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Presently lattice QCD is the only known method 
for defining QCD outside of perturbation theory 

and for making quantitative predictions for 
hadronic quantities with fully controlled 

uncertainties. 
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Figure 3: (Left) The fitted energies for the first-excited (top) and ground state (bottom) as functions of the

number of distillation eigenvectors N. (Middle) A subset of G1g irrep operator correlators, grouped by their

inner product. The yellow blocks indicate overlap> 70%. G1g is the worst case among all the irreps. (Right)
Nucleon excited spectrum sorted according to cubic-group irrep.

will greatly improve precision in our future calculations for extracting excited-state masses using

cubic group-irrep operators, which provide powerful probes to extract highly excited resonances.

A preliminary result for nucleons on Nf = 2+1 m! = 380 MeV is shown in this proceeding. Work

on larger volumes (with a modified stochastic distillation) are under development. Meanwhile,

parallel work from the HSC for meson spectroscopy with exotic quantum numbers and baryons

using derivative operators are also in progress. Multi-particle operators are under investigation

to distinguish these from resonances. We are also investigating the application of the distillation

method to form factors to help us understand the nature of specific states.
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Extreme conditions             

1. Hyperon-nucleon interactions and the NEOS

NEOS and the fate of dense astrophysical objects

Exascale.. 1/26/2009 – p. 24/33

No experiments

What are the hyperon-nucleon scattering parameters?

Example : pΣ− poorly known
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Some of the Experimental Hyperon-Nucleon Data

LO EFT

Julich 04
Nijm 97

State-of-the-art
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YN : Experimental Situation Kozi Nakai  (KEK)!
YN interactions from experiment?

YN : Experimental Situation Kozi Nakai  (KEK)!

YN : Experimental Situation Kozi Nakai  (KEK)!

π+ + p → K+ + Σ+
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3 body

USQCD Allhands BNL, 04/10 – p. 23/34

Light and Medium Nuclei, Fusion

e.g. GFMC and NCSM
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Figure 7: Spectra of light nuclei using chiral NN and chiral NN+NNN forces in a NCSM
calculation compared to the data. Figure adopted from [32] and courtesy of
P. Navrátil.

Miyazawa force, whose 50th anniversary was celebrated in Tokyo in 2007. For a light
reading of how the Fujita-Miyazawa force is related to the EFT description of the 3NF,
I refer to [33] and references therein.

4.3 The nuclear matter problem

Another important question in nuclear physics is to understand the saturation properties
of nuclear matter - an idealized infinite system of nucleons in which all Coulomb effects
are switched off. From the properties of heavy nuclei using some sophisticated mass for-
mula, one can extrapolate to nuclear matter - and determine its saturation properties.
The binding energy per nucleon E/A is approximately −16 MeV at a Fermi momen-
tum of about 1.3 fm−1. So what does chiral EFT have to say? A first important step
was taken by Norbert Kaiser, Wolfram Weise and collaborators at München, who calcu-
lated the contribution of pion exchange(s) to the energy density of nuclear matter and
showed that the energy density of isospin symmetric nuclear matter can be extremely
well approximated by the simple form

E/A =
3k2

F

10m
− α

k3
F

m2
+ β

k4
F

m3
. (4)

They then calculated the coefficients α and β from chiral dynamics. With some fine-
tuning of the regulator, one finds an astonishingly good description of the energy density
of nuclear matter [34]. This was later improved by including e.g. higher orders (sensitive
again to the LECs ci) and isobar degrees of freedom [35]. Interestingly, all this was based
on a loop expansion with no explicit power counting - a power counting that indeed
explained the success of these calculations was only set up much later, see [36]. Space
forbids a discussion of this power counting and the resulting physics in detail - I only
would like to mention that it could be shown that for many reactions the contributions

10

NCSM
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– Multinucleon interactions

Three- and higher-body interactions are poorly known
and yet dramatically impact the properties of nuclei

E.g., significant role in/effect on:

• “spin-orbit” properties of the nucleus

• stability of borromean nuclei (e.g.6,8He, 9Be, 8Li)

• scattering processes, etc.

Exascale.. 1/26/2009 – p. 28/33

– Multinucleon interactions

Three- and higher-body interactions are poorly known
and yet dramatically impact the properties of nuclei

E.g., significant role in/effect on:

• “spin-orbit” properties of the nucleus

• stability of borromean nuclei (e.g.6,8He, 9Be, 8Li)

• scattering processes, etc.

How do nuclei emerge from QCD?

