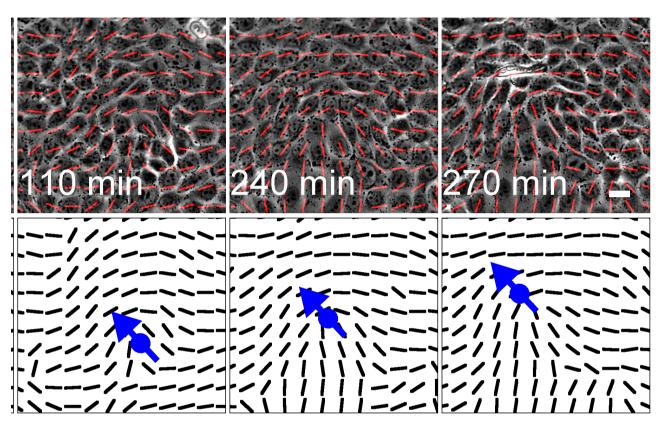


(more division events)

2. Division acts as extensile stress

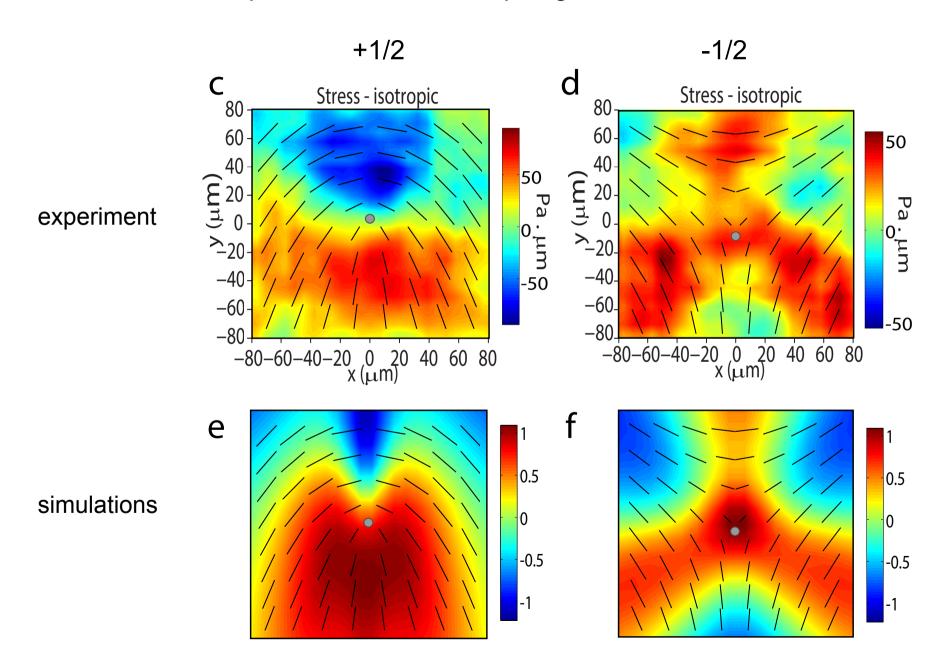


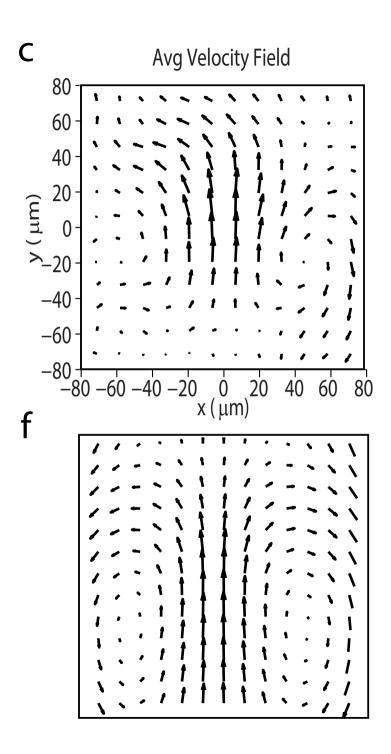




Motile +1/2 defect in a layer of MDCK cells

Isotropic stress around a topological defect

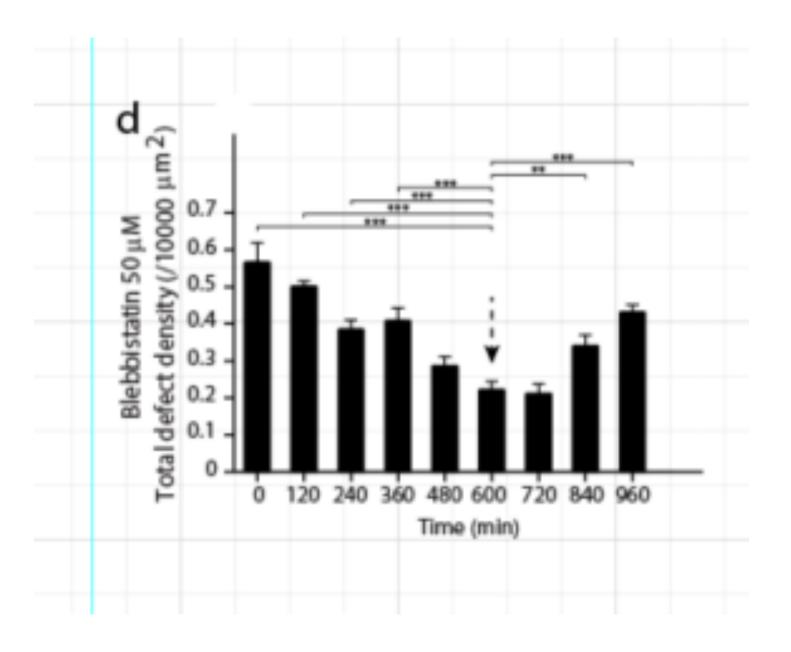




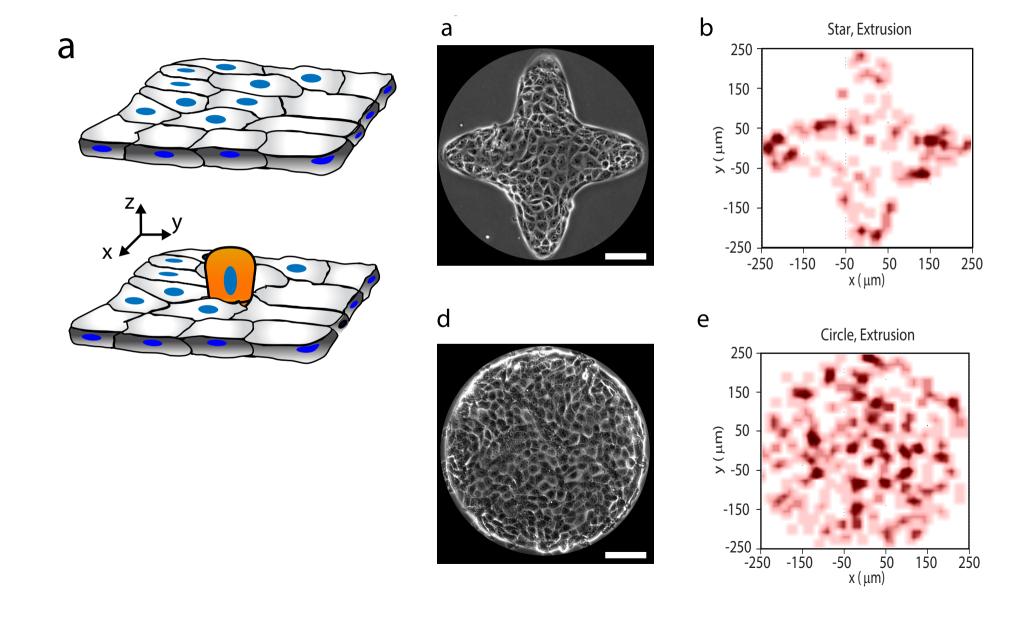
Flow field around +1/2 defect

Top: experiment

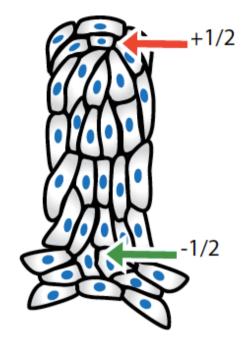
Bottom: simulations



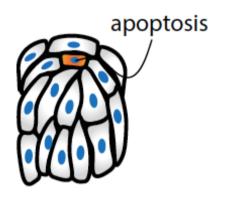
Extrusion of dead cells – correlated to topological defects



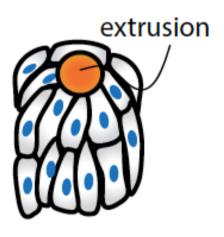
Dead cells are ejected at topological defects



1.
Cell movements
generate +1/2, -1/2
defect pair.



2. +1/2 defect compresses cells, triggers apoptosis.



3.
Apoptotic extrusion
at
+1/2 defect core.

Confinement by walls can lead to regular vortex lattices in active systems & topological microfluidics

The transition to active turbulence in a channel is in the directed percolation universality class

Cell layers act as active nematics, the topological defects are linked to cell death

Topological defects in epithelia govern the extrusion of dead cells, T. Beng Saw, A. Doostmohammadi, J.M. Yeomans, B. Ladoux et al, Nature 544, 212 (2017)

Dancing disclinations in confined active nematics, Tyler N. Shendruk, Amin Doostmohammadi, Kristian Thijssen and Julia M. Yeomans Soft Matter, online

Stabilzation of active matter by flow-vortex lattices and defect ordering, Amin Doostmohammadi, Michael Adamer, Sumesh Thampi and Julia M Yeomans, Nature Comms **7** 10557 (2016)

Onset of meso-scale turbulence in active nematics, Amin Doostmohammadi, Tyler Shendruk, Kristian Thijssen, Julia M Yeomans, Nature Comms, in press