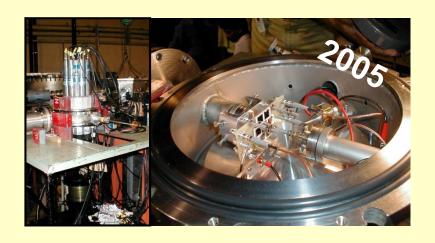

# Detectors for Nuclear Physics

Vandana Nanal Tata Institute of Fundamental Research Mumbai, India

#### Plan

- Basic concepts
- Examples of advanced/unique detector setups in India
- Detectors for experiments with RIB (DEGAS, PARIS)
- Detectors for hypernuclei
- Cryogenic detectors & Low background setups
- Some recent novel detector development efforts in India






**Ernest Rutherford** 

Set up for <sup>8</sup>Be gamma-decay experiment

(V.M. Datar et al. @PLF, Mumbai)



#### Nuclear Physics experiments

Fixed target/source
Normal and Inverse kinematics (forward focused)
non-relativistic and relativistic (Doppler corrections)
Radiation damage

#### Task list for detectors...

Identify the Reaction products & complete kinematic measurements

- -measure E/momentum, angle, mass
- -correlations, time differences
- -large solid angle coverage  $(4\pi)$
- -high granularity

(Signal processing – high density, high count rate, data filtering)

#### Radiations & preferred Detectors

- Charged particles (p, α, HI) Silicon detectors, gas detectors, diamond detectors
  - -have to be detected in vacuum
- Electrons (organic, inorganic) scintillators, Si/Ge detectors, Microchannel Plates, Cerenkov radiation detectors, GEM
- Photons scintillators (inorganic), High purity Ge Detectors
   -low interaction probability
- Neutrons plastic scintillators
  - -difficult to detect/shield
- Neutrinos
  - -most difficult to detect

#### Overview of properties of detectors

- **Gas detectors**: good timing, poor energy resolution, need thin windows, large sizes, typical ionization potential ~10-25 eV
- Scintillation detectors: good timing, moderate energy resolution, large size/odd shapes, very high efficiency, typical ionization potential ~30 eV
- **Semiconductor detectors**: good energy resolution, moderate timing, expensive, more prone to radiation damage, excitation energy ~ 2 eV
- **Cryogenic detectors:** measure phonon signal, very good energy resolution (insulators, superconductors)
  - Superconducting detectors: few meV for quasi-particle excitation, Wide choice of materials, very good energy resolution

# Some examples of advanced detector setups @ INDIA

#### Three major accelerator centres


- BARC-TIFR Pelletron Linac Facility @ Mumbai
- Inter University Accelerator Centre (IUAC)@ New Delhi
- VECC @ Kolkata

&

- reactor based experiments (n,f),  $(n, \gamma)$  etc.
- Low background experiments (UG lab)

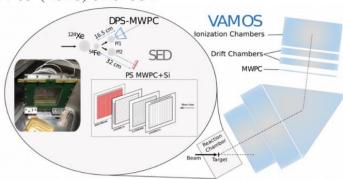
```
(Mass separators, ion traps, ....)
```

#### Detectors for heavy ions



Double Arm fission TOF set up at GPSC-IUAC Rev. Sci. Instrum. 92, 033309(2021)




Hybrid Telescope Array for Quasi-elastic scattering and Fission angular Distribution NIM A 903 (2018) 326–334

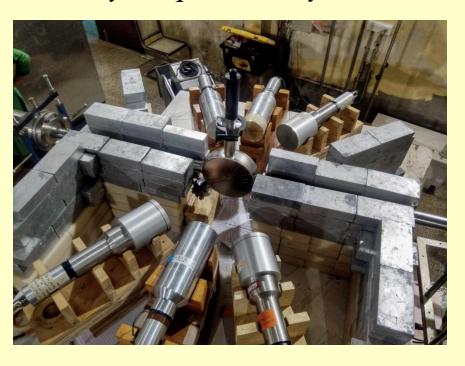




Annular Proportional counter for Coulex NIM A 922 (2019) 209

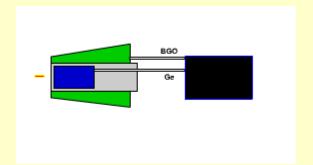
Detector Lab, IUAC (New Delhi)

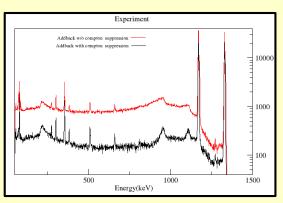


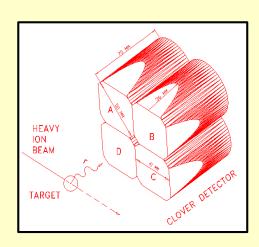


Integrated MWPC-SSD Detector system at VAMOS (GANIL, France)
PHYSICAL REVIEW C 106, 044607 (2022)