Exascale.. 1/26/2009 – p. 28/33

Lattice QCD:  Multi-baryon interactions

Thursday, November 25, 2010



Exa-Scale Computing Workshops 
2009-2010

Architectures and Technology 
Biology 
Basic Energy Sciences 
Climate Science
Cross-Cutting Workshop  
Fusion Energy
High Energy Physics
National Security
Nuclear Energy
Nuclear Physics   

1 Exaflop = 103Petaflops = 106Teraflops = 109Gigaflops

( Trivelpiece committee )
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How do we extract s-wave scattering 
information (phase shifts and binding 
energies) from a lattice calculation?

Thursday, November 25, 2010



B. Special cases

1. d = 1 + 1

In one spatial dimension the sum over integers converges linearly and admits a closed form
solution. It follows directly from eq. (30) that

p−1 cot δ(p) =
L

2π2
S1

(

pL

2π

)

, (31)

with

S1 ( η ) ≡
∞

∑

n

1

n2 − η2
= −

π

η
cot (ηπ) . (32)

Hence we have

cot δ(p) = − cot

(

pL

2

)

(33)

which gives

exp (2iδ(p)) = exp (−ipL) , (34)

or

2δ(p) + pL = 2πm , m = 0, 1, 2, . . . . (35)

in agreement with Lüscher. Notice that as the interaction is turned off, the quantization
condition for the free particle momenta is recovered. It is clear from the exact form of the
eigenvalue equation that there is no perturbative expansion available in this case.

2. d = 3 + 1

This case is the best known. For completeness we give result.

p cot δ(p) =
1

πL
S3

(

pL

2π

)

, (36)

with

S3 ( η ) ≡
Λn
∑

n

1

n2 − η2
− 4πΛn . (37)

There are no closed form results for three-dimensional lattice sums to further reduce this
sum.
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Weak coupling expansion:
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What about bound states?

cot δ(iκ) = i − i
�

m �=0

e−|m|κL

|m|κL

κ = γ +
6

L

e−γL

1 − γr3
+ O(e−

√
2γL)

Need several volumes!

cot δ(iγ) = iA2(p) =
8π

M

1
p cot δ(p)− ip

Finite-V:

Thursday, November 25, 2010
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ππ scattering in lattice QCD
Lattice QCD replaces space-time with a grid:

b

L

COST ∼ (L)4 (b)−6.5 (Mq)
−2.5

Taiwan 6/2008 – p. 5/47

ππ

Lesson 4: Compute correlation functions using Montecarlo averaging:

〈0|O(q, q, U)|0〉 =

R

[dU ]Det(M)O(q, q, U)e−
R

d4xLlatt
QCD

R

[dU ] Det(M) e
−

R

d4xLlatt
QCD

[dU ] =
Y

xj ∈ grid

dU(xj)

Lesson 5: Example: properties of the Goldstone pion: m2
π ∝ Mq

〈0|
∑

"x Oπ−(t, !x)Oπ+(0,!0)|0〉 =

Oπ+(t, !x) = u(t, !x)γ5d(t, !x)

Taiwan 6/2008 – p. 9/47
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... to make predictions for the structure and interactions of nuclei using lattice QCD. 

NPLQCD 

+

NPLQCD Collaboration
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Figure 7: Present constraints on threshold s-wave ππ scattering. Noteworthy in the left

panel are the red ellipse from the Roy equation analysis and the grey band from the direct

Lattice QCD calculation of the π+π+ scattering length, as discussed in the text. The right

panel shows the π+π+ scattering length results only.

There is little or no signal-to-noise problem in such calculations and therefore highly accurate Lattice

QCD calculations can be performed with moderate resources. Moreover, the EFTs which describe the

low-energy interactions of pions and kaons, including lattice-spacing and finite-volume effects, have been
developed to non-trivial orders in the chiral expansion.

The I = 2 pion-pion (π+π+) scattering length serves as a benchmark calculation with an accuracy

that can only be aspired to at present for other systems. Furthermore, due to the chiral symmetry of

QCD, ππ scattering at low energies is the simplest and best-understood of the hadron-hadron scattering

processes. The scattering lengths for ππ scattering in the s-wave are uniquely predicted at LO in χ-
PT [80]:

mπa
I=0
ππ = 0.1588 ; mπa

I=2
ππ = −0.04537 , (39)

when mπ is set equal to the charged pion mass. While experiments do not directly provide stringent

constraints on the scattering lengths, a determination of s-wave ππ scattering lengths using the Roy

equations has reached a remarkable level of precision [81, 82]:

mπa
I=0
ππ = 0.220± 0.005 ; mπa

I=2
ππ = −0.0444± 0.0010 . (40)

The Roy equations [83] use dispersion theory to relate scattering data at high energies to the scattering

amplitude near threshold. At present, Lattice QCD can compute ππ scattering only in the I = 2 channel

with precision as the I = 0 channel contains disconnected diagrams which require large computational

resources. It is of great interest to compare the precise Roy equation predictions with Lattice QCD

calculations. Figure 7 summarizes theoretical and experimental constraints on the s-wave ππ scattering

lengths [82]. It is clearly a strong-interaction process where theory has somewhat out-paced the very-

challenging experimental measurements.

