Level Structure of ${}^{32,34}P$: What do we learn about the $f_{7/2} - p_{3/2}$ energy gap ?

Sandeep. S. Ghugre

UGC-DAE Consortium for Scientific Research Kolkata Centre

RITWIKA CHAKRABARTI

Dr. A. K. Sinha, Prof. Umesh Garg, Prof . Alex Brown, Co-authors..... Mr. K. Basu, INGA Collaboration Dr. W. P. Tan, Dr. Larry Lamm, Mr. J. P. Greene

Introduction & Motivation

What happens to the nuclear structure in between the valley of stability And the island of inversion? The region between: The valley of stability & Island of Inversion

is a highly transitional region

In fact, the shell does evolve, due to the tensor force.

[Otsuka et al., *PRL* 95 (05) 232502] [Otsuka et al., *PRL* 97 (06) 162501]

Thus, the single-particle orbits <u>may migrate</u> leading to a possible change in shell structure. Important to have experimental spectroscopic study in this transitional region of the nuclear landscape

How to populate neutron-rich nuclei?

Reactions employed in earlier investigations of nuclei in the vicinity of the island of inversion

β-decay

Nathan et al, PRC 15, 1448(1977)

Heavy ion collision

Fornal et al PRC49 ,2413(1994)

Intermediate energy coulomb excitation

Pritychenko et al, PRC62,051601®(2000)

Deuteron inelastic scattering I.Iwasa et al., PRC67 (2003)064315

Deep inelastic

R.Broda, J.Phys. G32, R151(2006)

Transfer/deep inelastic

Krishichayan et al, Eur.Phys.J.A29,151(2006)

Limited in terms of population of higher angular momentum states. Coincident binary emission has to be taken care of for transfer/deep inelastic reaction. Complicated setup and more presorting required

Solution:

Use <u>Fusion-evaporation reaction</u> using a neutron-rich target and/or a neutron-rich projectile

Experimental Details

Beam	¹⁸ O
Beam current	~ 20 nA
Beam energy	34 MeV
Target	¹⁸ O (Tantalum
	Oxide)
Detector	7CLOVER
configuration	detectors
Event rate	~ 1.3k/s
Events recorded	~1 Billion γ-γ
	coincidences

DATA Acquisition System: CAMAC Based multi-parameter system "LAMPS"

¹⁸O+¹⁸O@34MeV

Detector Array

Inter University Accelerator Centre, New Delhi

18 Clover detectors: 3 at ~32^{0,} 4 at ~57⁰, 5 at ~90⁰, 3 at ~123⁰, 3 at ~148^{0.}

¹⁶O+¹⁸O@34MeV

INDIAN NATIONAL GAMMA ARRAY

Fusion-evaporation has resulted in considerable enhancement of production of ³⁴P

Excitation function of residual nuclei produced in the compound nuclear Reaction ¹⁸O + ¹⁸O.

Krishichayan *et al* EPJA 29,151 (2006)

R. Chakrabarti et al PRC 80, 034326 (2009)

How to investigate the structure of the Nucleus?

In-beam Gamma ray spectroscopy

Results

Projection spectrum: ¹⁸O + ¹⁸O @ 34 MeV

Populated nuclei: ^{33,34}S, ^{33,34}P, ^{30,31,32}Si

Phys. Rev. C 80, 034326 (2009)

23,25

<u>23</u>05

Determination of Mulipolarity

¹⁶O + ¹⁸O @ 34MeV

Gate on 1677 kev or 1689 keV at detectors at 32° or 148° not possible due to Doppler effects !!

Theoretical calculations done using code: ANGCOR

Magnetic or Electric??

 Electric transition results in a preferential scattering in perpendicular direction (with respect to the reaction plane).

✓ While a magnetic transition indicates a preferential scattering in parallel direction.

Clover detector has *uniquely* facilitated polarization measurements. Each crystal acts as a scatterer while the adjacent crystals act as absorbers.

Background subtracted difference spectrum for perpendicular and parallel coincidences in ^{33}P (gate on 1848 keV). The electric γ -ray transition shows positive peak, whereas the magnetic γ -ray transition shows negative peak.

Asymmetric matrices generated:
One axis corresponds to perpendicular or parallel scattered events in clovers at 90⁰
Other axis corresponds to total energy deposited in any of the other detectors.