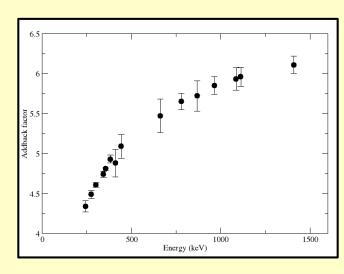
https://www.iuac.res.in/detector-lab

## Scintillator detector arrays : NaI(TI) & LaBr<sub>3</sub>Ce

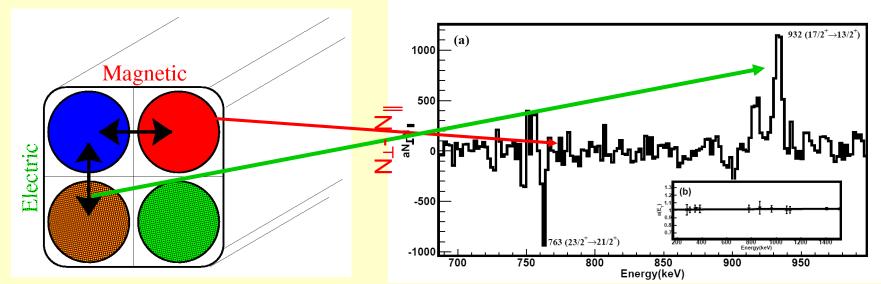

Planar Geometry, Compact  $4\pi$  array, Square array





- Reaction dynamics studies spin gated Evaporation Residue cross sections of  $^{186}Pt$
- Nuclear Astrophysics First measurements of  ${}^{10}B(p,\gamma)^{11}C$  absolute capture cross sections at Interstellar Medium energy.

#### Clover detector



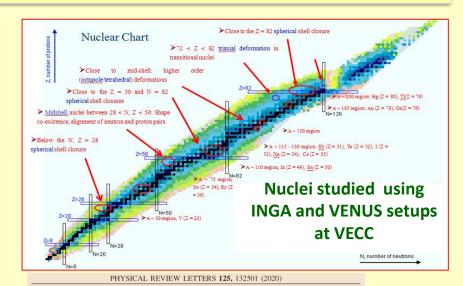




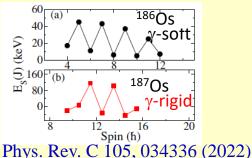



#### Polarisation measurement




## Gamma Detector Array




- **VECC** array for **Nu**clear **Spectroscopy** (**VENUS**): Compton suppressed clover detectors in horizontal plane.
- Modular structure for easy maneuvering and positioning.
- Versatility in number of detectors, their angles, targetdetector distance and use of ancillary detectors..



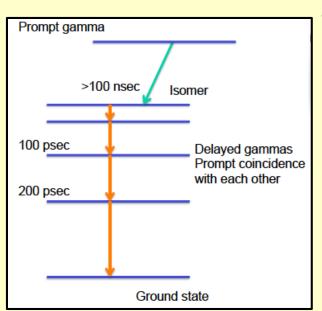
Collaboration
SINP,
UGC-DAE-CSR
&VECC, Kolkata



γ-rigid triaxial shape in <sup>187</sup>Os

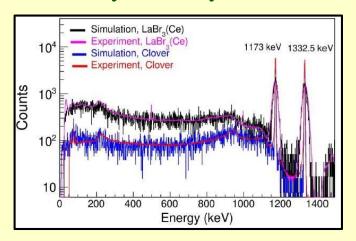


8 12 16 20 Spin (h)


First Observation of Multiple Transverse Wobbling Bands of Different Kinds in <sup>183</sup>Au S. Nandi<sup>0</sup>, <sup>1,2</sup> G. Mukherjee<sup>0</sup>, <sup>1,2</sup> Q. B. Chen<sup>0</sup>, S. Frauendorf<sup>0</sup>, R. Banik<sup>0</sup>, <sup>1,2</sup> Soumik Bhattacharva, <sup>1,2</sup> Shabir Dare, <sup>1,2</sup> S. Bhattacharya, <sup>1,2</sup> S. Chatterjee<sup>2</sup>, S. Das, S. S. Samanta, R. Rat Sajad Ali, H. Pai<sup>0</sup>, Md. A. Asgar, S. Das Gupta, <sup>10</sup> P. Chowdhury, <sup>11</sup> O.6 Ca (corm) 183 Au Phys. Rev. Lett. 125, 132501 (2020)

