Frame of SCISSORSIII

......

Koutaku Suzuki, LNS, Tohoku university

SCISSORS III

Rear panels of CsI crystals are connected with each other

VS s

Finish!

No supporting frames in the inner area

The total weight of SCISSORS III ~1500kg

Construction of charge detector SPIDER

charge detector SPIDER

Koutaku Suzuki, LNS, Tohoku university

NS Sendai

SPIDER (Spiral-shaped Particle Identification Detector for Elementary Reactions)

BackwardGamma

Lead/SciFi × 252 Energy resolution 7.2% (@ 1 GeV photon) Radiation length X_0 =16.0 mm Lead/SciFi : 13.8 X_0 Koutaku Suzuki, LNS, Tohoku university

EM calorimeter BG

1 mm scintilating fibers ~5000 Lead : generate EM shower Scintillator : detect EM shower

Koutaku Suzuki, LNS, Tohoku university

BackwardGamma

Assemble of BG

NS Sendai

The installation of Lead/SciFi modules were finished

The total weight of Backward Gamma ~2500kg

Installation of lead glasses (RafflesiaII)

Experimental apparatus

novel target system

Solid/Liquid Hydrogen Target								
• feeding pipe (4N pure Al) cooled by a GM cooling sys	tabl	le of spec.						
length:	1000 mm							
• target cell cooled down to 4.7 K								
target thickness: inner diameter:	40 mm 61 mm							
outer diameter:	65 mm							
window (Aramid):operation	12.5 μm X	2						
pre-cooling: target making: target vaporizing:	3 hours 1 hour 1 hour	Easy switch of targets						

Data obtained with FOREST

status of data collection

$2.3G$ events 100 times more η					completion for		r		
H	ydrogen : 2.5G	Stat	tus of c	lata co	ollectio	on d	ata taki	ng	
Deutering (period of the project : June 2007–March 2012)									
	period	hyd スピル数	rogen #of events	deute スピル数#	erium of events	em スピル数 #	pty of events		
	FOREST2008A	10.83 k	$76.49~{\rm M}$			3.50 k	30.43 M		
	FOREST2008B	$29.17 \ k$	$234.48~\mathrm{M}$	—		7.96 k	$27.48~\mathrm{M}$		
	FOREST2008C	25.52 k	$388.15~\mathrm{M}$	$11.43~\mathrm{k}$	$282.93~\mathrm{M}$	19.93 k	$73.20~{\rm M}$		
	小計 (1200 MeV)	65.52 k	$699.12~{\rm M}$	$11.43 \mathrm{k}$	$282.93~\mathrm{M}$	31.39 k	$131.10~{\rm M}$		
	FOREST2009A	23.16 k	$225.14~{\rm M}$	20.28 k	$297.43~\mathrm{M}$	6.00 k	$13.58 \mathrm{\ M}$		
	FOREST2009B	23.98 k	$211.34~{\rm M}$	$35.47 \mathrm{\ k}$	$548.43~\mathrm{M}$	$5.99 \ k$	$13.31 \mathrm{M}$		
	FOREST2009C	27.45 k	$254.13~\mathrm{M}$	—		4.93 k	$13.84~{\rm M}$		
	FOREST2009D	56.38 k	$492.71~\mathrm{M}$	$45.28~\mathrm{k}$	$891.66~\mathrm{M}$	$7.31 \ { m k}$	$23.40~\mathrm{M}$		
	FOREST2009E	34.84 k	$100.37~{\rm M}$	$22.89~\mathrm{k}$	$85.89~{\rm M}$	$16.48 \mathrm{k}$	$12.76~\mathrm{M}$		
	小計 (1200 MeV)	130.97 k	$1183.32~\mathrm{M}$	$101.02~{\rm k}$	$1737.51 { m ~M}$	24.24 k	64.13 M		
	小計 (920 MeV)	34.84 k	$100.37~{\rm M}$	$22.89~\mathrm{k}$	$85.89~{\rm M}$	16.48 k	$12.76~{\rm M}$		
	FOREST2010A	60.84 k	$111.52~{\rm M}$	$37.06 \mathrm{k}$	$114.35~\mathrm{M}$	$9.85 \mathrm{k}$	$10.83 \mathrm{M}$		
	FOREST2010B	34.89 k	$245.19~\mathrm{M}$	$22.28~\mathrm{k}$	$235.78~\mathrm{M}$	$13.17 \ k$	$40.77~\mathrm{M}$		
	小計 (1200 MeV)	34.89 k	$245.19~{\rm M}$	22.28 k	$235.78~\mathrm{M}$	13.17 k	$40.77~\mathrm{M}$		
	小計 (920 MeV)	$60.84 \mathrm{k}$	$111.52~{\rm M}$	37.06 k	$114.35~\mathrm{M}$	$9.85 \mathrm{k}$	$10.83~{\rm M}$		
	計 (1200 MeV)	231.37 k	$2127.63 { m M}$	134.59 k	2253.28 M	68.80 k	$235.99~\mathrm{M}$		
	計 (920 MeV)	95.68 k	211.88 M	$59.95 \mathrm{k}$	200.23 M	26.33 k	$23.59~{\rm M}$		

