Nuclear Physics in the Era of Lattice QCD

Silas Beane

\boldsymbol{u}^{b}

UNIVERSITATT BERN
\triangle UNIVERSITY E. of NEW HAMPSHIRE

Mumbai II/25/20IO

Outline

- Looking forward
- Basic technology
- Baryon-Baryon and nuclei
- Conclusion

Presently lattice QCD is the only known method for defining QCD outside of perturbation theory and for making quantitative predictions for hadronic quantities with fully controlled uncertainties.

nucleon structure

$$
\text { e.g. } n n n
$$

e.g. $h_{\pi N N}$
π
precision electroweak
equation of state

NEOS and the fate of dense astrophysical objects

Extreme conditions \longrightarrow No experiments

Example : $p \Sigma^{-}$poorly known
What are the hyperon-nucleon scattering parameters?

State-of-the-art

YN interactions from experiment?

Kozi Nakai (KEK)

NCSM

Lattice QCD: Multi-baryon interactions

Three- and higher-body interactions are poorly known and yet dramatically impact the properties of nuclei
E.g., significant role in/effect on:

- "spin-orbit" properties of the nucleus
- stability of borromean nuclei (e.g. ${ }^{6,8} \mathrm{He},{ }^{9} \mathrm{Be},{ }^{8} \mathrm{Li}$)
- scattering processes, etc.

How do nuclei emerge from QCD?

$$
1 \text { Exaflop }=10^{3} \text { Petaflops }=10^{6} \text { Teraflops }=10^{9} \text { Gigaflops }
$$

How do we extract s-wave scattering information (phase shifts and binding energies) from a lattice calculation?

Finite Volume

$$
p \cot \delta(p)=\frac{1}{\pi L} \mathcal{S}_{3}\left(\frac{p L}{2 \pi}\right) \quad \mathcal{S}_{3}(\eta) \equiv \sum_{\mathbf{n}}^{\Lambda_{n}} \frac{1}{\mathbf{n}^{2}-\eta^{2}}-4 \pi \Lambda_{n}
$$

$$
+\mathcal{O}\left(e^{-M_{\pi} L}\right)
$$

Weak coupling expansion:

$\Delta E_{0}(2, L)=\frac{4 \pi a_{\pi \pi}}{m_{\pi} L^{3}}\left\{1-\left(\frac{a_{\pi \pi}}{\pi L}\right) \mathcal{I}+\left(\frac{a_{\pi \pi}}{\pi L}\right)^{2}\left[\mathcal{I}^{2}-\mathcal{J}\right]+\left(\frac{a_{\pi \pi}}{\pi L}\right)^{3}\left[-\mathcal{I}^{3}+3 \mathcal{I} \mathcal{J}-\mathcal{K}\right]\right\}+\frac{8 \pi^{2} a_{\pi \pi^{3}}}{m_{\pi} L^{6}} r_{\pi \pi}+\mathcal{O}\left(L^{-7}\right)$
$\downarrow_{\text {Calculated on }}$ the lattice!
\downarrow

$$
\begin{gathered}
\mathcal{I}=\lim _{\Lambda_{j} \rightarrow \infty} \sum_{\mathbf{i} \neq \mathbf{0}}^{|\mathbf{i}| \leq \Lambda_{j}} \frac{1}{|\mathbf{i}|^{2}}-4 \pi \Lambda_{j}=-8.91363291781 \\
\mathcal{J}=\sum_{\mathbf{i} \neq \mathbf{0}} \frac{1}{|\mathbf{i}|^{4}}=16.532315959
\end{gathered}
$$

phase shift

$$
\mathcal{K}=\sum_{\mathbf{i} \neq \mathbf{0}} \frac{1}{|\mathbf{i}|^{6}}=8.401923974433
$$

What about bound states?

$$
\mathcal{A}_{2}(p)=\frac{8 \pi}{M} \frac{1}{p \cot \delta(p)-i p} \quad \longrightarrow \quad \cot \delta(i \gamma)=i
$$

Finite-V: $\quad \cot \delta(i \kappa)=i-i \sum_{\mathbf{m} \neq 0} \frac{e^{-|\mathbf{m}| \kappa L}}{|\mathbf{m}| \kappa L}$

$$
\kappa=\gamma+\frac{6}{L} \frac{e^{-\gamma L}}{1-\gamma r_{3}}+\mathcal{O}\left(e^{-\sqrt{2} \gamma L}\right)
$$

Need several volumes!