Courtsey: Chandana Bhattacharya (VECC)

# Hybrid Array of HPGe Clover - LaBr3(Ce)


HPGe for enhanced, highly selective decay path isolation &

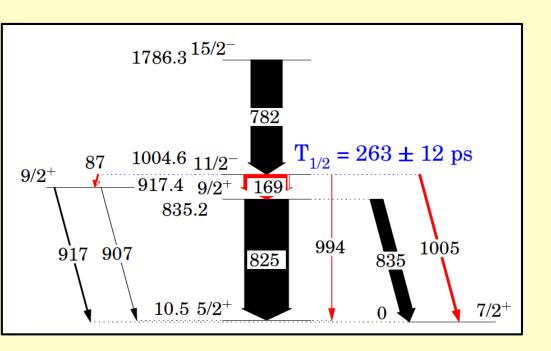
LaBr3(Ce) for gated sub-nanosecond lifetime measurements (With other ancillary detectors/set-up (CsI(Tl), Si detectors, plunger)



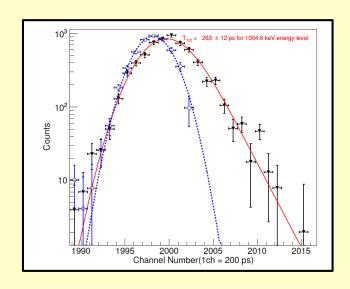
#### Some examples of Physics cases:

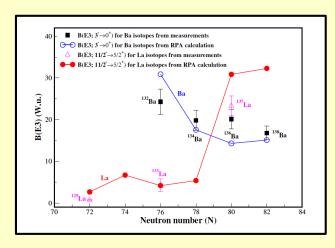
Isomer depletion, Lifetime measurements for E1 decays, Octupole shapes, Gamma bands, Wobbling mode, Test of K-hindrance, Collectivity in heavy nuclei,




Experiments performed in collaboration

TIFR, PU, IIT Ropar, BARC, VECC, GG Univ, Presidency Univ


B. Das et al., J. of Instrum. Soc. of India **51**, 44 (2021).

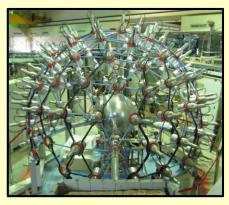

Courtsey: R. Palit (TIFR)

# Measuring Lifetime in <sup>137</sup>La to study octupole correlations

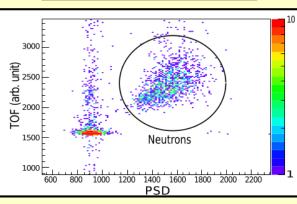


The measured lifetime of 1004.6-keV state is 263(12) ps

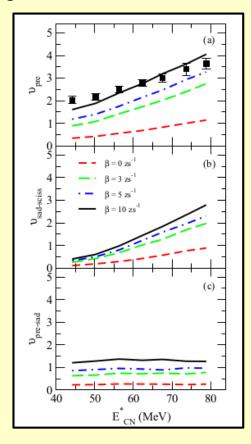




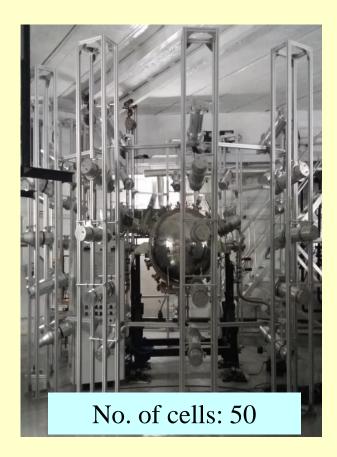

Md S R Laskar et al., PRC104, Letter 011301 (2021)


# National Array of Neutron Detectors (NAND@IUAC)

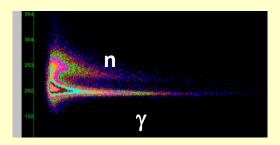
100 liquid scintillator cells (5"x5" BC501A), coupled to 5" PMT


Study of fusion-fission & quasi-fission dynamics through neutron multiplicity & mass distribution -coincidence measurements of neutron and fission fragments




Nuclear dissipation at high excitation energy and angular momenta in reaction forming <sup>227</sup>Np




<sup>30</sup>Si +<sup>197</sup>Au (44-78 MeV) Measured pre-scission neutron multiplicity indicates a strong fission hindrance



## Neutron TOF array@VECC



Pulse shape discrimination



- Nuclear reaction dynamics studies
- Neutron energy Measurement using TOF detector
- Neutron Multiplicity measurement to get the Information of Excitation of the system
- Study of exotic structure of nucleus using multi particle correlation



