Supersymmetric Chern–Simons Theories with Vector Matter

27. Sep. 2012

Subrahmanian Chandrasekhar discussion meeting "Scattering without space-time" @ International Center for Theoretical Science (ICTS)

Shuichi Yokoyama

Tata Institute of Fundamental Research (TIFR)

S.Jain_S.P.Trivedi_S.R.Wadia_SY (arXiv:1207.4750)

Ref. S.Giombi_S.Minwalla_S.Prakash_S.Trivedi_S.Wadia_X.Yin (arXiv:1110.4386)

Why Chern-Simons theory?

Why Chern-Simons theory?

Chern-Simons (CS) theories play many important roles.

(1) (Mathematics) [Witten '89] Knot theory, Jones polynomial (2) (string theory) [Witten '85] Cubic string field theory, Open topological string theory ③ (M_theory) [BLG '07, ABJM '08] Effective field theories of membranes. ④ (3d CFT) Infinitely many interacting CFT (conformal zoo). [Moore Seiberg '89] (5) (AdS/CFT correspondence) Dual CFT3 of (HS) gravity on AdS4 Pure [HS] gravity on AdS3 [Gaberdiel Gopakumar '11]

(Pure) Chern-Simons theory

$$iS_{cs} = \frac{ik}{4\pi} \int \operatorname{tr}(\widetilde{A}d\widetilde{A} + \frac{2}{3}\widetilde{A}^3)$$

NOTE

① CS coupling constant (k) is protected as an integer.

② Independent of metric. (Topological).

③ Exact CFT parametrized by (k,N) or $\lambda = N/k$. N: rank of gauge group

④ Exactly soluble. (Wilson loop \Leftrightarrow Knot).

[Witten '89]

Plan

 \checkmark 1. Introduction

2. AdS4/CFT3 duality

Klebanov_Polyakov conjecture

3. Chern-Simons-Vector model

3.1 Vector fermion matter

3.2 SUSY vector matter

4. Summary & Discussion

3d O(N)(U(N)) vector model \Leftrightarrow HS gravity on AdS4

[Klebanov_Polyakov '02]

3d O(N)(U(N)) vector model ⇔ HS gravity on AdS4 [Klebanov_Polyakov '02]

(Bosonic case) Singlet sector of 3d free/critical vector boson model is dual to a HS theory in the large N limit with suitable bc.

Parity-invariant theory with parity even scalar (A_type Vasiliev theory)

3d O(N)(U(N)) vector model ⇔ HS gravity on AdS4 [Klebanov_Polyakov '02]

(Bosonic case) Singlet sector of 3d free/critical vector boson model is dual to a HS theory in the large N limit with suitable bc.

Parity-invariant theory with parity even scalar (A_type Vasiliev theory)

(Fermionic case) Singlet sector of 3d free/GN vector fermion model is dual to a HS theory in the large N limit with suitable bc.

Parity-invariant theory with parity odd scalar (B_type Vasiliev theory)

[Klebanov_Polyakov '02]

A scalar field conformally coupling to AdS4

$$S = \int d^4x \sqrt{g} \left((\partial_{\mu} h)^2 - 2h^2 \right)$$

(AdS radius set to unity)

[Klebanov_Polyakov '02]

A scalar field conformally coupling to AdS4

$$S = \int d^4x \sqrt{g} \left((\partial_{\mu} h)^2 - 2h^2 \right)$$

(AdS radius set to unity)

$$\exists$$
 2 solutions: $h \sim z^{\Delta}$

(i) $\Delta = 1$ (ii) $\Delta = 2$

[Klebanov_Polyakov '02]

A scalar field conformally coupling to AdS4

$$S = \int d^4x \sqrt{g} \left((\partial_{\mu} h)^2 - 2h^2 \right)$$

(AdS radius set to unity)

$$\exists$$
 2 solutions: $h \sim z^{\Delta}$

(i) $\Delta = 1$

(ii) ∆=2

Free N bosons

$$\Delta_{\mathcal{O}_{\mathcal{B}}} = 1$$

Free N fermions

$$\Delta_{\mathcal{O}_F} = 2$$

[Klebanov_Polyakov '02]

A scalar field conformally coupling to AdS4

$$S = \int d^4x \sqrt{g} \left((\partial_{\mu} h)^2 - 2h^2 \right)$$

(AdS radius set to unity)

$$\exists$$
 2 solutions: $h \sim z^{\Delta}$

(i) $\Delta = 1$

(ii) $\Delta = 2$

Free vector boson

$$\Delta_{\mathcal{O}_{\mathcal{B}}} = 1$$

GN vector fermion

 $\Delta_{\mathcal{O}_F} = 1 + \dots$

Critical vector boson

$$\Delta_{\mathcal{O}_{\mathcal{B}}} = 2 + \dots$$

Free vector fermion

$$\Delta_{\mathcal{O}_F} = 2$$

[Klebanov_Polyakov '02]

