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Plant genomes vary in size and complexity, fueled in part by

processes of whole-genome duplication (WGD; polyploidy) and

subsequent genome evolution. Despite repeated episodes of

WGD throughout the evolutionary history of angiosperms in

particular, the genomes are not uniformly large, and even plants

with very small genomes carry the signatures of ancient

duplication events. The processes governing the evolution of

plant genomes following these ancient events are largely

unknown. Here, we consider mechanisms of diploidization,

evidence of genome reorganization in recently formed

polyploid species, and macroevolutionary patterns of WGD in

plant genomes and propose that the ongoing genomic changes

observed in recent polyploids may illustrate the diploidization

processes that result in ancient signatures of WGD over

geological timescales.
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Introduction
Plant genomes vary spectacularly in size, ranging from

0.063 Gb to 148.8 Gb, a 2400-fold difference ([1]; www.

data.kew.org/cvalues). Much of this diversity results from

differential expansion and loss of repeats (reviewed in

[2��]), but an additional major driver shaping variation in

genome size in plants is whole-genome duplication

(WGD; also known as polyploidy, see Box for glossary
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of terms). Moreover, genome structure and gene content

in plants are intimately tied to the history of WGD. We

therefore contend that any understanding of plant ge-

nome structure, content, and evolution requires consid-

eration of WGD and its consequences.

Polyploidy in plants
Polyploidy has long been considered an important mech-

anism of speciation in plants, particularly angiosperms

(e.g., see reviews by [3,4��,5,6�,7,8�,9,10]). The frequency

of polyploidy has typically been based on chromosome

numbers, and estimates for major clades of green plants

(Viridiplantae) have varied dramatically, ranging from

very low in bryophytes to as high as 95% for ferns [6�].
For angiosperms (flowering plants) alone, estimates have

ranged from 30–35% [4��] to �70% [11], with most

estimates near 50% (e.g. [5,12�,13�,14]). Genomic data

for plants have demonstrated a dazzling history of repeat-

ed WGDs throughout evolutionary history. Even the

small genome of Arabidopsis thaliana (0.157 Gb) — this

small size was one of the keys to the choice of this species

as a genomic model–shows signatures of ancient WGD

[15,16]. All angiosperms share an ancient WGD, as do all

seed plants [17]. Thus, in recent years, interpretations of

plants as ‘diploids’ or ‘polyploids’ have been blurred,

requiring much more nuanced vocabulary to describe

plant genomes.

The origin of new species via polyploidy requires a series

of seemingly low-probability events, including hybridiza-

tion, unreduced gamete formation, establishment, and

survival (see e.g. [18,19��,20]). Despite these apparent

barriers, polyploid species are common in all floras world-

wide and are particularly abundant at high latitudes and

high elevations (e.g. [21,22]). The ‘success’ of polyploids

is often attributed to the increased genetic diversity held

within single polyploid individuals relative to that of their

diploid progenitors (e.g. [7,8�,9,22–25]). Moreover, this

genetic diversity may be manifested in novelty at the

biochemical, physiological, morphological, and ecological

levels, giving polyploids an advantage, at least in the short

term, over their diploid parents (e.g. [26��,27]). The proxi-

mal reason behind polyploid success, therefore, may vary

among species. However, if polyploidy per se were always

a successful strategy, then plant genomes, such as that of

A. thaliana, should show more obvious evidence of WGDs,

such as high chromosome numbers, large genomes, and

routinely duplicate (triplicate, quadruplicate, and so on)

gene copies. Although many apparently recently formed

polyploids exhibit these expected attributes of WGD,
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Glossary

Allopolyploidy: polyploidy formed through the combined processes

of interspecific hybridization and genome doubling.

Autopolyploidy: genome doubling that arises within a species; it

may involve a single individual or crossing between individuals from

genetically distinct lineages within the species.

Diploidization: the processes that return a polyploid genome to a

diploid-like genome; these may include loss of duplicate genes and

chromosomes, loss of repetitive DNA, gene silencing, altered

chromosome pairing.

