## Nuclear Physics in the Era of Lattice QCD

### Silas Beane

 $u^{\scriptscriptstyle b}$ 



b UNIVERSITÄT BERN

Mumbai 11/25/2010

## Outline

- Looking forward
- Basic technology
- Baryon-Baryon and nuclei
- Conclusion

Presently lattice QCD is the only known method for defining QCD outside of perturbation theory and for making quantitative predictions for hadronic quantities with fully controlled uncertainties.



#### NEOS and the fate of dense astrophysical objects



#### Extreme conditions -----> No experiments

Example :  $p\Sigma^-$  poorly known

What are the hyperon-nucleon scattering parameters?

## Some of the Experimental Hyperon-Nucleon Data State-of-the-art





#### orge of two dride toolwi



#### NCSM



#### Lattice QCD: Multi-baryon interactions



Three- and higher-body interactions are poorly known and yet dramatically impact the properties of nuclei

E.g., significant role in/effect on:

- "spin-orbit" properties of the nucleus
- stability of borromean nuclei (e.g.<sup>6,8</sup>He, <sup>9</sup>Be, <sup>8</sup>Li)
- scattering processes, etc.

#### How do nuclei emerge from QCD?

## 2009-2010

#### 1 Exaflop = $10^3$ Petaflops = $10^6$ Teraflops = $10^9$ Gigaflops

#### Scientific Grand Challenges FOREFRONT QUESTIONS IN NUCLEAR SCIENCE AND

THE ROLE OF COMPUTING AT THE EXTREME SCALE

January 26-28, 2009 • Washington, D.C.





(Trivelpiece committee)

Architectures and Technology Biology Basic Energy Sciences Climate Science Cross-Cutting Workshop Fusion Energy High Energy Physics National Security Nuclear Energy Nuclear Physics



How do we extract s-wave scattering information (phase shifts and binding energies) from a lattice calculation?

#### Finite Volume

$$p \cot \delta(p) = \frac{1}{\pi L} S_3\left(\frac{pL}{2\pi}\right) \qquad S_3(\eta) \equiv \sum_{\mathbf{n}}^{\Lambda_n} \frac{1}{\mathbf{n}^2 - \eta^2} - 4\pi\Lambda_n$$

$$+ \mathcal{O}\left(e^{-M_{\pi}L}\right)$$

#### Weak coupling expansion:

$$\left(\Delta E_0(2,L)\right) = \frac{4\pi a_{\pi\pi}}{m_{\pi} L^3} \left\{ 1 - \left(\frac{a_{\pi\pi}}{\pi L}\right) \mathcal{I} + \left(\frac{a_{\pi\pi}}{\pi L}\right)^2 \left[\mathcal{I}^2 - \mathcal{J}\right] + \left(\frac{a_{\pi\pi}}{\pi L}\right)^3 \left[-\mathcal{I}^3 + 3\mathcal{I}\mathcal{J} - \mathcal{K}\right] \right\} + \frac{8\pi^2 a_{\pi\pi}^3}{m_{\pi} L^6} r_{\pi\pi} + \mathcal{O}\left(L^{-7}\right)$$

phase shift

Calculated on the lattice!

 $\mathcal{I} = \lim_{\Lambda_j \to \infty} \sum_{\mathbf{i} \neq \mathbf{0}}^{|\mathbf{i}| \le \Lambda_j} \frac{1}{|\mathbf{i}|^2} - 4\pi\Lambda_j = -8.91363291781$ 

$$\mathcal{J} = \sum_{\mathbf{i}\neq\mathbf{0}} \frac{1}{|\mathbf{i}|^4} = 16.532315959$$

 $\mathcal{K} = \sum_{\mathbf{i} \neq \mathbf{0}} \frac{1}{|\mathbf{i}|^6} = 8.401923974433$ 

#### What about bound states?

$$\int \mathcal{A}_2(p) = \frac{8\pi}{M} \frac{1}{p \cot \delta(p) - ip} \longrightarrow \cot \delta(i\gamma) = i$$