A scalar field conformally coupling to AdS4

$$S = \int d^4x \sqrt{g} \left((\partial_{\mu} h)^2 - 2h^2 \right)$$

(AdS radius set to unity)

$$\exists$$
 2 solutions: $h \sim z^{\Delta}$

(i) $\Delta = 1$

(ii) $\Delta = 2$

Free vector bosonCritical vector boson $\Delta_{\mathcal{O}_{\mathcal{B}}} = 1$ $\mathcal{O}_B^2 = (\bar{\phi}\phi)^2$ $\Delta_{\mathcal{O}_{\mathcal{B}}} = 2 + \dots$

GN vector fermion $\Delta_{\mathcal{O}_F} = 1 + \dots \quad \mathcal{O}_F^2$

 $\mathcal{O}_F^2 = (\bar{\psi}\psi)^2$

Free vector fermion

[Klebanov_Polyakov '02]

A scalar field conformally coupling to AdS4

$$S = \int d^4x \sqrt{g} \left((\partial_{\mu} h)^2 - 2h^2 \right)$$

(AdS radius set to unity)

$$\exists$$
 2 solutions: $h \sim z^{\Delta}$

(i) $\Delta = 1$ \longleftrightarrow (ii) $\Delta = 2$ cf. [Witten '01] changing bc Free vector boson \Box Critical vector boson (A_type) $\Delta_{\mathcal{O}_{\mathcal{B}}} = 1$ $\mathcal{O}_{B}^{2} = (\bar{\phi}\phi)^{2}$ $\Delta_{\mathcal{O}_{\mathcal{B}}} = 2 + \dots$

$$\begin{array}{ccc} \text{GN vector fermion} & & & & & & \\ \Delta \mathcal{O}_F = 1 + \dots & \mathcal{O}_F^2 = (\bar{\psi}\psi)^2 & & & & \Delta \mathcal{O}_F = 2 \end{array} \end{array} \tag{B_type}$$

HS gravity on AdS4 ⇔ O(N)(U(N)) vector model

[Klebanov_Polyakov '02]

AdS4

???

CFT3

A_type Vasiliev

 \longleftrightarrow

B_type Vasiliev

[Vasiliev]

[Giombi_Yin '11] [Sezgin_Sundell '02] Free/Critical boson Free/GN fermion [Giombi_Prakarsh_Yin '11]

HS gravity on AdS4 \Leftrightarrow O(N)(U(N)) vector model

???

[Klebanov_Polyakov '02]

AdS4

A_type Vasiliev

B_type Vasiliev

[Vasiliev]

SUSY Vasiliev

[Vasiliev et al]

[Giombi_Yin '11] [Sezgin_Sundell '02]

[Sezgin_Sundell '03]

Parity Vasiliev

CFT3 Free/Critical boson Free/GN fermion [Giombi_Prakarsh_Yin '11]

SUSY vector model

CS-vector model

[Giombi_Minwalla_Prakash_Trivedi_Wadia_Yin '11] [Aharony_Gur-Ari_Yacoby '11]

HS gravity on AdS4 \Leftrightarrow O(N)(U(N)) vector model

[Klebanov_Polyakov '02]

AdS4

A_type Vasiliev

B_type Vasiliev

[Vasiliev]

SUSY Vasiliev [Vasiliev et al]

Parity Vasiliev

 \longleftrightarrow

???

[Giombi_Yin '11] [Sezgin_Sundell '02]

[Sezgin_Sundell '03]

CFT3 Free/Critical boson Free/GN fermion [Giombi_Prakarsh_Yin '11]

SUSY vector model

CS-vector model

[Giombi_Minwalla_Prakash_Trivedi_Wadia_Yin '11] [Aharony_Gur-Ari_Yacoby '11] SUSY CS-vector model

[Jain_Trivedi_Wadia_SY '12]

SUSY Parity Vasiliev

[Chang_Minwalla_Sharma_Yin '12] [Sezgin_Sundell '12]