The only existing nf = 2 + 1 Lattice QCD prediction of the I = 2 ππ scattering length involves a

mixed-action Lattice QCD scheme of domain-wall valence quarks on a rooted staggered sea. Details of

the lattice calculation can be found in Ref. [84]. The scattering length was computed at pion masses,
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Why is nuclear physics special?

Consider neutron-proton scattering in the 1S0 channel

a
1S0
s ! −23 fm ! 1

8 MeV

Phase shift varies over ∆p ∼ 8 MeV: NO Taylor expansion in p
mπ

!

U of Maryland, 04/10 – p. 33/46

Why is nuclear physics special?
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β̂0 = µ
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Ĉ0 = −Ĉ0(Ĉ0 − 1)

Define a dimensionless coupling: �C0 ≡ −
Mµ

4π
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The beta function is then given by: �β = µ
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KSW approach, pionless EFT 

Saturday, February 28, 2009

Trivial IR fixed point: 
“natural case”
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point: “unnatural case”
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FIG. 1: Feynman diagrams that give the exact two-body scattering amplitude. The oval blob repre-

sents the all-orders interaction derived from the Lagrangian.

This Lagrangian, constrained by Galilean invariance, parity and time-reversal invariance,
describes the low-energy interactions of bosons via an arbitrary finite-range potential. In
principle, it is valid in any number of spacetime dimensions, d. The mass dimensions of the
boson field and of the operator coefficients change with spacetime dimensions: i.e. [ψ] =
(d−1)/2, [C2n] = 2−d−2n and [D0] = 3−2d. While our focus in this paper is on d = 3, in
our general discussion of two- and three-body interactions, we will keep d arbitrary as this
will allow the reader to check our results against the well-known cases with d = 2 and d = 4.
Throughout we use units with ! = 1, however we will keep the boson mass, M , explicit.

Consider 2 → 2 scattering, with incoming momenta labelled p1,p2 and outgoing momenta
labelled p′

1,p
′
2. In the center-of-mass frame, p = p1 = −p2 , and the sum of Feynman

diagrams, shown in fig. 1, computed in the EFT gives the two-body scattering amplitude [22–
24]

A2(p) = −
∑

C2n p2n

1 − I0(p)
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C2n p2n
, (2)

where

I0(p) =
M

2
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)ε
∫

dD−1q

(2π)D−1

1

p2 − q2 + iδ
, (3)

and it is understood that the ultraviolet divergences in the EFT are regulated using di-
mensional regularization (DR). In eq. (3), µ and D are the DR scale and dimensionality,
respectively, and ε ≡ d − D. A useful integral is:

In(p) =
M

2

(µ

2

)ε
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(
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)
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(4π)(D−1)/2
. (4)

In what follows we will define the EFT coefficients in DR with MS. This choice is by no
means generally appropriate [23, 24]. However it is a convenient choice if no assumption is
made about the relative size of the renormalized EFT coefficients.

Now we should relate the scattering amplitude in the EFT, A2(p), whose normalization is
conventional and fixed to the Feynman diagram expansion, to the S-matrix. We will simply
assume that the S-matrix element for isotropic (s-wave) scattering exists in an arbitrary
number of spacetime dimensions. We then have generally

e2iδ(p) = 1 + i N (p) A2(p) , (5)
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Why nuclear physics is special!

a−1
s ∼

mπ − m∗
π

mπ
ΛQCD

U of Maryland, 04/10 – p. 35/46

Why is nuclear physics near this UV fixed point??

Lattice QCD will answer this question!
Thursday, November 25, 2010
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YN interactions

Results: YN
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Does signal/noise decay exponentially?
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Does signal/noise decay exponentially?

noise
signal

−→ 1√
N

eA(mp− 3
2 mπ)t

t→∞

For a system of A nucleons:

Yes!
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Does signal/noise decay exponentially?