Finite-V: 
$$\cot \delta(i\kappa) = i - i \sum_{\mathbf{m} \neq 0} \frac{e^{-|\mathbf{m}|\kappa L}}{|\mathbf{m}|\kappa L}$$

$$\kappa = \gamma + \frac{6}{L} \frac{e^{-\gamma L}}{1 - \gamma r_3} + \mathcal{O}(e^{-\sqrt{2}\gamma L})$$

#### Need several volumes!

#### $\pi\pi$ scattering in lattice QCD



$$\mathcal{O}_{\pi^+}(t, \vec{x}) = \overline{u}(t, \vec{x})\gamma_5 d(t, \vec{x})$$

$$C_{\pi^{+}\pi^{+}}(p,t) = \langle 0| \sum_{|\mathbf{p}|=p} \sum_{\mathbf{x},\mathbf{y}} e^{i\mathbf{p}\cdot(\mathbf{x}-\mathbf{y})} \mathcal{O}_{\pi^{-}}(t,\mathbf{x}) \mathcal{O}_{\pi^{-}}(t,\mathbf{y}) \mathcal{O}_{\pi^{+}}(0,\mathbf{0}) \mathcal{O}_{\pi^{+}}(0,\mathbf{0}) |0\rangle$$

$$\frac{C_{\pi^+\pi^+}(p,t)}{C_{\pi^+}(t)C_{\pi^+}(t)} \longrightarrow \sum_{n=0}^{\infty} \mathcal{A}_n \ e^{-\Delta E_n(2,L)} \ t$$

$$\Delta E_n(2,L) \equiv 2 \sqrt{\vec{p}_n^2 + m_\pi^2} - 2m_\pi$$

## NPLQCD Collaboration









#### Many-Meson Physics



#### **Bose-Einstein condensates of mesons!**

# Pion 3- Body Interaction



#### Why is nuclear physics special?

Consider neutron-proton scattering in the  ${}^{1}S_{0}$  channel



Phase shift varies over  $\Delta p \sim 8$  MeV: NO Taylor expansion in  $\frac{p}{m_{\pi}}$ !



made about the relative size of

#### Why is nuclear physics near this UV fixed point??



Lattice QCD will answer this question!

#### Lattice QCD: NN





#### **YN** interactions



### Does signal/noise decay exponentially?

### Does signal/noise decay exponentially?

Yes!

#### For a system of A nucleons:



### Does signal/noise decay exponentially?

Yes!

For a system of A nucleons:

$$\left(\begin{array}{c} \text{noise} \\ \overline{\text{signal}} & \xrightarrow{t \to \infty} & \frac{1}{\sqrt{N}} & e^{A\left(m_p - \frac{3}{2}m_\pi\right)t} \end{array}\right)$$

However, only *asymptotically*!

#### Anisotropic clover lattices with high statistics NPLQCD (2009)



#### Is there a signal/noise problem?



related to sign problem?



#### Is there a signal/noise problem?

related to sign problem?



Not anymore!





Baryon recursion relations in development!



#### Baryon recursion relations in development!



#### Lattice QCD: Baryon-Baryon



Is there an H-dibaryon? Need other volumes!



 $m_{\pi} \sim 389 \text{ MeV}$   $b_s \sim 0.1227(8) \text{ fm}$   $b_s/b_t = 3.500(32)$ 

### $20^3 \times 128$









#### Need more statistics on the large volume!!

# Conclusion

- We are approaching a golden age where nuclear properties and reactions will be calculated using lattice QCD.
- Two-baryon systems are currently under intense investigation.
  Calculation of the deuteron is a major outstanding benchmark.
- Calculations of three-body systems are in progress.
- Lattice QCD requires:
  - $\star$  the resources to move beyond the benchmarking stage.
  - ★ a strong collaborative effort among physicists, computer scientists and applied mathematicians.