Plan

 \checkmark 1. Introduction

2. AdS4/CFT3 duality

✓ Klebanov_Polyakov conjecture

3. Chern-Simons-Vector model

3.1 Vector fermion matter

3.2 SUSY vector matter

4. Summary & Discussion

3.1 Chern–Simons–Fermion system Action on R3 (euclidean) $S = \int d^3x \left[i\varepsilon^{\mu\nu\rho} \frac{k}{4\pi} \text{Tr}(A_{\mu}\partial_{\nu}A_{\rho} - \frac{2i}{3}A_{\mu}A_{\nu}A_{\rho}) + \bar{\psi}\gamma^{\mu}D_{\mu}\psi - \mu\bar{\psi}\gamma^{3}\psi \right]$

 $D_{\mu}\psi = \partial_{\mu}\psi - iA^{a}T^{a}\psi.$

Feynman rule

① gauge propagator

③ gauge 3pt vertex

④ fermion_gauge vertex

② fermion propagator

Action on R3 (euclidean)

 $S = \int d^3x \left[i\varepsilon^{\mu\nu\rho} \frac{k}{4\pi} \operatorname{Tr}(A_{\mu}\partial_{\nu}A_{\rho} - \frac{2i}{3}A_{\mu}A_{\nu}A_{\rho}) + \bar{\psi}\gamma^{\mu}D_{\mu}\psi - \mu\bar{\psi}\gamma^{3}\psi \right]$

 $D_{\mu}\psi = \partial_{\mu}\psi - iA^{a}T^{a}\psi.$

Feynman rule

gauge: $A_{-} = 0$

① gauge propagator

③ gauge 3pt vertex

④ fermion_gauge vertex

 \sim

② fermion propagator

2 point function

① gauge_gauge

② fermion_fermion

2 point function

1) gauge_gauge large k limit!!

② fermion_fermion

2 point function

777

② fermion_fermion

[S.Giombi_S.Minwalla_S.Prakash_S.Trivedi_S.Wadia_X.Yin]

't Hooft limit!!

[S.Giombi_S.Minwalla_S.Prakash_S.Trivedi_S.Wadia_X.Yin]

[S.Giombi_S.Minwalla_S.Prakash_S.Trivedi_S.Wadia_X.Yin]

$$\begin{array}{c} \text{`t Hooft limit!!} \\ \hline --\Sigma \\ \hline -\Sigma \\ \hline -\Sigma \\ \hline \end{array} \\ -\Sigma_F(p) = N \int \frac{d^3q}{(2\pi)^3} i\gamma^{\mu} G_{\mu\nu}(p-q) \frac{1}{i\gamma^{\mu}q_{\mu} + \Sigma_F(q)} i\gamma^{\nu} \\ G_{\mu\nu}(p) = \frac{2\pi}{kip_-} (\delta_{\mu,+}\delta_{\nu,3} - \delta_{\mu,3}\delta_{\nu,+}). \end{array}$$

Schwinger_Dyson equation

[S.Giombi_S.Minwalla_S.Prakash_S.Trivedi_S.Wadia_X.Yin]

$$-\Sigma_{F}(p) = N \int \frac{d^{3}q}{(2\pi)^{3}} i\gamma^{\mu} G_{\mu\nu}(p-q) \frac{1}{i\gamma^{\mu}q_{\mu} + \Sigma_{F}(q)} i\gamma^{\nu}$$
$$G_{\mu\nu}(p) = \frac{2\pi}{kip_{-}} (\delta_{\mu,+}\delta_{\nu,3} - \delta_{\mu,3}\delta_{\nu,+}).$$

Schwinger_Dyson equation Solution

$$\Sigma(p) = fp_s + ig\gamma^+ p_+ \qquad f = \lambda, \ g = -\lambda^2$$

Large N Effective action

- (1) Integrate out gauge field with gauge: $A_{-} = 0$.
- ② Introduce auxiliary singlet fields Σ to kill 4 fermi interaction.
 (Hubbard-Stratonovich transformation)
 ③ Integrate out ψ.
- ④ Evaluate it by saddle point approx. under translationally inv. config.

$$S = -NV \int \frac{d^3q}{(2\pi)^3} \operatorname{Tr}\left[\ln\left[i\gamma^{\mu}q_{\mu} + \Sigma(q)\right] - \frac{1}{2}\Sigma(q)\left(\frac{1}{i\gamma^{\mu}q_{\mu} + \Sigma(q)}\right)\right]$$

where saddle point equation is

$$\Sigma(p) = -2\pi i\lambda \int \frac{d^3q}{(2\pi)^3} \left(\gamma^3 \frac{1}{i\gamma^\mu q_\mu + \Sigma}\gamma^+ - \gamma^+ \frac{1}{i\gamma^\mu q_\mu + \Sigma}\gamma^3\right) \frac{1}{(p-q)^+}$$