Courtsey: Chandana Bhattacharya (VECC)

# Examples of advanced detector setups @ RIB facility

FAIR@GSI, SPIRAL, SPIRAL2@GANIL

# DEGAS at NuSTAR@FAIR (Indian Contribution)



Detector at FAIR for the study of formation of heavy elements in the Universe

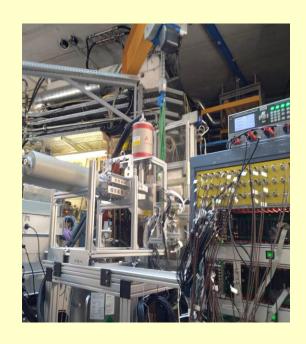
A very complex and complicated device



- Encapsulated HPGe crystals in the cryostat with electrical cooling.
- The detector consists of 38 producible components Cu, stainless steel, Al
- High vacuum

Developed at GSI in collaboration with Ferchau GmbH, Germany, Partial production at TIFR, Mumbai, India.





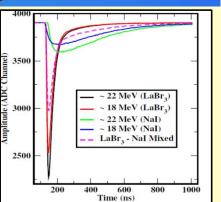

Fabrication, First mechanics test, TIFR, February 2016

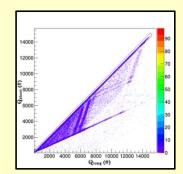
In-kind contract finalized -- Various components of DEGAS, HPGe detector with Imaging, BGO catcher with SiPM

Courtsey: R. Palit (TIFR)

# Planar HPGe detector: Implant detector for decay spectroscopy of heavy nuclei at DESPEC/FAIR setup

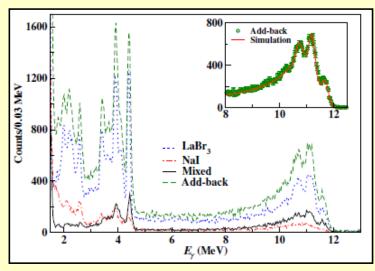



R. Palit et al., \$506 experiment at GSI/FAIR

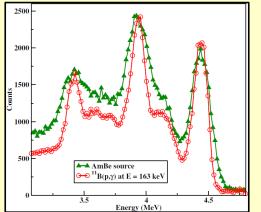

- Interested to measure low energy  $\gamma$ -rays from isomeric decay.
- > Sensitive to the Internal conversion electrons (ICE).
- ✓ Response of HPGe detector and its electronics to 35 GeV heavy ion implantation.
- ✓ Study of damage due to implantation.
- ➤ Response of DEGAS detector kept in downstream direction.
- Decay of milli-second isomer of <sup>184</sup>Pt inside the detector ( $I^{\pi} = 8^{-}$ ,  $E_x = 1840.3 \text{ keV}$ ,  $E_Y = 49 \text{ keV}$ )



# PARIS -Photon Array for studies with Radioactive Ion and Stable beams



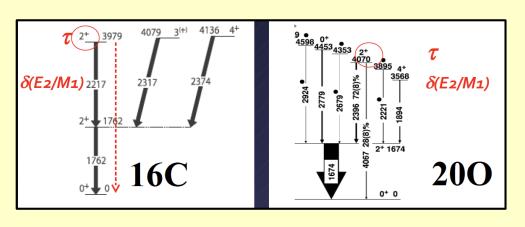


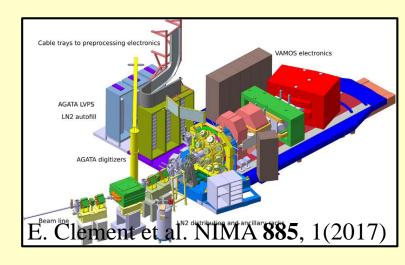




~ 50% enhancement in photopeak without any significant effect on resolution (2.9% -3.4%)

<sup>11</sup>B (p, γ) @ 163 keV with V1720E digitizer (250 MHz, 12 bit ADC)