However, only asymptotically!

noise
signal

−→ 1√
N

eA(mp− 3
2 mπ)t

t→∞

For a system of A nucleons:

Yes!
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New results: Baryon-Baryon

Anisotropic clover lattices with high statistics NPLQCD (2009)
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A = 1

A = 2

A = 3

Is there a signal/noise problem? Not anymore!
related to sign problem?
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Contraction bottleneck for             ?A � 2contractions

Contraction of spin-color indices now poses major limitations!

np: 36

nnp: 2880

npnp: 518400

...

(A,Z): (A+Z)! (2A-Z)!

U of Maryland, 04/10 – p. 44/46
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Naive factorial growth!

Recursion relations for mesons → A growth!

Baryon recursion relations in development!
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Figure 23: The quenched results for the binding energies (in lattice units) obtained by the
PACS-CS collaboration in the triton channel and the channel with the quantum numbers of
the α-particle [120]. The pion mass in these calculations is mπ ∼ 800 MeV.

where Nα(x, t) is an interpolating field (composed of three quark operators) that has non-vanishing
overlap with the nucleon, Γ+ is a positive energy projector, and the angle brackets indicate statistical
averaging over calculations on an ensemble of configurations. The variance of this correlation function
is given by

N σ2 ∼ �θ†N(t)θN(t)� − �θN(t)�2

=
�

x,y

Γδα
+ Γγβ†

+ �0| Nα(x, t)N
β
(y, t)Nγ(0, 0)N

δ
(0, 0) |0� − �θN(t)�2

→ ZNNe
−2MN t − Z2

Ne
−2MN t + Z3π e−3mπt + ...

t→∞→ Z3π e−3mπt , (66)

where all interaction energies have been neglected, and N is the number of (independent) calculations.
At large times, the noise-to-signal ratio has the form, as argued by Lepage [125],

σ

x
=

σ(t)

�θ(t)� ∼ 1√
N

e(MN− 3
2mπ)t . (67)

More generally, for a system of A nucleons, the noise-to-signal ratio behaves as

σ

x
∼ 1√

N
eA(MN− 3

2mπ)t (68)

at large times.
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Scattering Lengths

USQCD Allhands BNL, 04/10 – p. 15/34

Lattice QCD:  Baryon-Baryon
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Is there  an H-dibaryon?

Need other volumes!

2

exploratory quenched calculation of 4He at a relatively
large pion mass [21]. Our present results are from calcu-
lations on four ensembles of nf = 2+1 anisotropic clover
gauge-field configurations at a pion mass of mπ ∼ 389
MeV, a spatial lattice spacing of bs ∼ 0.1227(8) fm,
an anisotropy factor of ξt = bs/bt = 3.500(32) (for
details, see Refs. [22, 23]), and with spatial-extents of
16, 20, 24, 32, corresponding to spatial dimensions of L ∼
2.0, 2.5, 3.0 and 3.9 fm respectively.

Lüscher’s method [24–27] is employed to extract two-
particle scattering amplitudes below inelastic thresh-
olds from Lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
two-hadron system in the lattice volume from the sum
of the single-hadron masses is related to the scatter-
ing phase shift, δ. The form of the baryon interpolat-
ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The

energy shift, ∆E(AB)
n (in temporal lattice units (t.l.u)),

of two particles of equal mass, m (in t.l.u), is given by

∆E(AB)
n = 2

�
q2n/ξ

2
t +m2 − 2m. The subscript n is to

denote the nth energy-level in the lattice volume. This
relation determines a squared momentum, q2n (in spatial
lattice units (s.l.u)), which can be either positive or neg-
ative. For S-wave scattering below inelastic thresholds,
q2n is related to the real part of the inverse scattering
amplitude,

qn cot δ(qn) =
1

π L
S

�
q2n

�
L

2π

�2
�

, (1)

where the S-function is given by

S(x) = lim
Λ→∞

|j|<Λ�

j

1

|j|2 − x
− 4π Λ , (2)

thereby implicitly determining the value of the phase

shift at the energy ∆E(AB)
n .

Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]

κ = γ +
1

L
c1

�
e−γL +

√
2 e−

√
2γL

�
+ ... , (3)

where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the
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exploratory quenched calculation of 4He at a relatively
large pion mass [21]. Our present results are from calcu-
lations on four ensembles of nf = 2+1 anisotropic clover
gauge-field configurations at a pion mass of mπ ∼ 389
MeV, a spatial lattice spacing of bs ∼ 0.1227(8) fm,
an anisotropy factor of ξt = bs/bt = 3.500(32) (for
details, see Refs. [22, 23]), and with spatial-extents of
16, 20, 24, 32, corresponding to spatial dimensions of L ∼
2.0, 2.5, 3.0 and 3.9 fm respectively.