[S.Giombi_S.Minwalla_S.Prakash_S.Trivedi_S.Wadia_X.Yin]

→ Consider theory on $R^2 \times S^1$ (length $\beta = T^{-1}$).

$$\int \frac{dp_3}{2\pi} F(p_3) \to \frac{1}{\beta} \sum_{p_3:F} F(p_3) := \frac{1}{\beta} \sum_{n \in \mathbf{Z}} F(\frac{2\pi(n+\frac{1}{2})}{\beta}), \quad \text{(anti-periodic bc)}$$

→ Consider theory on $R^2 \times S^1$ (length $\beta = T^{-1}$).

$$\int \frac{dp_3}{2\pi} F(p_3) \to \frac{1}{\beta} \sum_{p_3:F} F(p_3) := \frac{1}{\beta} \sum_{n \in \mathbf{Z}} F(\frac{2\pi(n+\frac{1}{2})}{\beta}), \quad \text{(anti-periodic bc)}$$

(1) Schwinger_Dyson equation.

$$\Sigma(p) = \frac{1}{\beta} \sum_{q_3:F} \int \frac{d^2q}{(2\pi)^2} \left(\gamma^+ \frac{1}{i\gamma^\mu q_\mu + \Sigma(q)} \gamma^3 - \gamma^3 \frac{1}{i\gamma^\mu q_\mu + \Sigma(q)} \gamma^+ \right) \frac{2\pi\lambda}{i(p-q)_-}$$

(2) Free energy

$$S_{eff} = NV_2 \sum_{q_3:F} \int \frac{d^2q}{(2\pi)^2} \operatorname{tr} \left[-\log\left[i\gamma^{\mu}q_{\mu} + \Sigma(q)\right] + \frac{1}{2}\Sigma(q)\left(\frac{1}{i\gamma^{\mu}q_{\mu} + \Sigma(q)}\right) \right]$$

(1) Solution of Schwinger_Dyson equation.

$$\Sigma = f \cdot p_s I + g \cdot i p_+ \gamma^+$$

$$\begin{split} f(\hat{p}) &= \frac{\lambda}{\hat{p}} \log \left(2(\cosh \sqrt{\hat{p}^2 + c} + \cosh \hat{\mu}) \right), \\ g(\hat{p}) &= \frac{c}{\hat{p}^2} - f(\hat{p})^2, \qquad \qquad \hat{p} = \frac{p_s}{T} \\ e^{\frac{\sqrt{c}}{|\lambda|}} &= e^{\sqrt{c}} + e^{-\sqrt{c}} + e^{\hat{\mu}} + e^{-\hat{\mu}}, \end{split}$$

(2) Free energy density

$$F(T) = -\frac{NT^3}{6\pi} \left(\frac{\sqrt{c}^3}{|\lambda|} - \sqrt{c}^3 + 6 \int_{\sqrt{c}}^{\infty} dy \ y \ln\left(1 + e^{-y}\right) \right)$$

 $|\lambda| < 1.$

Why $|\lambda| < 1$?

→ UV completion by Yang_Mills term!?

 $|k_{IR}| = |k_{UV}| + N$

SU(N) CSF level k_{IR}

IR

SU(N) YMCSF level kuv

UV

Why $|\lambda| < 1$?

→ UV completion by Yang_Mills term!?

IRUVSU(N) CSFSU(N) YMCSFlevel k_{IR} level k_{UV} $|k_{IR}| = |k_{UV}| + N$

 $\lambda = \frac{N}{k_{IR}} \quad \lambda_{UV} = \frac{N}{k_{UV}} \quad \checkmark$ $|\lambda_{UV}| \in [0,\infty)$

 $|\lambda| = \frac{|\lambda_{UV}|}{1 + |\lambda_{UV}|} \le 1$

Plan

- \checkmark 1. Introduction
- 2. AdS4/CFT3 duality
 - ✓ Klebanov_Polyakov conjecture
 - 3. Chern-Simons-Vector model
 - ✓ 3.1 Vector fermion matter
 - 3.2 SUSY vector matter
 - 4. Summary & Discussion