Experimental Linear Polarization measurement

$$\Delta_{IPDCO} = \frac{aN_{\perp} - N_{\parallel}}{aN_{\perp} + N_{\parallel}}$$

 N_{\perp} = Number of photons with a given energy scattered along the direction \perp to the reaction plane N_{\parallel} = Number of photons with a given energy scattered along the direction \parallel to the reaction plane

$$a = rac{N_{\parallel}(unpolarized)}{N_{\perp}(unpolarized)}$$

$$P_{\exp}(\theta) = \Delta/Q,$$

Theoretical Polarization measurement

$$P_{cal}(90^0) = \pm \frac{3a_2H_2 - 7.5a_4H_4}{2 - a_2 + 0.75a_4}$$

 H_2 and H_4 are linear polarization mixing coefficients (Derived for L = 2, L' =3 transitions)

 a_2 and a_4 are angular distribution coefficients

$$P(\theta) = \frac{W(\theta, \psi = 0) - W(\theta, \psi = \pi/2)}{W(\theta, \psi = 0) + W(\theta, \psi = \pi/2)}$$

$$P_{cal}(90^{0}) = \pm \frac{3a_{2}H_{2} - 7.5a_{4}H_{4}}{2 - a_{2} + 0.75a_{4}}$$

$$H_{2}(L = 1, L' = 2) = \frac{f_{2}(11) - (2/3)\delta f_{2}(12) + \delta^{2} f_{2}(22)}{f_{2}(11) + 2\delta f_{2}(12) + \delta^{2} F_{2}(22)}$$

$$H_4(L=1, L'=2) = -1/6$$

$$H_2(L=2, L'=3) = \frac{-f_2(22) - \delta f_2(23) + (2/3)\delta^2 f_2(33)}{f_2(22) + 2\delta f_2(23) + \delta^2 f_2(33)}$$

$$H_4(L=2, L'=3) = \frac{5f_4(22) - 2\delta f_4(23) + 20\delta f_4(33)}{30(f_4(22) + 2\delta f_4(23) + \delta^2 f_4(33))}$$

Lifetime of 2305 keV level : $0.3ns \le t_{1/2} \le 2.5ns$ ^[1]

Half-life (ns)	Mixing ratio	Reduced transition probabilities							
	(δ)	M	2/E3	E2/M3					
		<i>B(M2)</i> (W.u.)	<i>B</i> (<i>E</i> 3) (W.u.)	B(E2) (W.u.)	<i>B</i> (<i>M</i> 3) (W.u.)				
0.3	-1.03 -0.27	0.207	372.681	0.006	12520.654				
2.5	-1.03 -0.27	0.025 0.048	44.722 5.903	0.001 0.001 0.001	1502.478 198.317				

Conclusion: 1876 keV is plausibly a M2+E3 transition 2305 keV level : $J^{\pi} = 4^{-}$

 M. Asai, T. Ishii, A. Makishima, M. Ogawa, and M. Matsuda, in *Proceedings of the Third International Conference on Fission and Properties of Neutron-Rich Nuclei*, edited by J. H. Hamilton, A. V. Ramayya, and H. K. Carter (World Scientific, Singapore, 2002), pp. 295–297.

Half-life of the $I^{\pi} = 4^{-}$ Intruder State in ³⁴P: M2 Transition Strengths Approaching the Island of Inversion.

P.J.R Mason^{a,*}, T. Alharbi^{a,b}, P.H. Regan^a, N. Mărginean^c, Zs. Podolvàk^a, N. Alkhomashi^d, P.C. Bender^e, M. Bowry^a, M. Bostan^f, D. Bucurescu^c, A.M. Bruce^g, G. Căta-Danil^c, I. Căta-Danil^c, R. Chakrabarti^h, D. Deleanu^c, P. Detistovⁱ, M.N. Erduran^j, D. Filipescu^c, U. Garg^k, T. Glodariu^c, D. Ghită^c, S.S. Ghugre^h, A. Kusoglu^f, R. Mărginean^c, C. Mihai^c, M. Nakhostin^a, A. Negret^c, S. Pascu^c, C. Rodríguez Triguero^g, T. Sava^c, E.C. Simpson^a, A.K. Sinha^h, L. Stroe^c, G. Suliman^c, N.V. Zamfir^c ^aDepartment of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK ^bDepartment of Physics, Almajmaah University, P.O. Box 66, 11952, Saudi Arabia ^cHoria Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), R-76900 Bucharest, Romania ^dKACST, P.O Box 6086, Riyadh 11442, Saudi Arabia ^eDepartment of Physics, Florida State University, Tallahassee, Florida, USA ^fDepartment of Physics, Istanbul University, 34134 Istanbul, Turkey ^gSchool of Computing, Engineering and Mathematics, University of Brighton, Brighton, BN2 4GJ, UK ^hUGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata 700098, India ⁱInstitute for Nuclear Research and Nuclear Energy (INRNE), Bulgarian Academy of Sciences, Sofia, Bulgaria ^jDepartment of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul, Turkey ^kDepartment of Physics. University of Notre Dame, Notre Dame, Indiana, 46556, USA