Lüscher’s method [24–27] is employed to extract two-
particle scattering amplitudes below inelastic thresh-
olds from Lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
two-hadron system in the lattice volume from the sum
of the single-hadron masses is related to the scatter-
ing phase shift, δ. The form of the baryon interpolat-
ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The
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numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
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that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
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determine the binding energy of a bound state. Writing
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ing momentum in the large volume limit follows directly
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where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.
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more importantly, is shifted by an amount that is com-
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The deviation found in calculations on the 203 × 128 en-
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but we choose not use calculations performed on either
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Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
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ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]
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where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.
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dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
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Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]
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where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.
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dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
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ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
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the study of multi-baryon systems.
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2

exploratory quenched calculation of 4He at a relatively
large pion mass [21]. Our present results are from calcu-
lations on four ensembles of nf = 2+1 anisotropic clover
gauge-field configurations at a pion mass of mπ ∼ 389
MeV, a spatial lattice spacing of bs ∼ 0.1227(8) fm,
an anisotropy factor of ξt = bs/bt = 3.500(32) (for
details, see Refs. [22, 23]), and with spatial-extents of
16, 20, 24, 32, corresponding to spatial dimensions of L ∼
2.0, 2.5, 3.0 and 3.9 fm respectively.
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Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
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determine the binding energy of a bound state. Writing
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the lattice volume, the volume-dependence of the bind-
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from eq. (1) and is of the form [27]
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where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
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where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.
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more importantly, is shifted by an amount that is com-
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Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the

2

exploratory quenched calculation of 4He at a relatively
large pion mass [21]. Our present results are from calcu-
lations on four ensembles of nf = 2+1 anisotropic clover
gauge-field configurations at a pion mass of mπ ∼ 389
MeV, a spatial lattice spacing of bs ∼ 0.1227(8) fm,
an anisotropy factor of ξt = bs/bt = 3.500(32) (for
details, see Refs. [22, 23]), and with spatial-extents of
16, 20, 24, 32, corresponding to spatial dimensions of L ∼
2.0, 2.5, 3.0 and 3.9 fm respectively.
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from eq. (1) and is of the form [27]

κ = γ +
1

L
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√
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√
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+ ... , (3)

where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the
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exploratory quenched calculation of 4He at a relatively
large pion mass [21]. Our present results are from calcu-
lations on four ensembles of nf = 2+1 anisotropic clover
gauge-field configurations at a pion mass of mπ ∼ 389
MeV, a spatial lattice spacing of bs ∼ 0.1227(8) fm,
an anisotropy factor of ξt = bs/bt = 3.500(32) (for
details, see Refs. [22, 23]), and with spatial-extents of
16, 20, 24, 32, corresponding to spatial dimensions of L ∼
2.0, 2.5, 3.0 and 3.9 fm respectively.

Lüscher’s method [24–27] is employed to extract two-
particle scattering amplitudes below inelastic thresh-
olds from Lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
two-hadron system in the lattice volume from the sum
of the single-hadron masses is related to the scatter-
ing phase shift, δ. The form of the baryon interpolat-
ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The

energy shift, ∆E(AB)
n (in temporal lattice units (t.l.u)),

of two particles of equal mass, m (in t.l.u), is given by

∆E(AB)
n = 2
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q2n/ξ

2
t +m2 − 2m. The subscript n is to

denote the nth energy-level in the lattice volume. This
relation determines a squared momentum, q2n (in spatial
lattice units (s.l.u)), which can be either positive or neg-
ative. For S-wave scattering below inelastic thresholds,
q2n is related to the real part of the inverse scattering
amplitude,
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, (1)

where the S-function is given by
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j
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|j|2 − x
− 4π Λ , (2)

thereby implicitly determining the value of the phase

shift at the energy ∆E(AB)
n .

Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]

κ = γ +
1
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+ ... , (3)

where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the
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exploratory quenched calculation of 4He at a relatively
large pion mass [21]. Our present results are from calcu-
lations on four ensembles of nf = 2+1 anisotropic clover
gauge-field configurations at a pion mass of mπ ∼ 389
MeV, a spatial lattice spacing of bs ∼ 0.1227(8) fm,
an anisotropy factor of ξt = bs/bt = 3.500(32) (for
details, see Refs. [22, 23]), and with spatial-extents of
16, 20, 24, 32, corresponding to spatial dimensions of L ∼
2.0, 2.5, 3.0 and 3.9 fm respectively.