3.2 SUSY CS-vector model CS + 1 fund. chiral mult.

 $S = \int d^3x \left[i\varepsilon^{\mu\nu\rho} \frac{k}{4\pi} \operatorname{Tr}(A_{\mu}\partial_{\nu}A_{\rho} - \frac{2i}{3}A_{\mu}A_{\nu}A_{\rho}) + D_{\mu}\bar{\phi}D^{\mu}\phi + \bar{\psi}\gamma^{\mu}D_{\mu}\psi \right. \\ \left. + \lambda_4(\bar{\psi}\psi)(\bar{\phi}\phi) + \lambda'_4(\bar{\psi}\phi)(\bar{\phi}\psi) + \lambda''_4\left((\bar{\psi}\phi)(\bar{\psi}\phi) + (\bar{\phi}\psi)(\bar{\phi}\psi)\right) + \lambda_6(\bar{\phi}\phi)^3 \right]. \\ \left. \lambda_4 = \frac{x_4}{\kappa}, \quad \lambda'_4 = \frac{x'_4}{2\kappa}, \quad \lambda''_4 = \frac{x''_4}{4\kappa}, \quad \lambda_6 = \frac{x_6}{(2\kappa)^2}, \qquad \kappa = \frac{k}{4\pi} \right].$ In the 't Hooft limit, x4, x'4, x''4, x6 are of O(1).

CS + 1 fund. chiral mult.

3.2 SUSY CS-vector model

0.2

1.5

 $S = \int d^3x \left[i\varepsilon^{\mu\nu\rho} \frac{k}{4\pi} \operatorname{Tr}(A_{\mu}\partial_{\nu}A_{\rho} - \frac{2i}{3}A_{\mu}A_{\nu}A_{\rho}) + D_{\mu}\bar{\phi}D^{\mu}\phi + \bar{\psi}\gamma^{\mu}D_{\mu}\psi \right. \\ \left. + \lambda_4(\bar{\psi}\psi)(\bar{\phi}\phi) + \lambda'_4(\bar{\psi}\phi)(\bar{\phi}\psi) + \lambda''_4\left((\bar{\psi}\phi)(\bar{\psi}\phi) + (\bar{\phi}\psi)(\bar{\phi}\psi)\right) + \lambda_6(\bar{\phi}\phi)^3 \right]. \\ \left. \lambda_4 = \frac{x_4}{\kappa}, \quad \lambda'_4 = \frac{x'_4}{2\kappa}, \quad \lambda''_4 = \frac{x''_4}{4\kappa}, \quad \lambda_6 = \frac{x_6}{(2\kappa)^2}, \qquad \kappa = \frac{k}{4\pi} \right].$ In the 't Hooft limit, x4, x'4, x'4, x'4, x6 are of O(1).

SUSY

N=1 $x_4 = \frac{1+w}{2}, x'_4 = w, x''_4 = w - 1, x_6 = w^2,$ N=2 $w = 1 - \frac{1}{N}$

3.2 SUSY CS-vector model

Feynman rule

① gauge propagator

2 fermion propagator

5 fermion_gauge vertex 8 scalar_fermion vertex

③ scalar propagator

6 scalar_gauge vertex

9 6 scalar vertex

7 scalar_fermion ve

3.2 SUSY CS-vector model

Feynman rule

① gauge propagator

② fermion propagator

5 fermion_gauge vertex 8

8 scalar_fermion vertex

7 scalar_fermion ve

③ scalar propagator

6 scalar_gauge vertex

9 6 scalar vertex

3.2 SUSY CS-vector model

Feynman rule

① gauge propagator

2 fermion propagator

5 fermion_gauge vertex

scalar_fermion vertex

⑦ scalar_fermion ve

③ scalar propagator

6 scalar_gauge vertex

t' Hooft limit 9 6 scalar vertex

Boson

3

+

+

$$3 \times -- \times --$$

$$\begin{split} -\Sigma_B(p) &= N \int \frac{d^3q}{(2\pi)^3} (p+q)^{\mu} G_{\mu\nu}(p-q) \frac{1}{q^2 + \Sigma_B(q)} (q+p)^{\nu} \\ &- 2 \times N^2 \int \frac{d^3q}{(2\pi)^3} \frac{d^3q'}{(2\pi)^3} \frac{1}{q'^2 + \Sigma_B(q')} G_{\mu\nu}(q-q') (q'+q)^{\nu} \frac{1}{q^2 + \Sigma_B(q)} G^{\mu}{}_{\rho}(p-q) (p+q)^{\rho} \\ &- N^2 \int \frac{d^3q}{(2\pi)^3} \frac{d^3q'}{(2\pi)^3} (p+q')^{\nu} \frac{1}{q'^2 + \Sigma_B(q')} G_{\nu\mu}(p-q') \frac{1}{q^2 + \Sigma_B(q)} G^{\mu}{}_{\rho}(p-q) (p+q)^{\rho} \\ &- 3\lambda_6 N^2 \int \frac{d^3q}{(2\pi)^3} \frac{d^3q'}{(2\pi)^3} \frac{1}{q^2 + \Sigma_B(q)} \frac{1}{q'^2 + \Sigma_B(q')} G_{\nu\mu}(p-q') \frac{1}{q^2 + \Sigma_B(q)} G^{\mu}{}_{\rho}(p-q) (p+q)^{\rho} \\ &- \lambda_4 N \int \frac{d^3q}{(2\pi)^3} \left(-\operatorname{tr} \frac{1}{i\gamma^{\mu}q_{\mu} + \Sigma_F(q)} \right), \end{split}$$
(E.1)