Experiment

50mg/cm² Ta₂¹⁸O Enriched foil ¹⁸O Beam from Bucharest Tandem (~20pnA)

Array 8 HPGe (unsuppressed) and 7 LaBr₃:Ce detectors

-3 (2"x2") cylindrical -2 (1"x1.5") conical -2 (1.5"x1.5") cylindrical

Abstract

The half-life of the $I^{\pi} = 4^{-}$ intruder state in ³⁴P has been measured as $t_{1/2} = 2.0(1)$ ns using γ -ray coincidence, fast-timing techniques with the Bucharest HPGe and LaBr₃:Ce detector array. Excited states in ³⁴P were populated using the ¹⁸O(¹⁸O,pn)³⁴P fusion-evaporation reaction at a beam

- Theoretical predictions suggest
 - 2⁺ state based primarily on $[\pi 2s_{1/2} \times (v1d_{3/2})^{-1}]$ configuration and
 - 4⁻ state based primarily on $[\pi 2s_{1/2} \times v 1f_{7/2}]$ configuration.
- Thus expect transition to go mainly via $f_{7/2}$ -to- $d_{3/2}$, M2 transition.
- Different admixtures in 2⁺ and 4⁻ states allow mixed M2/E3 transition

[8] P.C. Bender *et al.*, in preparation (unpublished).

http://etd.lib.fsu.edu/theses/available/etd-08032011-134836/

Table 6.13: Summary of experimental data on ³⁴P. The B values are for the indicated multipolarity λ . In some cases more than one possible spin in compared to theory.

E_x	E_{γ}	J_n^{π}	J_n^{π}	Branch	Mean τ	a_2	a_4	$\arctan(\delta)$	λ	B value	WBP-a	SDPF-S
(keV)	(keV)	initial	final	(%)	(ps)	11100000	10.00000000	(deg.)		(W.u.)	(W.u.)	(W.u.)
429	429	21	1_{1}^{+}	100	1.9(+9/-5))	-0.087	0.021	-5	M1	0.21(+8/-7)	0.33	
1608	1179	1^{+}_{2}	2^{+}_{1}	66	0.75(+65/-20))	-0.033	0.005		M1	0.017(+6/-7)	0.005	
	1607		1_{1}^{+}	34					M1	.004(+1/-2))	0.001	
2229	621	2_{1}^{-}	1^{+}_{2}	30	> 2.8	-0.121	0.064	-3	E1	$< 4 \cdot 10^{-4}$		
	1800		2_{1}^{+}	44					E1	$< 2.5 \cdot 10^{-5}$		
	2229		1_{1}^{+}	26					E1	$< 8 \cdot 10^{-6}$		
2305	1876	4^{-}_{1}	2^{+}_{1}	100	2900(290)	0.319	0.015	0	M2	0.064(6)	0.15	
2320	1891	3_{1}^{-}	2_{1}^{+}	100	> 10	-0.146	0.032	-3	E1	$< 1.5 \cdot 10^{-4}$		
100 10 10	4ħ →	2ħ 3ħ -= arctan(2h 45 δ)		$h \rightarrow 2h$ $h \rightarrow 2h$ $3h \rightarrow 2$ 0.2 0.4 $0.6Cos^2(\theta)$	2ħ	1.4 1.2 Relative Intensity 8.0	0.4 0.3 0.2 0.1 0.1 0 0 -0.1	•	1.03 I I I I I I I I I I I I I I I I I I I	₹ 	(b) - - - - - - - - - - - - - - - - - - -

Available online at www.sciencedirect.com

Nuclear Physics A 847 (2010) 149-167

www.elsevier.com/locate/nuclphysa

Cross-shell excitations in ³⁰Al and ³⁰Si at high spin

D. Steppenbeck ^{a,*}, A.N. Deacon ^a, S.J. Freeman ^a, R.V.F. Janssens ^b, M.P. Carpenter ^b, C.R. Hoffman ^{c,1}, B.P. Kay ^{a,1}, T. Lauritsen ^b,
C.J. Lister ^b, D. O'Donnell ^{d,2}, J. Ollier ^{d,2}, D. Seweryniak ^b, J.F. Smith ^d, K.-M. Spohr ^d, S.L. Tabor ^c, V. Tripathi ^c, P.T. Wady ^d, S. Zhu ^b