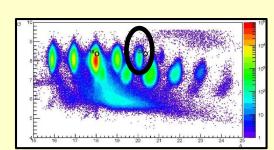

Intrinsic Broadening of AmBe Source demonstration of phoswich resolution

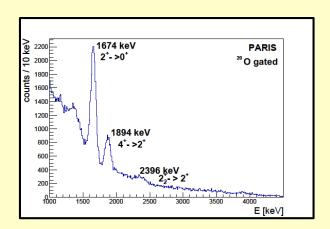



The broadening due to source recoil ~ 2%

C. Ghosh et al., JINST P05023 (2016)

### Lifetime measurements of excited states in neutron-rich C and O isotopes




S. Leoni, B. Fornal, M. Ciemala et al.,

PARIS (2 clusters), 2 large LaBr<sub>3</sub>, AGATA, VAMOS

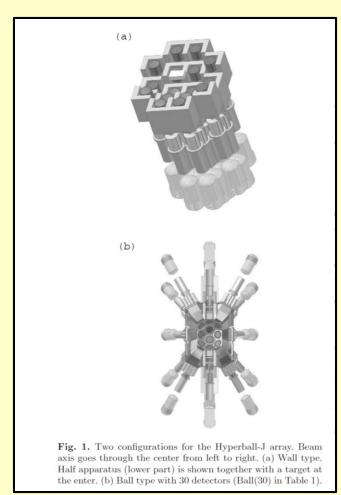






# HYPERBALL -J for Probing Hypernuclei

#### Pulse tube refrigerator


compact detector→close mounting→ high efficiency cooling below 85 K→to minimise n-induced damage

Flexible geometry

Fast ACS – PWO

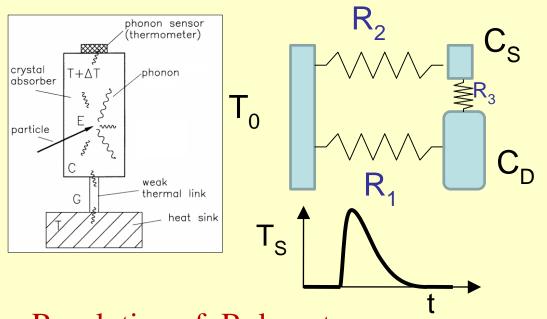
Cooling PWO ~-20 C??

- $\gamma$ - $\gamma$  coincindences of hypernuclei
- 5-7% efficiency



Proceedings of the IX International Conference on Hypernuclear and Strange Particle Physics (pp.25-28) 2007

### Detectors for rare decays


Cryogenic detectors
Low background detectors

#### Low Temperature calorimetry

*Energy of particle*  $\rightarrow$  *Thermal energy in detector* 

→ measurable temperature rise if net heat capacity is very low

#### **Bolometer Schematic**



- $\Delta T = E/C_D$
- System returns to equilibrium with a time constant  $\tau = C/G$ )
- Ideally,  $R_3 \approx 0$ 
  - C<sub>D</sub> should be small
  - $-C_S \ll C_D$
  - Large R<sub>1</sub> and R<sub>2</sub> (weak heat link)

#### Resolution of Bolometer

- Limited by Thermodynamical fluctuation noise  $\{\delta E = (kT^2C(T))^{1/2}\}$
- Depends only on operating temperature and specific heat
- Independent of incident Energy

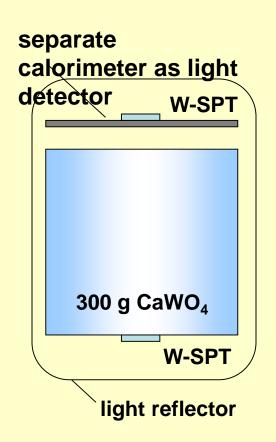
#### Low Tempearture Detectors (LTD)

#### Wide range of applications (mostly at T < 100 mK)

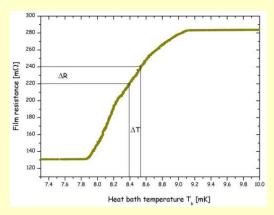
- photons (sub mm to soft gamma rays)
- particles ( $\alpha$ ,  $\beta$ , heavy ions, WIMPS)

#### Why they are attractive

- Thermal source itself is a detector
  - → devoid of dead layers, self absorption, reflection at surfaces
- High efficiency
- Resolution depends upon factors like T (temperature), C (heat capacity), G (thermal conductance of the weak link to bath), thermodynamic fluctuation noise and thermometer sensitivity; does not depend on particle or its energy


limited by extraneous factors like noise

• Large arrays can be easily built (mg to Kg)

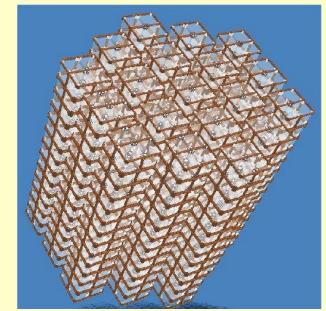

Ideal for high precision measurements & rare event studies (DBD, Dark matter)

