Coulomb branches for quiver gauge theories with symmetrizers

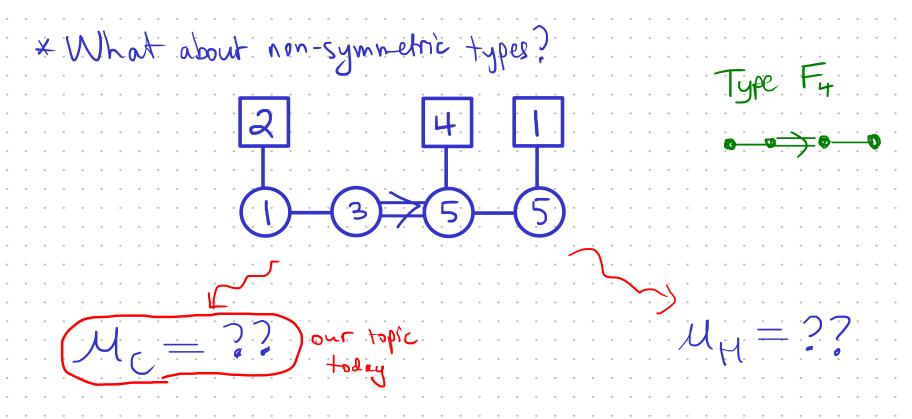
Alex Weekes

University of Saskatchewan

July 21, 2021

Quantum fields, geometry and representation theory 2021 $$\operatorname{ICTS}$$

* 3d N=4 gauge theories are extremely rich from both physical & mathematical perspectives * Especially significant: quiver gauge Heories 2 4 4 Type A4 (1)—(3)—(5)—(5) Miggs branch My Coulomb branch Mc - affine trassmannions) at lest for - geometric Satake) finite ADE -Nakajina quiver varieties * Promising setting for geometric representation theory of symmetric Kae-Moody types



* Expectations from physics (e.g. Hanany and collaborators)

* With Nakajima:

- · Mathematical construction of Mc for symmetrizable types
- · Finite BCFG: Mc ~ gereralized affine Grassmannian stice

- Start with quiver Q=(I,E) = 2 04 vertices edges
- type D4

$$V = \bigoplus_{i \in I} V_i \quad W = \bigoplus_{\bar{i} \in I} W_i$$

$$V_{i} = dim_{c}V_{i}$$
 $W_{i} = dim_{c}W_{i}$

$$G = \bigcap_{i \in I} GL(V_i)$$

$$N = \bigoplus_{i \to j} Hom(V_i, V_j) \oplus \bigoplus_{i \in I} Hom(W_i, V_i)$$

3. Coulomb branch
$$M_c(G_1N) \stackrel{def}{=} Spec H_*(R)$$

Theorem: (BFN) For Q Finite ADE type:

Mc = Wx = generalized affine Gr slice

(of same ADE type)

* G = GQ - semisimple algebraic group (adjoint type)

 $\lambda = \sum_{i} w_{i} \overline{w}_{i}, \qquad \lambda - \mu = \sum_{i} v_{i} \underline{w}_{i} \qquad \lambda, \mu : C^{\times} \rightarrow G$ furdamental
corroll
corroll
corroll

* $M_c \cong W_u$ is "geonetric avater" of weight space

V(x), CV(x) D Larglards duel G

This is a consequence of Geometric Satake.

See Nakajina's leutures: conjecture to hold for all types

transvose slive If un domirant, win com Gra Remarks Grac Gra space of "scattering matrices" = U, [2] T, [2] Z^M U, [2] \ Gales decomposition" Heake +ype < \ Experted: Win is a moduli of singular Granger-monopoles on R3 2) In particular, when $\lambda = 0$ (\Longrightarrow all $w_i = 0$) $M_{c} \simeq \overline{W}_{u}^{o} \simeq \begin{cases} Basel waps & \varphi: |P| \longrightarrow G/B \\ of degree - \mu \end{cases}$ (see Murtubise's 1st penture) (Jarvis, ...)