Lüscher’s method [24–27] is employed to extract two-
particle scattering amplitudes below inelastic thresh-
olds from Lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
two-hadron system in the lattice volume from the sum
of the single-hadron masses is related to the scatter-
ing phase shift, δ. The form of the baryon interpolat-
ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The

energy shift, ∆E(AB)
n (in temporal lattice units (t.l.u)),

of two particles of equal mass, m (in t.l.u), is given by

∆E(AB)
n = 2
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q2n/ξ

2
t +m2 − 2m. The subscript n is to

denote the nth energy-level in the lattice volume. This
relation determines a squared momentum, q2n (in spatial
lattice units (s.l.u)), which can be either positive or neg-
ative. For S-wave scattering below inelastic thresholds,
q2n is related to the real part of the inverse scattering
amplitude,

qn cot δ(qn) =
1
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S
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, (1)

where the S-function is given by

S(x) = lim
Λ→∞

|j|<Λ�

j

1

|j|2 − x
− 4π Λ , (2)

thereby implicitly determining the value of the phase

shift at the energy ∆E(AB)
n .

Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]

κ = γ +
1

L
c1

�
e−γL +

√
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√
2γL
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+ ... , (3)

where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the

in progress

Recall:

κ = γ +
6

L

e−γL

1 − γr3
+ O(e−

√
2γL)
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exploratory quenched calculation of 4He at a relatively
large pion mass [21]. Our present results are from calcu-
lations on four ensembles of nf = 2+1 anisotropic clover
gauge-field configurations at a pion mass of mπ ∼ 389
MeV, a spatial lattice spacing of bs ∼ 0.1227(8) fm,
an anisotropy factor of ξt = bs/bt = 3.500(32) (for
details, see Refs. [22, 23]), and with spatial-extents of
16, 20, 24, 32, corresponding to spatial dimensions of L ∼
2.0, 2.5, 3.0 and 3.9 fm respectively.

Lüscher’s method [24–27] is employed to extract two-
particle scattering amplitudes below inelastic thresh-
olds from Lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
two-hadron system in the lattice volume from the sum
of the single-hadron masses is related to the scatter-
ing phase shift, δ. The form of the baryon interpolat-
ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The

energy shift, ∆E(AB)
n (in temporal lattice units (t.l.u)),

of two particles of equal mass, m (in t.l.u), is given by

∆E(AB)
n = 2

�
q2n/ξ

2
t +m2 − 2m. The subscript n is to

denote the nth energy-level in the lattice volume. This
relation determines a squared momentum, q2n (in spatial
lattice units (s.l.u)), which can be either positive or neg-
ative. For S-wave scattering below inelastic thresholds,
q2n is related to the real part of the inverse scattering
amplitude,

qn cot δ(qn) =
1

π L
S

�
q2n

�
L

2π

�2
�

, (1)

where the S-function is given by

S(x) = lim
Λ→∞

|j|<Λ�

j

1

|j|2 − x
− 4π Λ , (2)

thereby implicitly determining the value of the phase

shift at the energy ∆E(AB)
n .

Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]

κ = γ +
1

L
c1

�
e−γL +

√
2 e−

√
2γL

�
+ ... , (3)

where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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FIG. 1: Left panel: the mass of the Λ as a function of e−mπL

where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the
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exploratory quenched calculation of 4He at a relatively
large pion mass [21]. Our present results are from calcu-
lations on four ensembles of nf = 2+1 anisotropic clover
gauge-field configurations at a pion mass of mπ ∼ 389
MeV, a spatial lattice spacing of bs ∼ 0.1227(8) fm,
an anisotropy factor of ξt = bs/bt = 3.500(32) (for
details, see Refs. [22, 23]), and with spatial-extents of
16, 20, 24, 32, corresponding to spatial dimensions of L ∼
2.0, 2.5, 3.0 and 3.9 fm respectively.

Lüscher’s method [24–27] is employed to extract two-
particle scattering amplitudes below inelastic thresh-
olds from Lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
two-hadron system in the lattice volume from the sum
of the single-hadron masses is related to the scatter-
ing phase shift, δ. The form of the baryon interpolat-
ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The

energy shift, ∆E(AB)
n (in temporal lattice units (t.l.u)),

of two particles of equal mass, m (in t.l.u), is given by

∆E(AB)
n = 2

�
q2n/ξ

2
t +m2 − 2m. The subscript n is to

denote the nth energy-level in the lattice volume. This
relation determines a squared momentum, q2n (in spatial
lattice units (s.l.u)), which can be either positive or neg-
ative. For S-wave scattering below inelastic thresholds,
q2n is related to the real part of the inverse scattering
amplitude,

qn cot δ(qn) =
1

π L
S

�
q2n

�
L

2π

�2
�

, (1)

where the S-function is given by

S(x) = lim
Λ→∞

|j|<Λ�

j

1

|j|2 − x
− 4π Λ , (2)

thereby implicitly determining the value of the phase

shift at the energy ∆E(AB)
n .

Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]

κ = γ +
1

L
c1

�
e−γL +

√
2 e−

√
2γL

�
+ ... , (3)

where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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FIG. 1: Left panel: the mass of the Λ as a function of e−mπL

where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the

Thursday, November 25, 2010



0.000 0.005 0.010 0.015 0.020 0.025

0.204

0.206

0.208

0.210

0.212

e�MΠ L

b
M
N

0.000 0.005 0.010 0.015 0.020 0.025
0.220

0.221

0.222

0.223

0.224

0.225

0.226

e�MΠ L

b
M
�

0.000 0.005 0.010 0.015 0.020 0.025
0.239

0.240

0.241

0.242

0.243

e�MΠ L

b
M
�

FIG. 3: Volume dependence of the baryon masses.

8

0 0.005 0.01 0.015 0.02

0.22

0.222

0.224

0.226

e�mΠ�L

M
�
�t.l.u�

0.22 0.221 0.222
0.

0.1

0.2

0.3

M���� �t.l.u�

C �
�V�

FIG. 3: The left panel shows the mass of the Λ as a function of e−mπL where L is the spatial extent
of the lattice. From left-to-right, the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point corresponds to the mass of the Λ extrapolated to L = ∞, and the red
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Λ e−mπL with the statistical
and systematic uncertainties combined in quadrature. The right panel shows the 68% confidence
interval associated with the parameters MΛ(∞) and C(V )

Λ .

It is clear that the calculated baryon masses on the 163 × 128 ensemble, with an
mπ L = 3.86, are significantly shifted from the infinite-volume value and, more impor-
tantly, are shifted by an amount that is comparable to the power-law energy-splittings in
the two-baryon sector. Therefore, we do not use the calculations performed on the 163×128
ensemble in the analysis of two-baryon interactions. While the energy-shifts calculated on
the 203 × 128 ensemble, with an mπ L = 4.82, are significantly less than those on the
163 × 128 ensemble, they remain large enough that these are also not used in the analysis
of two-baryon interactions. Therefore, only calculations on the 243× 128 ensemble, with an
mπ L = 5.79, and on the 323 × 128 ensemble, with an mπ L = 7.71, are used in the
analysis of the two-baryon sector, and in particular, in the calculation of two-baryon binding
energies. From this analysis we conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential volume effects to be negligible small,
appears to be true. We believe it to be the case that reliable calculations of baryon-baryon
scattering parameters and bound-states from two-baryon energy-eigenvalues requires that
mπL>∼ 2π. In the case of the interactions between π’s and K’s, such large volumes are not
required as the range of the interaction is set by 2mπ and not π due to the absence of a
three-meson interaction vertex, and therefore a calculations of the meson-meson scattering
amplitude on the 163 × 128 and 203 × 128 ensembles can be relied upon.

C. Verifying the Energy-Momentum Relation

Implicit in the calculation of hadron-hadron scattering amplitudes with Lüschers method
is that the single hadron energy-momentum relation is satisfied over the range of momenta
(that may be) projected against in forming the correlation functions that are analyzed, and
over the range of energy eigenvalues that are subsequently extracted. In order to verify that
the energy-momentum relation is well-satisfied for the baryons, single hadron correlation
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exploratory quenched calculation of 4He at a relatively
large pion mass [21]. Our present results are from calcu-
lations on four ensembles of nf = 2+1 anisotropic clover
gauge-field configurations at a pion mass of mπ ∼ 389
MeV, a spatial lattice spacing of bs ∼ 0.1227(8) fm,
an anisotropy factor of ξt = bs/bt = 3.500(32) (for
details, see Refs. [22, 23]), and with spatial-extents of
16, 20, 24, 32, corresponding to spatial dimensions of L ∼
2.0, 2.5, 3.0 and 3.9 fm respectively.