Diploidy: the state of being diploid; that is, containing two complete

sets of chromosomes (or genomes).

Fractionation: the loss of one copy of a gene pair duplicated by

polyploidy; losses may be random with respect to the parental

genome or biased, with most/all losses from a single parental

genome.

Homeolog (also homoeolog): chromosomes (and the genes they

carry) that are duplicated by polyploidy.

Polyploidy: the state of having more than two complete sets of

chromosomes.

Polyploidization: the process(es) of polyploid formation; this can be

duplication, triplication, or higher-order multiplication of a genome.

Whole-genome duplication: the duplication of a complete genome,

for example, of a diploid genome (with two copies of each

chromosome) to form a tetraploid (with four copies of each

chromosome); this term is sometimes used to refer to the process of

duplication (i.e., polyploidization) and sometimes in reference to the

state of having multiple, duplicate genomes (i.e., polyploidy).
those species, such as A. thaliana, that are the products of

ancient WGD harbor signatures of WGD within what are

generally ‘diploid’ genomes, based on chromosome num-

ber, genome size, and gene copy number. Certainly, pro-

cesses of diploidization are at play, leading to repeated

cycles of polyploidy followed by diploidization followed by

polyploidy, and so on (e.g. [28–30]).

But what are these processes of diploidization, and how

can they be reconciled with observations of gene family

diversity, ancient signatures of WGD, and macroevolu-

tionary patterns of polyploidization? In this paper, we

will attempt to unify (i) hypothesized mechanisms of

diploidization, (ii) data on genome reorganization shortly

after polyploidization based on the evolutionary model,

Tragopogon, and other recently formed polyploid species,

and (iii) macroevolutionary patterns of WGD in plant

genomes. We propose that the ongoing genomic changes

observed in recent polyploids, such as Tragopogon, may

illustrate the diploidization processes that result in

ancient signatures of WGD over geological timescales.

Mechanisms of diploidization
Repetitive DNA sequences comprise substantial portions

of plant genomes (e.g. A. thaliana: 15–20%; maize �85%)

and can largely influence genome size (e.g. [31,32]). Con-

sequently, the two mechanisms by which these repetitive

sequences (i.e. retrotransposons, DNA transposons, simple

repeats) are lost (illegitimate recombination and unequal

intra-strand homologous recombination) are the principal

processes responsible for genome downsizing to a ‘diploid’

state. Illegitimate recombination is hypothesized to re-

move DNA sequences via double-stranded breaks and/or
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slippage during replication, whereas unequal homologous

recombination occurs between two repeat sequences and

results in the loss of the DNA between the repeats, as well

as one of the repeats [33]. The relative importance of the

two primary diploidization mechanisms appears to be

species-specific in angiosperms, as the efficiency of

DNA loss via either mechanism is highly variable and

not phylogenetically related [33–35]. Very few studies have

addressed these processes outside of flowering plants;

however, recent genomic sequencing of three conifer taxa

has suggested that the enormous genomes of these taxa

could be due to a very low recombination rate and high

homologous chromosome fidelity, removing the opportu-

nity for genome downsizing [36], at least via these mecha-

nisms (Figure 1).

Although great strides have been made in determining

the processes by which DNA content is reduced following

polyploidy, few studies have addressed the second aspect

of diploidization: the mechanisms by which entire chro-

mosomes are lost. Only recently have studies of synthetic

polyploids demonstrated the high prevalence of chromo-

somal instability immediately after genome duplication

[37–40]. While aneuploidy has been found to negatively

correlate with fertility in synthetic Brassica napus poly-

ploids [38] and pollen viability in synthetic wheat poly-

ploids [40], the fact that chromosome number is no longer

a suitable corollary for polyploidy history (e.g., A. thaliana
has five chromosomes and five known polyploidy events),

there must be some selective force to reduce chromosome

number. Polyploid systems in which multiple temporal

polyploid samplings (synthetic, nascent, ancient) occur

will be critical for evaluating these diploidization process-

es in the future.