#### CRESST-II

#### Cryogenic Rare Event Search with Superconducting Thermometers







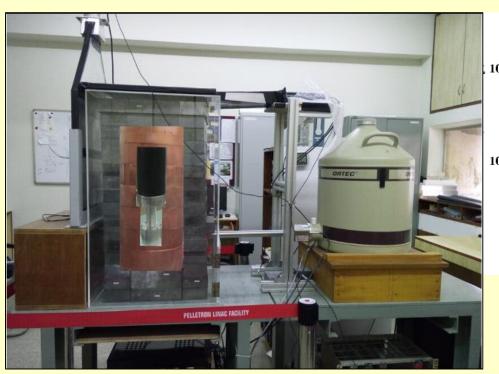

# Cryogenic Underground Observatory (for) Rare Events

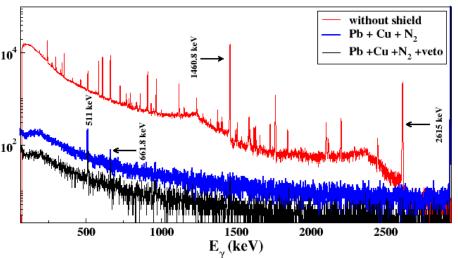


**203 kg** <sup>130</sup>Te

Array of 988 detectors: 19 towers , 13 modules/tower 4 detectors/module




5 Pulse tube cryocoolers 1.5W @ 4.4K, 40W @ 44K Dilution refrigerator 5μW @ 12mK, 1.5mW @ 120mK


## Scintillating Bolometers

- Measure both light and phonon signals
- •Discrimination of nuclear recoils/alpha events from radioactive backgrounds (electron recoils) by simultaneous measurement of phonons and scintillation light
  - Different scintillating crystals (CdWO<sub>4</sub>, CaF<sub>2</sub>, CaMoO<sub>4</sub>, SrMoO<sub>4</sub>, PbMoO<sub>4</sub>, ZnSe, ...) have been tested
  - Some of them show excellent results (for example CdWO<sub>4</sub>, CaMoO<sub>4</sub> and ZnSe).

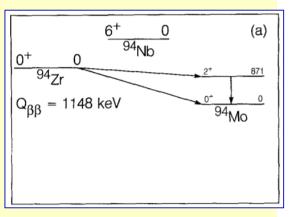
CRESST, LUCIFER, CUPID

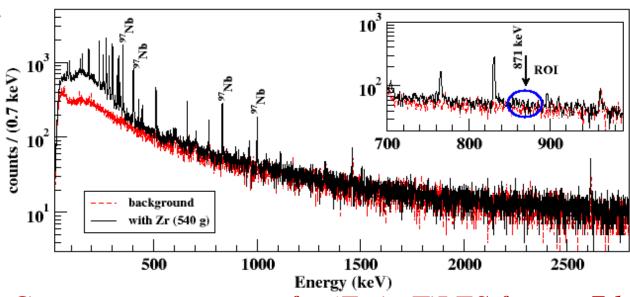
## TiLES (Tifr Low background Experimental Setup)





Sensitivity of the setup:


<sup>40</sup>K – 2 ppb <sup>232</sup>Th, <sup>238</sup>U -10 ppb


- Detector surrounded by OFHC Cu (5 cm), Pb (10 cm) ( $^{210}$ Pb < 0.3 Bq/kg).
- $\blacksquare$  N<sub>2</sub> purging system and active muon veto (plastic scintillators)
- TiLES is used for material screening such as ETP Cu, INO site rock, CsI crystals for DINO, etc.

*N. Dokania et al.* NIM A **745,** 119 (2014)

#### DBD to excited state in 94Zr

Decay Scheme of 94Zr





Gamma ray spectra of  $^{nat}Zr$  in TiLES for t=7d

- The current best experimental limits are  $T_{1/2} > 1.3 \times 10^{19} \text{ y}$  (68% C.L.) (*Norman et al.*, *Phys. Lett. B 195*, 126 (1987)).
- 540 g of <sup>nat</sup>Zr (99.5% purity) counted in the TiLES,

Double beta decay of 94Zr to the 1st excited state in 94Mo

 $T_{1/2} > 2.0 \times 10^{20} \text{ y } 68\% \text{ C.L.}, 6.12 \times 10^{19} \text{ y } at 90\% \text{ C.L.}.$ 

**Systematic errors:** efficiency (5%), isotopic abundance (1%) drifts in energy scale (1%) Background model fit parameters (14%)

*N. Dokania et al.* Eur. Phys. J. A **53**, 74 (2017)