II) Symnetrizable types

* Cartan matrix A = (aij) i je I is symmetrizable if

diaij = diaji di - "symmetrizers"

for some di > 0

 $\frac{|ex:}{Type} = G_2$ $\Rightarrow \frac{1}{2}$ $(\frac{30}{01})(\frac{2-1}{-32}) = (\frac{6-3}{2})$

Cartan natrix $\begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$ symmetrizers $d_1 = 3$, $d_2 = 1$ $d_1 = 3c$ $d_2 = c$

* Fix orientation Q = (I, E) of "underlying graph"

 $A_{2} \qquad B_{2} \qquad C_{3} \qquad Q = \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \end{array}$

* Choose V= DVi, W= DWi

\star Given $(A, \{di\}, Q, V, W)$, we'll construct \mathcal{U}_{c}
Independent of Edi? and orientation of Q, up to isomorphism
W ₂ W ₂ W ₃ W ₄ Non.
(V) Rinks IF all d; are equal recover usual coulomb branch
Thm: (Nakajina-W.) In finite BCFG types,
Mc ~ Wire of same BCFG type
By Satake, $M_{c} \simeq W_{\mu}^{\lambda}$ is geometric avalar of
$V(\lambda)_{\mu} \subset V(\lambda)$ $\mathcal{O}(A)$

Construction of Mc Di = Spee C[Zi] * For each i e I, formal discs Di = Spec C(Zi) * Consider moduli space R of data: 1) Vertor bundle E; on D; of rank Vi \cdots $\mathbb{D} \in \mathbb{C}$ But have multiple discs... 2) Trivialization (: EilDX ~ ODX over Dî For each i > j 3) Morphisms $S_i: \mathcal{O}_{D_i} \longrightarrow \Sigma_i$ Pi Dij Di $S_{i\rightarrow j}: \rho_{i}^{*} \Sigma_{i} \longrightarrow \rho_{d}^{*} \Sigma_{d}$ $\deg(\rho_i) = \frac{d_i}{\gcd(d_i, d_i)}$ 4) Si, Sizi remain regular under 4's ext 4:05; is a priori defined only on Di $deg(p_i) = \frac{d_i}{gcd(d_i, d_i)}$

* R has natural aution of $GL(v_i)[[2i]] = \bigcap_i Aut(O_{D_i}^{\oplus v_i})$

Thm/Def: (Nakajima-W.)

There exists a convolution probable on $H_{\star}^{\text{GO}}(R)$ making it a commutative algebra. $M_{c} \stackrel{\text{def}}{=} Spee H_{\star}^{\text{GO}}(R)$

* Proof by embedding into commutative ring.

Properties 1) Me is an irreducible normal affine variety over C 2) Deformation quantization $A_{t} = H_{+}^{Gl0) \times C^{\times}} (R)$ Poisson structure on MSmooth locus McJ C Mc is symplectic $\bot_{x}C_{x} = C \times C_{x} = B_{x} \times X_{2}$ 3) Birational nep

H) Satisfies tusted monopole formula of Cremonesi-Ferlito-Hanary-Mekareeya $\frac{1}{2} + \frac{2\Delta(7)}{P_3(t)}$ graded dimension of $H_{\times}^{G(0)}(R)$ 5) Symnetries: $T_{C} = Pontryagin dual of <math>T_{C} \left(\bigcap_{i \in I} GL(V_{i}) \right) \simeq \left(\mathbb{C}^{\times} \right)^{N}$ Then To Mo Sometimes extends to larger group G_{c} (e.g. balanced nodes) $M_{i}=0$, when writing $\mu=\sum_{i}\mu_{i}\beta_{i}^{*}$ 2 G_2 \mathcal{M}_C

T(Wi) = GL(Wi) nexinal torus 6) Mass paraneters: $T_{\neq} = \prod_{i} T(w_{i}) \times (C^{\times})^{b_{i}(Q)}$ $\mathcal{M}_{c}^{\mathsf{m}} \longrightarrow \mathcal{M}_{c}$ as partial resolutions

An example:

Minimal singularities hour

$$\frac{2l}{2l}$$

$$\frac{2l$$

In particular, $\mathcal{M}_{c}(\mathbb{I})$ affire Grass, slice Work type C2 $\frac{1}{2} \int_{C} \left(\frac{1}{2} \right)^{2} dt = \frac{1}{2} \int$ affire Grass. slice Way of type Gz Hese are minimal degenerations in affire Grassmannians of types Cz, rup. Gz (Malkin-Ostrik-Vybornov)

Higgs branches? ** By analogy wir

* By analogy with usual quiver gauge Heories,
Miggs branches would be "Nakajina quiver varieties

 $\mathcal{M}_{H} = ?$

* Several constructions of representations of quivers:

- mobulated graphs (Dlab-Ringel, Tingley-Nandakumar)

- work of Geiss-Leelerc-Schröer

Unclear how there relate to Mc or MH

From Hanary's lectures: (for we!) in the sense of Beauville: for any resolution of singularshes symplectic singularities $\pi:X\longrightarrow M_{c}$ Ti (Wury) extends to regular 2-form on all hyper-kähler Coulomb branches =) My Las fin many symplectic leaves quatients (Hrys barnes)

Q: Where in this diagram do Mc for symmetrizable types live?