Fermion

??? $-\Sigma_F$

Fermion

-Σ_F)

$$-\Sigma_F(p) = N \int \frac{d^3q}{(2\pi)^3} i\gamma^{\mu} G_{\mu\nu}(p-q) \frac{1}{i\gamma^{\mu}q_{\mu} + \Sigma_F(q)} i\gamma^{\nu} - \lambda_4 N \int \frac{d^3q}{(2\pi)^3} \frac{1}{q^2 + \Sigma_B(q)}.$$

5002

5

Fermion

 $-\Sigma_{F}$

 $-\Sigma_F(p) = N \int \frac{d^3q}{(2\pi)^3} i\gamma^{\mu} G_{\mu\nu}(p-q) \frac{1}{i\gamma^{\mu}q_{\mu} + \Sigma_F(q)} i\gamma^{\nu} - \lambda_4 N \int \frac{d^3q}{(2\pi)^3} \frac{1}{q^2 + \Sigma_B(q)}.$

Solution

 $-\Sigma_{\rm B}$ ()

Large N effective action
$$\tilde{S} = \tilde{S}_B + \tilde{S}_F + \tilde{S}_{BF}$$

$$\widetilde{S}_{B} = NV \int \frac{d^{3}q}{(2\pi)^{3}} \left(\log\left(q^{2} + \Sigma_{B}(q)\right) - \frac{2}{3} \frac{\widetilde{\Sigma}_{B}(q)}{q^{2} + \Sigma_{B}(q)} \right)$$

$$\widetilde{S}_{F} = NV \int \frac{d^{3}q}{(2\pi)^{3}} \operatorname{Tr} \left(-\ln\left(i\gamma^{\mu}q_{\mu} + \Sigma_{F}(p)\right) + \frac{1}{2} \Sigma_{F}(q) \frac{1}{i\gamma^{\mu}q_{\mu} + \Sigma_{F}(q)} \right)$$

$$\widetilde{S}_{BF} = -\frac{\lambda_{4}N^{2}V}{6} \int \frac{d^{3}q}{(2\pi)^{3}} \frac{1}{q^{2} + \Sigma_{B}(q)} \int \frac{d^{3}p}{(2\pi)^{3}} \operatorname{Tr} \left(\frac{1}{i\gamma^{\mu}p_{\mu} + \Sigma_{F}(p)}\right)$$

$$(25)$$

where saddle point equation (or e.o.m.) is

$$\Sigma_{B}(q) = \int \frac{d^{3}q_{2}}{(2\pi)^{3}} \frac{d^{3}q_{3}}{(2\pi)^{3}} \Big[C_{2}(q,q_{2},q_{3}) + C_{2}(q_{2},q,q_{3}) + C_{2}(q_{3},q_{2},q) \Big] \frac{1}{q_{2}^{2} + \Sigma_{B}(q_{2})} \frac{1}{q_{3}^{2} + \Sigma_{B}(q_{3})} \\ - \lambda_{4}N \int \frac{d^{3}q'}{(2\pi)^{3}} \operatorname{tr}(\frac{1}{i\gamma^{\mu}q'_{\mu} + \Sigma_{F}(q')}).$$
(B.7)
$$\Sigma_{F}(p) = -2\pi i\lambda \int \frac{d^{3}q}{(2\pi)^{3}} \left(\gamma^{3} \frac{1}{i\gamma^{\mu}q_{\mu} + \Sigma_{F}} \gamma^{+} - \gamma^{+} \frac{1}{i\gamma^{\mu}q_{\mu} + \Sigma_{F}} \gamma^{3} \right) \frac{1}{(p-q)_{-}} \\ + \lambda_{4}N \int \frac{d^{p}}{(2\pi)^{3}} \frac{1}{p^{2} + \Sigma_{B}(p)},$$
(B.12)