Diploidization also includes the loss of one homeologous

copy of a duplicate gene pair, a process sometimes re-

ferred to as fractionation (see also contribution by Freel-

ing et al., [85]). Both genes and regulatory elements may

be lost, with losses accumulating through time so that an

ancient polyploid may have only a small number of genes

retained in duplicate. These losses may be random with

respect to parental genome, or losses may come from

predominantly one parental genome, a process referred to

as biased fractionation, the long-term result of which is a

genome that resembles that of the alternative parent.

Some genes are consistently returned to singleton status

whereas others, such as transcription factors, are typically

retained in duplicate (see below).

Genome reorganization in recent polyploids:
generating novelty
The genomes of newly formed natural polyploids, as well

as those of synthetic polyploids, may experience rapid

homeolog loss, as well as genome restructuring post-

polyploidization, and altered patterns of gene expression

may set the stage for subsequent loss of duplicate gene
www.sciencedirect.com
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Figure 1

(a) Polyploid formation (b) Polyploid diversity Environmental
filtering/drift 

Rapid radiation Deep phylogeny
& ancient radiations 

(c)

(d) (e)
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Timeline showing origin of polyploid species, generation of novelty, environmental filtering, rapid radiation from selected line, and resulting

signature of paleopolyploidy. Note that diploidization processes (not pictured) may occur continuously through this timeline. (a) Polyploid formation

(in yellow circle) and attendant processes that yield variation in, for example, inflorescence morphology, karyotype, and homeolog loss; other

novelties, for example, altered gene expression, transposon activity, are not pictured. (b) Array of polyploid genotypes/phenotypes, represented by

different colors of rings around the photograph. (c) A single remaining polyploid ‘type’ after environmental filtering or drift. (d) Rapid radiation from

this ‘successful’ polyploid and resultant formation of multiple lineages that trace back to this single common ancestor. (e) Deep phylogeny

showing the correspondence (turquoise ring) between ancient WGD and radiation, as derived in d. Other paleopolyploid events are also shown.

Source: Credits: J. Tate, V. Symonds, R. Buggs, M. Chester, I. Jordon-Thaden, D. Tank et al. (Figure (e) modified from Tank et al., 2015).
copies (e.g. [30,38,41–48]). Both the extent and speed with

which these diverse changes occur may vary considerably

across diverse polyploid systems (reviewed in [30]).

In the recent and repeatedly formed allotetraploids Tra-
gopogon mirus and T. miscellus, species in the sunflower

family that originated in the early 20th century [49],

frequent homeolog loss, subfunctionalization, and major

chromosomal changes, including translocations and com-

pensated and non-compensated aneuploidy, were detected

in natural populations, as well as in synthetic lines. Tran-

scriptomic shock was observed; hybridization and polyploi-

dy per se both play important roles in these young polyploids

([50–54]; reviewed in [43]). Investigations of an older

allotetraploid (T. castellanus) and its parents indicate that

gene loss/expression changes and chromosomal alterations

mirror what is seen in the recently formed T. mirus and

T. miscellus and demonstrate that some of the alterations

that occur immediately post-polyploidization may be

retained over long evolutionary timeframes ([55]; Soltis

et al. unpublished). In Senecio cambrensis (also in the
www.sciencedirect.com 
sunflower family and estimated to have originated in the

1700s; see review by Hegarty [42]), transcriptome shock

was also detected; hybridization altered gene expression

and DNA methylation, and genome duplication resulted in

an additional burst of transcriptional and epigenetic change

[42]. In the grass Spartina anglica, which originated in the

1800s (see review by Ainouche [41]), rapid changes in gene

expression were observed; hybridization played a larger

role in methylation changes than polyploidy per se [41].

Transcriptomic shock was detected; at the transcriptomic

level, both hybridization and polyploidy are important. No

chromosomal changes were noted.