#### Muon induced $(n, \gamma)$ reactions

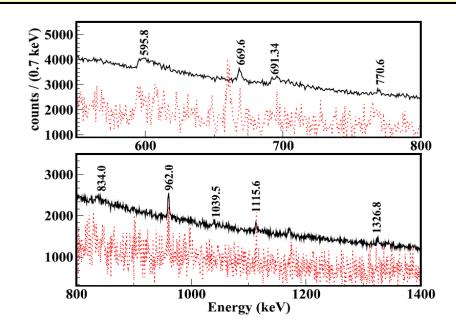
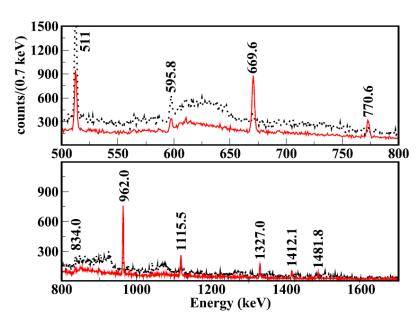
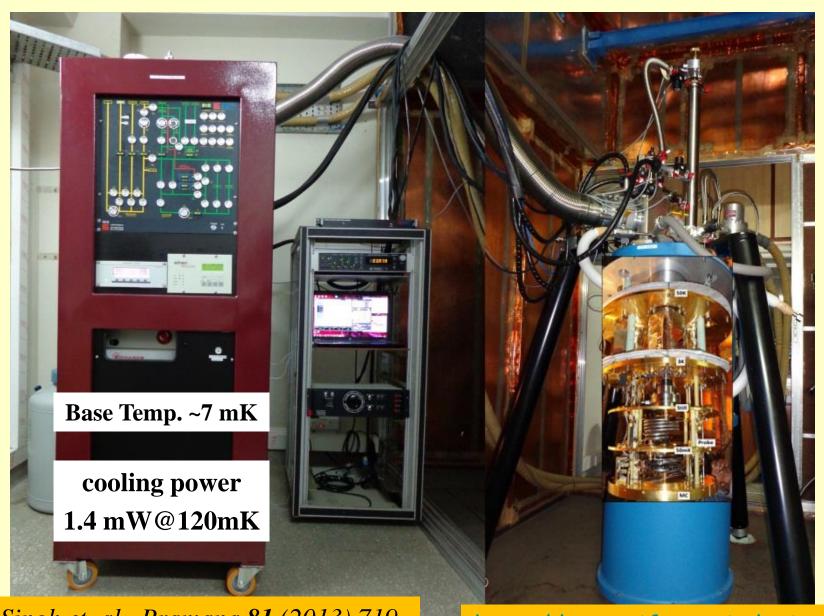



Fig. 4. Prompt (black) and chance (red) gated  $\gamma$ -ray spectra in the TiLES HPGe detector. The chance gated spectrum has been scaled up by an arbitrary factor ( $\sim 330$ ) for better viewing ( $T_{\rm data} = 329.2 \ \rm days$ ).

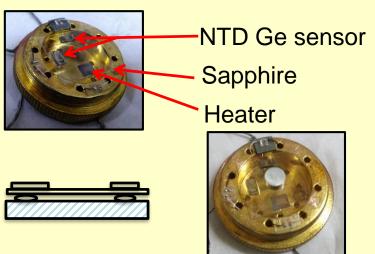




Fig. 9. A comparison of simulated  $\gamma$ -ray spectra generated with GEANT4.10.00 (black, dotted, scaled up by a factor of two for better visibility) and GEANT4.10.05 (red, solid)  $(N_{inc}(n) = 1.435 \times 10^8)$ .

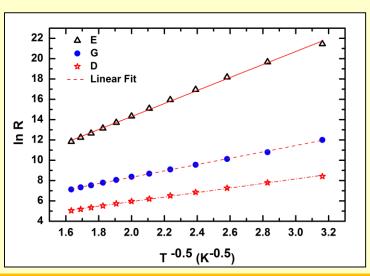
#### H. Krishnamoorthy et al. Eur. Phys. J. A 55, 106 (2019)

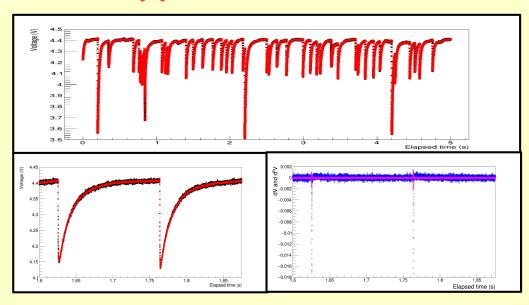
# Detector developments in progress in INDIA

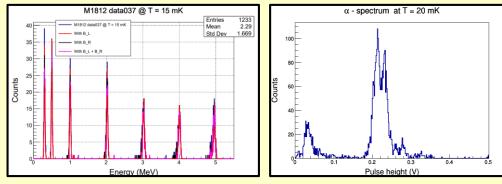
- Cryogenic bolometer,
- Scintillators
- Thermal neutron detector
- Imaging detectors