Lüscher’s method [24–27] is employed to extract two-
particle scattering amplitudes below inelastic thresh-
olds from Lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
two-hadron system in the lattice volume from the sum
of the single-hadron masses is related to the scatter-
ing phase shift, δ. The form of the baryon interpolat-
ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The

energy shift, ∆E(AB)
n (in temporal lattice units (t.l.u)),

of two particles of equal mass, m (in t.l.u), is given by

∆E(AB)
n = 2

�
q2n/ξ

2
t +m2 − 2m. The subscript n is to

denote the nth energy-level in the lattice volume. This
relation determines a squared momentum, q2n (in spatial
lattice units (s.l.u)), which can be either positive or neg-
ative. For S-wave scattering below inelastic thresholds,
q2n is related to the real part of the inverse scattering
amplitude,

qn cot δ(qn) =
1

π L
S

�
q2n

�
L

2π

�2
�

, (1)

where the S-function is given by

S(x) = lim
Λ→∞

|j|<Λ�

j

1

|j|2 − x
− 4π Λ , (2)

thereby implicitly determining the value of the phase

shift at the energy ∆E(AB)
n .

Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]

κ = γ +
1

L
c1

�
e−γL +

√
2 e−

√
2γL

�
+ ... , (3)

where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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FIG. 1: Left panel: the mass of the Λ as a function of e−mπL

where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the
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the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the

2

exploratory quenched calculation of 4He at a relatively
large pion mass [21]. Our present results are from calcu-
lations on four ensembles of nf = 2+1 anisotropic clover
gauge-field configurations at a pion mass of mπ ∼ 389
MeV, a spatial lattice spacing of bs ∼ 0.1227(8) fm,
an anisotropy factor of ξt = bs/bt = 3.500(32) (for
details, see Refs. [22, 23]), and with spatial-extents of
16, 20, 24, 32, corresponding to spatial dimensions of L ∼
2.0, 2.5, 3.0 and 3.9 fm respectively.

Lüscher’s method [24–27] is employed to extract two-
particle scattering amplitudes below inelastic thresh-
olds from Lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
two-hadron system in the lattice volume from the sum
of the single-hadron masses is related to the scatter-
ing phase shift, δ. The form of the baryon interpolat-
ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The

energy shift, ∆E(AB)
n (in temporal lattice units (t.l.u)),

of two particles of equal mass, m (in t.l.u), is given by

∆E(AB)
n = 2
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q2n/ξ

2
t +m2 − 2m. The subscript n is to

denote the nth energy-level in the lattice volume. This
relation determines a squared momentum, q2n (in spatial
lattice units (s.l.u)), which can be either positive or neg-
ative. For S-wave scattering below inelastic thresholds,
q2n is related to the real part of the inverse scattering
amplitude,
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, (1)

where the S-function is given by

S(x) = lim
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1

|j|2 − x
− 4π Λ , (2)

thereby implicitly determining the value of the phase

shift at the energy ∆E(AB)
n .

Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]

κ = γ +
1

L
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√
2γL

�
+ ... , (3)

where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.
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Lüscher’s method [24–27] is employed to extract two-
particle scattering amplitudes below inelastic thresh-
olds from Lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
two-hadron system in the lattice volume from the sum
of the single-hadron masses is related to the scatter-
ing phase shift, δ. The form of the baryon interpolat-
ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The

energy shift, ∆E(AB)
n (in temporal lattice units (t.l.u)),

of two particles of equal mass, m (in t.l.u), is given by

∆E(AB)
n = 2

�
q2n/ξ

2
t +m2 − 2m. The subscript n is to

denote the nth energy-level in the lattice volume. This
relation determines a squared momentum, q2n (in spatial
lattice units (s.l.u)), which can be either positive or neg-
ative. For S-wave scattering below inelastic thresholds,
q2n is related to the real part of the inverse scattering
amplitude,

qn cot δ(qn) =
1

π L
S

�
q2n

�
L

2π

�2
�

, (1)

where the S-function is given by

S(x) = lim
Λ→∞

|j|<Λ�

j

1

|j|2 − x
− 4π Λ , (2)

thereby implicitly determining the value of the phase

shift at the energy ∆E(AB)
n .

Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]

κ = γ +
1

L
c1

�
e−γL +

√
2 e−

√
2γL

�
+ ... , (3)

where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
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and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.
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dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the
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Conclusion
• We are approaching a golden age where nuclear properties 

and reactions will be calculated using lattice QCD.

• Two-baryon systems are currently under intense investigation. 
Calculation of the deuteron is a major outstanding benchmark.

• Calculations of three-body systems are in progress.

• Lattice QCD requires:

★ the resources to move beyond the benchmarking stage. 

★ a strong collaborative effort among physicists, computer 
scientists and applied mathematicians.

Thursday, November 25, 2010