Synthetic lines of older, established polyploids, including

A. suecica [44,45,56,57], Brassica napus [38,46], and a

synthetic Arabidopsis hexaploid [47], have also been used

to assess genomic and expression changes that arise

shortly after polyploid formation. Transcriptome shock

and rapid changes in expression and methylation are also

observed, and the relative importance of hybridization

and genome doubling seems to vary among species. The
Current Opinion in Genetics & Development 2015, 35:119–125
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extent of homeolog loss versus expression changes also

varies. Homeolog loss and chromosomal changes are

frequent in Brassica (as in the natural polyploids of

Tragopogon), but expression changes predominate in other

systems (e.g., Arabidopsis, as in the natural polyploid,

Spartina anglica, which has a stable karyotype).

Comparisons of synthetic and natural polyploids also

indicate variation in the repeatability of evolution across

independently formed polyploid lines, whether natural or

synthetic. In Tragopogon, Senecio, and A. suecica, the con-

sequences of polyploidy are repeated — that is, the evo-

lutionary tape of life is replayed. However, independent

origins of synthetic Brassica napus, a synthetic Arabidopsis
hexaploid [47], and Spartina hybrids respond differently.

However, many aspects of polyploidy cannot be com-

pared across all of these systems because of large gaps in

the overall data set. For example, other features of

polyploid genomes that may both contribute to genomic

novelty in the short term and lead to genome downsizing

over the longer term — e.g., transposon activity, methyl-

ation, subfunctionalization, and proteomic diversity —

are only available for a few systems [30].

Macroevolutionary patterns of genome
evolution in plants
The fact that there are many recognizable polyploids of

fairly recent origin, but relatively little evidence for many

ancient WGD events (paleopolyploidy; at least within the

same evolutionary lineage), provides an interesting para-

dox. Although methods and data for detecting ancient

WGDs are still limited, the inferred number of such

events is increasing rapidly; tetraploid cottons (2n = 52),

for example, originated in the last one million years [58]

and have an estimated 30–36-fold duplication of ancestral

angiosperm genes [59]. However, even as the picture of

ancient WGDs is clarified, the number of such events will

likely continue to underestimate the frequency of extant

polyploids. This relative paucity of paleopolyploidy may

reflect undetected WGDs due to limited genomic data;

however, if real, this low frequency of ancient WGD

suggests that polyploidy may be an evolutionary dead

end, except perhaps in specific cases. Indeed, at some

time in evolution, organisms that underwent and survived

WGDs must have had an adaptive advantage. Examples

of ancient WGD events that have been established on the

longer term are one or two WGDs early in the evolution of

seed and flowering plants [17], one WGD that is ancestral

to most or all of the eudicots [60,61], and one or two that

occurred early in the monocot lineage [16,59]. Therefore,

a question that has received much attention of late is

whether these key ancient WGDs, which in many cases

characterize major lineages of flowering plants, have

survived by coincidence, or whether they may have

originated in concert, at very specific geological times,

for instance during times of major ecological or environ-

mental upheaval, and/or periods of extinction. In this
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respect, one of the most striking cases is a wave of WGDs

in different flowering plant lineages that seem to coincide

with the Cretaceous/Paleogene (K/Pg) boundary [62,63�,
64–67]. Furthermore, many of the WGDs clustered

around the K/Pg extinction event are at the base of some

of the largest and most successful extant plant families

and other large clades. Polyploidy thus somehow appears

to be correlated with plant survival through the K/Pg

boundary [63�] and with species diversification in angios-

perms [68].