$\pi \pi \quad$ scattering in lattice QCD

$$
\mathcal{O}_{\pi+}(t, \vec{x})=\bar{u}(t, \vec{x}) \gamma_{5} d(t, \vec{x})
$$

$$
C_{\pi^{+} \pi^{+}}(p, t)=\langle 0| \sum_{|\mathbf{p}|=p} \sum_{\mathbf{x}, \mathbf{y}} e^{i \mathbf{p} \cdot(\mathbf{x}-\mathbf{y})} \mathcal{O}_{\pi^{-}}(t, \mathbf{x}) \mathcal{O}_{\pi^{-}}(t, \mathbf{y}) \mathcal{O}_{\pi^{+}}(0, \mathbf{0}) \mathcal{O}_{\pi^{+}}(0, \mathbf{0})|0\rangle
$$

$$
\frac{C_{\pi+\pi+}(p, t)}{C_{\pi+}(t) C_{\pi+}(t)} \quad \rightarrow \sum_{n=0}^{\infty} \mathcal{A}_{n} e^{-\Delta E_{n}(2, L) t}
$$

$$
\Delta E_{n}(2, L) \equiv 2 \sqrt{\vec{p}_{n}^{2}+m_{\pi}^{2}}-2 m_{\pi}
$$

NPLQCD Collaboration

Benchmarking: $\quad \pi^{+} \pi^{+}(I=2)$

Many-Meson Physics

Bose-Einstein condensates of mesons!

Pion 3-Body Interaction

Why is nuclear physics special?

Consider neutron-proton scattering in the ${ }^{1} S_{0}$ channel

Phase shift varies over $\Delta p \sim 8 \mathrm{MeV}: \quad$ NO Taylor expansion in $\frac{p}{m_{\pi}}$!

Benchmarking: NN

$$
\begin{aligned}
& a_{s}^{{ }_{S}^{3} S_{0}}=-23.714 \mathrm{fm} \quad r_{s}^{1} S_{0}=2.73 \mathrm{fm} \\
& a_{s}^{3 S_{1}}=5.425 \mathrm{fm} \quad r_{s}^{3 S_{1}}=1.749 \mathrm{fm}
\end{aligned}
$$

$$
a_{s} \gg \Lambda_{Q C D}^{-1}
$$

$$
\hat{\beta}_{0}=\mu \frac{d}{d \mu} \hat{C}_{0}=-\hat{C}_{0}\left(\hat{C}_{0}-1\right)
$$

Trivial IR fixed point:
"natural case"

Nontrivial UV fixed point:"unnatural case"
"Unitarity"

Why is nuclear physics near this UV fixed point??

$$
a_{s}^{-1} \sim \frac{m_{\pi}-m_{\pi}^{*}}{m_{\pi}} \Lambda_{Q C D}
$$

Lattice QCD will answer this question!

Lattice QCD: NN

YN interactions

Does signal/noise decay exponentially?

Does signal/noise decay exponentially?

Yes!

For a system of A nucleons:

$$
\frac{\text { noise }}{\text { signal }} \underset{t \rightarrow \infty}{\longrightarrow} \frac{1}{\sqrt{N}} e^{A\left(m_{p}-\frac{3}{2} m_{\pi}\right) t}
$$

Does signal/noise decay exponentially?

Yes!

For a system of A nucleons:

$$
\frac{\text { noise }}{\text { signal }} \underset{t \rightarrow \infty}{\longrightarrow} \frac{1}{\sqrt{N}} e^{A\left(m_{p}-\frac{3}{2} m_{\pi}\right) t}
$$

However, only asymptotically!

Anisotropic clover lattices with high statistics

Is there a signal/noise problem?

related to sign problem?

Is there a signal/noise problem?

related to sign problem?

Contraction bottleneck for $A \gg 2$?

Naive factorial growth!

$$
\text { np: } 36
$$

nnp: 2880
$(A, Z): \quad(A+Z)!(2 A-Z)!$

Recursion relations for mesons $\rightarrow A$ growth!

Baryon recursion relations in development!

Contraction bottleneck for $A \gg 2$?

Naive factorial growth!
np: 36

Symmetries

nnp: 2880

$\longrightarrow 1107$
$(A, Z): \quad(A+Z)!(2 A-Z)!$

Recursion relations for mesons $\rightarrow A$ growth!

Baryon recursion relations in development!
(Yamazaki et. al. (2009))

Quenched - Heavy pions

Lattice QCD: Baryon-Baryon

Is there an H-dibaryon?

Need other volumes!

$$
\begin{aligned}
& 16^{3} \times 128 \\
& 20^{3} \times 128 \\
& 24^{3} \times 128
\end{aligned}
$$

$$
32^{3} \times 128 \text { in progress }
$$

$$
m_{\pi} \sim 389 \mathrm{MeV} \quad b_{s} \sim 0.1227(8) \mathrm{fm} \quad b_{s} / b_{t}=3.500(32)
$$

$20^{3} \times 128$

$24^{3} \times 128$

Volume dependence of the mass

Need more statistics on the large volume!!

Conclusion

- We are approaching a golden age where nuclear properties and reactions will be calculated using lattice QCD.
- Two-baryon systems are currently under intense investigation. Calculation of the deuteron is a major outstanding benchmark.
- Calculations of three-body systems are in progress.
- Lattice QCD requires:
\star the resources to move beyond the benchmarking stage.
* a strong collaborative effort among physicists, computer scientists and applied mathematicians.