^a Schuster Laboratory, University of Manchester, Manchester M13 9PL, UK
 ^b Argonne National Laboratory, Argonne, IL 60439, USA
 ^c Department of Physics, Florida State University, Tallahassee, FL 32306, USA
 ^d Department of Physics, University of the West of Scotland, Paisley PA1 2BE, UK
 Received 24 May 2010; received in revised form 2 July 2010; accepted 26 July 2010

Available online 14 August 2010

The container was a state of the state of th

Such observations imply that the energies of the negative parity states are, to a good approximation, simple reduced by a common quantity with increasing neutron number, this may be naively interpreted as a reduction in the magnitude of the energy gap between the neutron Fermi surface and the fp shell.

Shell Model calculations using Nushell Code

Interaction: *sdpfmw*

For positive parity states: Calculations with full *sd* shell as valence space outside ¹⁶O core

For negative parity and high-lying positive parity states: Desired valence space: Full *sdpf* outside ¹⁶O core.

Possible reasons behind the need to lower SPEs

- Inappropriate choice of Two-Body-Matrix-Elements.
 - The TBME used may not be optimized for this region.

Warburton *et al.* (Phys. Rev. C 41, 1147 (1990)) have developed an interaction which

- Optimized for A = 29 44
- Includes the necessary ingredients for the cross-shell terms

- Truncation of the model space
 - The truncation of the model space renders the ground state less bound, resulting in the excitation energies occurring at higher values compared to their experimental counterpart

Phys. Rev. C 71, 014316 (2005) ³⁴S sdpfmw 2 SDPF-M (Ref. [5]) ♦ sdpf (Ref. [5]) 1.5 $E_{theo.} - E_{expt.}$ (MeV) 0.5 0 -0.5 -1 10 3 5 7 8 9 4 6 Spin 2

³⁰AI

Sdpfmw interaction

No need for lowering SPE of $f_{7/2}$ or $p_{3/2}$

Plot of the difference between experimental and shell model predicted excitation energy of the negative parity states as a function of the number of particles (n) excited from $1d_{5/2}$ orbital in ³⁰,³²P.

Nushell calculations "sdpfmw interaction"

Valence space consists of $1d_{5/2}$, $2s_{1/2,}$, $1d_{3/2}$, $1f_{7/2}$, $2p_{3/2}$, $1f_{5/2}$, $2p_{1/2}$ outside ^{16}O core

³⁴P:Comparison between theory & experiment in present work

Experimental E3/M2 mixing ratios could not be predicted by Shell model for N =19 nuclei

TABLE IV: Comparison between experimental and theoretical transition energies, excitation energies, mixing ratios and reduced transition probabilities in ³⁵S and ³⁷Ar.

$E_{\gamma}[l]$	${ m keV}]$	$E_x(J^{\pi}$)[keV]	$ au[\mathrm{ns}]$	δ		B(M2)	[W.u.]	B(E3)	[W.u.]
Expt.	Theo.	Expt.	Theo.	from NNDC	Expt.	Theo.	Expt.	Theo.	Expt.	Theo.
35	ŚS									
1991	2738	1991	2738	1.02(5)	-0.19(8)	-0.05	0.088(5)	0.196	4.62	0.38
37	Ar									
1611	2680	1611	2680	4.37(9)	-0.12(1)	-0.08	0.058(13)	0.112	1.7(3)	0.50

CONCLUSION

- Use of heavy-ion fusion reaction has resulted in population of high spin states.
- □ The 1876-keV transition de-exciting the 2305-keV level in ³⁴P was confirmed to be a mixed transition with a plausible M2/E3 admixture.

□ Shell model calculations

- □ successfully reproduced low-lying positive and negative parity states.
- □ No lowering of single particle energy as carried out by other workers.
- □ Omission of important configurations responsible for prediction of E_x at higher energies compared to their experimental counterpart; as these get included theory approaches experiment.
- □ Shell model calculations reasonably successful in predicting the wave functions except in few cases, particularly the M2/E3 mixing in N=19 isotones.
- □ Need to perform the calculations within a larger model space and/or with an appropriate Hamiltonian (which includes microscopic intra- and inter shell interactions.)

Shell model is successful in explaining the overall Structure with certain interesting exceptions

FIG. 7. Plot of the calculated R_{anist} as a function of mixing ratio for a $J = 6 \rightarrow 4$ transition. The area between the horizontal lines represent the uncertainty in the observed R_{anist} of the 2418-keV transition.