Once polyploids are formed, they must become locally

established, reproduce, and survive while adapting to

different environments. These processes might ultimate-

ly lead to their long-term evolutionary success, where

their descendant lineages survive for tens of millions of

years. Most likely, both neutral and adaptive processes

contribute to polyploid establishment under stressful

conditions in the short term. The adaptive scenario is

mostly based on characteristics often displayed by newly

formed polyploids, such as the formation of more extreme

phenotypes in the resulting hybrid populations compared

with their diploid parents. Moreover, genomic instability

and gene expression changes soon after polyploid forma-

tion (shown to occur in both recent natural polyploids and

synthetics; above) may result in increased phenotypic

variability, which might be advantageous and allow rapid

adaptation to changed environments and conditions [69–
72]. Other potential adaptive advantages of newly formed

polyploids include the masking of deleterious recessive

alleles leading to increased mutational robustness. The

neutral scenario gets support from the fact that levels of

unreduced gamete formation can be increased by external

stimuli such as stress and a fluctuating environment [73].

Temperature in particular has a pronounced effect on

unreduced gamete formation. Moreover, increased levels

of unreduced pollen in the fossil record were observed in

the now-extinct conifer family Cheirolepidiaceae at the

Triassic–Jurassic transition, which corresponds to the

fourth of the five major extinction events [74], while

abnormal gymnosperm pollen [75] and lycophyte spores

[76] have also been reported from the Permian–Triassic

transition, corresponding to the third of the five major

extinction events. Increased unreduced gamete produc-

tion during times of environmental stress and/or fluctua-

tion could thus be an important factor in explaining the

apparent clustering of paleopolyploidizations at the K/Pg

boundary. It could also explain why many present-day

polyploids often are more abundant in stressful environ-

ments, such as the Arctic [22] or disturbed habitats [77].

Although many genes undergo homeolog loss after WGD,

others, particularly regulatory and developmental genes, are

retained in excess after WGD. This pattern of gene loss and

retention is most likely due to dosage-balance constraints

and selection against loss of individual components of

completely duplicated macromolecular complexes and/or
www.sciencedirect.com
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pathways, because this would disrupt their overall stoichi-

ometry [78–81]. Retention of dosage-sensitive duplicates

thus does not provide an immediate evolutionary advantage

and adaptation, but results from the fact that their loss

would lead to an immediate disadvantage. In this respect,

the retained regulators may be considered an evolutionary

spandrel [82], which might later on facilitate evolutionary

innovations and/or diversifications. Selection to maintain

dosage balance eventually relaxes over time allowing func-

tional divergence and duplicated networks to be rewired to

evolve novel functionality and increase biological complex-

ity [83�], which could help explain the vast post-WGD

success observed in some of the plant clades that experi-

enced a WGD at the K/Pg boundary.

Synthesis: linking microevolutionary
processes with macroevolutionary patterns
High levels of unreduced gamete formation in natural

populations of angiosperms (e.g. [19��,20]) provide a

mechanism for polyploid formation and ultimately speci-

ation via allopolyploidy (involving interspecific hybrid-

ization) and autopolyploidy (formed within a species).

Both modes of formation contribute substantially to an-

giosperm species diversity [84]. Nascent polyploids un-

dergo an array of genomic and expression-level processes

that may result simply from the presence of multiple

genomes within the same nucleus. Although resolution of

this multi-genome challenge may take multiple forms

(chromosomal restructuring, homeolog loss, alterations in

gene expression, among others), it is clear that polyploids

are not merely the additive products of their diploid

progenitors. Instead, they are mosaics of parental, addi-

tive, and novel features, and even young polyploid spe-

cies appear to be composed of arrays of genetically unique

individuals. Moreover, diploidization processes, while

returning a polyploid to a diploid-like state, do not return

the polyploid to the original diploid state — that is, some

loci are retained in duplicate, singletons may derive from

one parent or the other, and shifts in gene expression

(neofunctionalization and subfunctionalization) render

the diploidized polyploid unique. This novelty and range

of phenotypic diversity may provide polyploid species

with unusual adaptive capacity, particularly in times of

high environmental stress. In fact, WGD events in angios-

perms are non-randomly associated with bursts in diver-

sification [68], and these radiations tend to be marked by

novelty in morphology and/or chemistry. It is intriguing

indeed to consider that the processes we observe in recent

polyploids may explain patterns of WGD and key inno-

vations across macroevolutionary timescales.
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