## Cryogen free dilution refrigerator installed at TIFR




V. Singh et. al. Pramana 81 (2013) 719


http://www.tifr.res.in/~tin.tin/


### Test with blank sapphire & Sn



# Indegenously developed NTD Ge sensor for mK thermometry



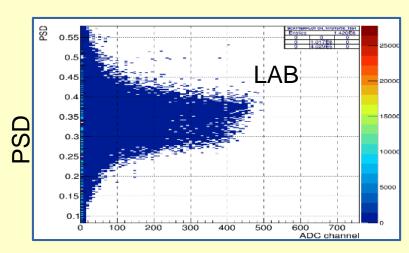


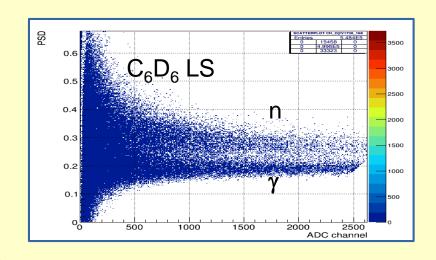


A. Garai J Low Temp Phys, 199, 95 (2020)

Mathi et al. 10.1109/WOLTE.2014.6881014

In R varies linearly with T--0.5


A. Garai et al. Journal of Low Temp. 10.1007/s10909-015-1379-6


## Development of new liquid scintillators

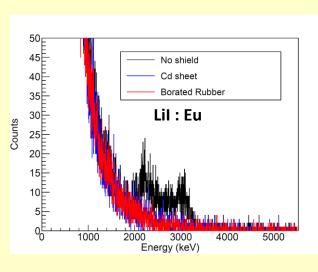
Solvents: phenyl-oxylyl ethane (PXE), linear alkyl-benzene (LAB), diisopropylnaphthalene (DIN)

Biodegradable, relatively safe solvents, with a high flash point, very low toxicity Well suited for large size (tonne) detectors

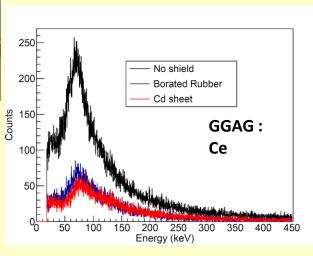
#### LAB LS & Deuterated liquid scintillators (DLS)






Energy

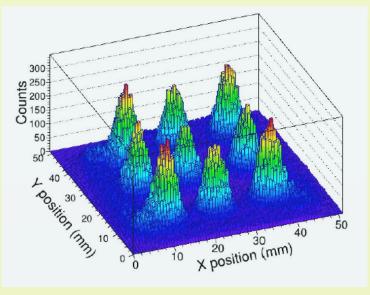
- No PSD observed in LAB LS
- DLS results very promising....

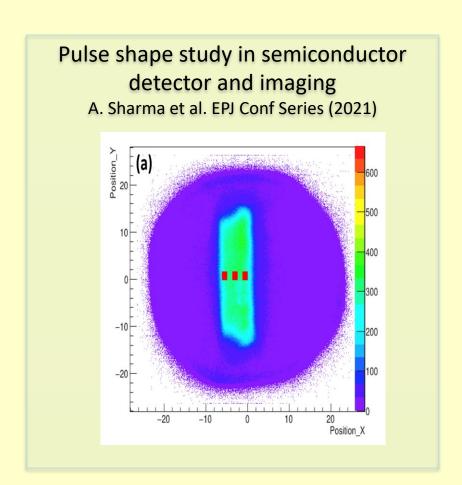

Courtsey: P.C. Rout (BARC)

# Thermal neutron detectors (for low flux thermal neutrons)

- Thermal neutron background measurement feasibility at rare event sites
- 1 mCi Am-Be neutron source, Fast neutrons thermalized using HDPE sheets
- Approximate thermal neutron flux ~10<sup>-2</sup> cm<sup>-2</sup>s<sup>-1</sup>
- Lithium Iodide doped with Europium (LiI:Eu) and Gadolinium Gallium Aluminium Garnate doped with Cerium (GGAG:Ce) detectors
- Measurements done at NISER in collaboration with BARC colleagues






# Position sensitive gamma ray detectors for basic research and applications

Development of position sensitive scintillator detector

B. Das et al. EPJ Conf Series (2021) (First prize in ANNIMA 2021 Conf)





#### Summary

- ➤ A variety of detector setups (gamma. Neutron, charge particles) developed and operational at major accelerator centres in India.
- > Cryogenic detectors wide range of applications for high precision measurements & rare event studies like NDBD, Dark matter
- > Imaging, GEM, and other position sensitive detectors have wider applications in other areas
- > In India, efforts are underway for developments of various scintillators and bolometric detectors