to a . If surgery shows around the second

(1) Solution of Schwinger_Dyson equation. $\Sigma_B(p) = \sigma T^2, \quad \Sigma_{F,I}(p) = f(\tilde{p})p_s, \quad \Sigma_{F,+}(p) = ig(\tilde{p})p_+,$ $f(\tilde{p}) = \frac{2\lambda}{\tilde{p}} \left(\log(2\cosh(\frac{\sqrt{\tilde{p}^2 + c}}{2})) - x_4\log(2\sinh(\frac{\sqrt{\sigma}}{2})) \right).$ $g(\tilde{p}) = \frac{c}{\tilde{p}^2} - f(\tilde{p})^2. \qquad \tilde{p} = \beta p_s.$ $c = \left\{ 2\lambda \left(\log(2\cosh(\frac{\sqrt{c}}{2})) - x_4\log(2\sinh(\frac{\sqrt{\sigma}}{2})) \right) \right\}^2.$ $\sigma = \lambda^2 \left[(1 + 3x_6) \left(\log(2\sinh(\frac{\sqrt{\sigma}}{2})) \right)^2 - 8x_4^2\log(2\sinh(\frac{\sqrt{\sigma}}{2})) \log(2\cosh(\frac{\sqrt{c}}{2})) + 4x_4 \left(\log(2\cosh(\frac{\sqrt{c}}{2})) \right)^2 \right].$

(1) Solution of Schwinger_Dyson equation. $\Sigma_B(p) = \sigma T^2, \quad \Sigma_{F,I}(p) = f(\tilde{p})p_s, \quad \Sigma_{F,+}(p) = ig(\tilde{p})p_+,$ $f(\tilde{p}) = \frac{2\lambda}{\tilde{p}} \left(\log(2\cosh(\frac{\sqrt{\tilde{p}^2 + c}}{2})) - x_4\log(2\sinh(\frac{\sqrt{\sigma}}{2})) \right).$ $g(\tilde{p}) = \frac{c}{\tilde{p}^2} - f(\tilde{p})^2. \qquad \tilde{p} = \beta p_s.$ $c = \left\{ 2\lambda \left(\log(2\cosh(\frac{\sqrt{c}}{2})) - x_4\log(2\sinh(\frac{\sqrt{\sigma}}{2})) \right) \right\}^2.$ $\sigma = \lambda^2 \left[(1 + 3x_6) \left(\log(2\sinh(\frac{\sqrt{\sigma}}{2})) \right)^2 - 8x_4^2\log(2\sinh(\frac{\sqrt{\sigma}}{2})) \log(2\cosh(\frac{\sqrt{c}}{2})) + 4x_4 \left(\log(2\cosh(\frac{\sqrt{c}}{2})) \right)^2 \right].$

(2) Free energy density

$$\begin{split} F &= \frac{NT^3}{6\pi} \bigg[-\sqrt{\sigma^3} + \sqrt{c^3} + 2\sigma \log(2\sinh(\frac{\sqrt{\sigma}}{2})) - \frac{3}{2}c\log(2\cosh(\frac{\sqrt{c}}{2})) \\ &- 2\lambda^2 \log(2\cosh(\frac{\sqrt{c}}{2})) \left\{ \log(2\cosh(\frac{\sqrt{c}}{2})) - x_4 \log(2\sinh(\frac{\sqrt{\sigma}}{2})) \right\}^2 \\ &+ 6 \int_{\sqrt{\sigma}}^{\infty} dyy \log(1 - e^{-y}) - 6 \int_{\sqrt{c}}^{\infty} dyy \log(1 + e^{-y}) \bigg]. \end{split}$$

N=1 case $x_4 = \frac{1+w}{2}$ $x_6 = w^2$

N=1 case
$$x_4 = \frac{1+w}{2}$$
 $x_6 = w^2$
w=0

(1) \sqrt{c} , $\sqrt{\sigma}$

(2) Free energy density

|**λ**|<2.

N=2 case $x_4 = x_6 = 1$ (w=1)

g. Stratigue and constraints former

N=2 case $x_4 = x_6 = 1$ (w=1)

(1) \sqrt{c} , $\sqrt{\sigma}$ (2) Free energy density $\sqrt{\sigma} = \sqrt{c} = 2|\lambda| \log(\coth\frac{\sqrt{c}}{2}). \qquad F = -\frac{NT^3}{6\pi} \left(\frac{\sqrt{c}^3}{|\lambda|} + 6\int_{\sqrt{c}}^{\infty} dyy \log(\coth\frac{y}{2})\right)$ \sqrt{c} NT 0.7 r 3.0 0.6 2.5 0.5 2.0 0.4 1.5 0.3 1.0 0.2 0.5 0.1 20 15 0 5 10 5 10 15 20

|**λ**|<∞.