BG: 2 neutrals, S3: 0 or 1 particle, Raf: 0, Missing mass: nucleon Data obtained in a 3 week run with a H2 target

Data obtained with FOREST

Channels to be investigated other than the η **channel**

$$\pi^0, \quad \pi^0\pi^0, \quad \pi^0\eta, \quad \omega$$

Assignment of the χ partner of the nucleon in the baryon sector: naïve or mirror

transformation of chiral partners $[iQ_A^a, \psi_1] = -i\frac{\tau_a}{2}\gamma_5\psi_1$ $[iQ_A^a, \psi_2] = +i\frac{\tau_a}{2}\gamma_5\psi_2$

Fig. 2. Dominant diagrams for the $\gamma N \rightarrow \pi \eta N$, (a), (b) for the Born terms, and (c) for the Kuroll–Ruderman type term. The $\pi N^* N^*$ coupling is in (a), and the πNN coupling is in (b).

$$\mathcal{L}_{mirror} = \bar{\psi}_1 i \gamma^\mu \partial_\mu \psi_1 - g_1 \bar{\psi}_1 (\sigma + i \gamma_5 \tau \cdot \pi) \psi_1 + \bar{\psi}_2 i \gamma^\mu \partial_\mu \psi_2 - g_2 \bar{\psi}_2 (\sigma - i \gamma_5 \tau \cdot \pi) \psi_2 - m_0 (\bar{\psi}_2 \psi_1 + \bar{\psi}_1 \psi_2) + \cdots$$

• experiments to find out the favor assignment $\gamma p \rightarrow \pi^0 \eta p$ $\eta \rightarrow \gamma \gamma$ $\eta \rightarrow \gamma \gamma$

ω events by detecting protons

Summary up to now

Previous observation

- We observed a narrow baryon resonance N*(1670) in the total cross section for the $\gamma d \rightarrow \eta np$ reaction.
- N* shows up on the neutron, but not on the proton at all.
- N* would be the first candidate for a pentaquark baryon with hidden strangeness in the anti-decuplet.

On going projects at ELPH (1st stage)

- We aim to determine the spin and parity of N*(1670) with single η photoproduction data.
- FOREST provides a large amount of data for π^0 , η , $2\pi^0$, $\pi^0\eta$, ω photoproduction.
- We finished taking data with FOREST in the first stage.
- We also look into the coupling of N* with the proton with high statistics.
- Chiral symmetry in the baryon sector will be investigated through the $\gamma p \rightarrow \pi^0 \eta p$ reaction at the threshold.
- FOREST also provides information on very low energy ωN and $\pi^0 \pi^0$ interactions.

On going project (2nd stage)

New detector construction <requirements for the detector> To be made of single material of detector devices with good energy and position resolutions To have no dead region To have fine granularity good for neutron detection as well **Experiments at Sendai and SPring-8** <at Sendai> $\gamma p \rightarrow \pi^0 \eta p$ at the threshold region with the new <at SPring-8> y detector η' photoproduction in the nucleus

Construction of BGOegg with real scale wooden models

Energy resolution of BGOegg

Red line