Why $|\lambda| < 2$ when N=1(w=0)?

$\begin{array}{c} Why \ |\lambda| < 2 \ when \ N = 1(w = 0)? \\ \rightarrow \ UV \ completion \ by \ Yang_Mills \ term!? \\ IR & UV \\ N = 1 \ SU(N) \ CSF \ \longleftarrow \qquad N = 1 \ SU(N) \ YMCSF \\ level \ k_{IR} & level \ k_{UV} \end{array}$

Why $|\lambda| < 2$ when N=1(w=0)? → UV completion by Yang_Mills term!? IR UV N=1 SU(N) CSF \leftarrow N=1 SU(N) YMCSF level kir level kuv $|k_{IR}| = |k_{UV}| + N - \frac{N}{2}$ $\lambda = \frac{N}{k_{IR}} \quad \lambda_{UV} = \frac{N}{k_{UV}} \quad \checkmark \quad |\lambda_{UV}| \in [0, \infty)$ $|\lambda| = \frac{|\lambda_{UV}|}{1 + \frac{|\lambda_{$

Why $|\lambda| < \infty$ when N=2?

Why $|\lambda| < \infty$ when N=2?

→ UV completion by Yang_Mills term!?

 $N=2 SU(N) CSF \leftarrow N=2 SU(N) YMCSF$

level kir

IR

level kuv

UV

Why $|\lambda| < \infty$ when N=2? \rightarrow UV completion by Yang_Mills term!? IR UV N=2 SU(N) CSF \leftarrow N=2 SU(N) YMCSF level k_{IR} level k_{UV} level k_{UV}

Why $|\lambda| < \infty$ when N=2? \rightarrow UV completion by Yang_Mills term!? IR UV N=2 SU(N) CSF \leftarrow N=2 SU(N) YMCSFlevel kir level kuv $|k_{IR}| = |k_{UV}| + N - \frac{N}{2} \times 2$ $\lambda = \frac{N}{k_{IR}} \quad \lambda_{UV} = \frac{N}{k_{UV}} \quad \checkmark$ $|\lambda_{UV}| \in [0,\infty)$ $|\lambda_{IR}| = |\lambda_{UV}| < \infty$

Plan

- \checkmark 1. Introduction
- 2. AdS4/CFT3 duality
 - ✓ Klebanov_Polyakov conjecture
- ✓ 3. Chern–Simons–Vector model
 - ✓ 3.1 Vector fermion matter
 - ✓ 3.2 SUSY vector matter
 - 4. Summary & Discussion

Summary

- We study SU(N)_k CS-vector model in the 't Hooft limit.
- We determined self-energy, free energy of matter fields exactly for all orders of λ.
- The thermal mass and free energy are well-behaved. as interaction stronger, correlation length shorter and DOF less.
- In N=1 case the solution stops existing at some λ .
- In N=2 case the solution exists for all values of λ, which is consistent with exact SC symmetry for ∀N, k. cf. N=4 SYM in 4d
- We discussed the relation of the system to UV theory incorporated with YM kinetic term.

Discussion

- Validity of our gauge choice, Lorentz invariance
- Finite volume analysis (ex. S²xS¹, S³)

cf. [Klebanov_Pufu_Sachdev_Safdi arXiv:1112.5342]

Higher spin currents and their correlation functions

[Aharony_Guri-Ari_Yacoby '12], [Maldacena_Ziboedov '12]

- 3d bosonization [Maldacena_Ziboedov '12]
- Seiberg-like duality cf. [Giveon_Kutasov '08], [ABJ '08]
- Dual SUSY parity Vasiliev theories

[Chang_Minwalla_Sharma_Yin '12], [Sezgin_Sundell '12]

dS4/CFT3 (Sp(N) vector model)

[Strominger et al]

Discussion

- Validity of our gauge choice, Lorentz invariance
- Finite volume analysis (ex. S²xS¹, S³)

cf. [Klebanov_Pufu_Sachdev_Safdi arXiv:1112.5342]

Higher spin currents and their correlation functions

[Aharony_Guri-Ari_Yacoby '12], [Maldacena_Ziboedov '12]

- 3d bosonization [Maldacena_Ziboedov '12]
- Seiberg-like duality cf. [Giveon_Kutasov '08], [ABJ '08]
- Dual SUSY parity Vasiliev theories

[Chang_Minwalla_Sharma_Yin '12], [Sezgin_Sundell '12]

dS4/CFT3 (Sp(N) vector model)

[Strominger et al]

Thank you.