Time-evolution on the information lattice

Jens Hjörleifur Bárðarson
KTH Royal Institute of Technology, Stockholm

Claudia Artiaco KTH

David Aceituno KTH

Christoph Fleckenstein KTH -> ParityQC

Loïc Herviou KTH -> EPFL

Thomas Klein-Kvorning KTH

SciPost Physics 13, 080 (2022); arXiv:2310.06036; arXiv:2312.13420

Thermalization, entanglement and the ETH

At long times

> Quench
> $\left|\psi_{0}\right\rangle \rightarrow|\psi(t)\rangle=e^{-i H t}\left|\psi_{0}\right\rangle$

Details of long range entanglement don't matter (but it matters that it is there)

Motivation/Problem: How to simulate thermalizing dynamics to long times?

The information lattice - organization of entanglement at various scales

What is entanglement? And how is it related to information?

"Entanglement is [...] the characteristic trait of quantum mechanics" - Schrödinger 1935

$$
\left.\begin{array}{l}
\mathscr{H}=\mathscr{H}_{A} \otimes \mathscr{H}_{B} \\
\rho \in \mathscr{H} \\
\rho^{2}=\rho
\end{array}\right\} \quad \begin{array}{ll}
\mathrm{A} \\
\rho \neq \rho_{A} \otimes \rho_{B} & \text { (in any basis) } \quad \Rightarrow \quad \rho \quad \text { has entanglement between } A \text { and } \mathrm{B}
\end{array}
$$

$$
\text { Information of state accessible in } \mathrm{A} \text { is contained in } \quad \rho_{A}=\operatorname{Tr}_{B} \rho \quad \text { via } \quad\left\langle O_{A}\right\rangle=\operatorname{Tr}_{A}\left(\rho_{A} O_{A}\right)
$$

If ρ entangled, then all information in the state can not be accessed locally in A and B!
"Entanglement is nonlocal information"
"Quantum correlations are locally inexplicable" Bell ‘81

So, how much information is accessible locally?

If $\rho_{A}^{2}=\rho_{A}$ then in principle we have access to l_{A} bits of information
If $\rho_{A} \propto \mathbf{1}_{2}$ then in principle we have access to 0 bits of information

In between, the accessible information is the Von Neumann (Shannon) information

$$
\begin{gathered}
I\left(\rho_{A}\right)=\log _{2} 2^{l_{A}}-S\left(\rho_{A}\right)=l_{A}-S\left(\rho_{A}\right) \\
S=-\operatorname{Tr}_{A}\left(\rho_{A} \log _{2} \rho_{A}\right)
\end{gathered}
$$

Q: what is the distribution of information in a given state?

Example: information in a singlet

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle) \quad \rho=\frac{1}{4} \mathbf{1}_{4}
$$

There is no information in the single sites!

$$
\begin{gathered}
\rho_{A}=\frac{1}{2} \mathbf{1}_{2}=\rho_{B} \\
S_{A}=\log _{2} 2=1 \\
I_{A}=0=I_{B}
\end{gathered}
$$

All information is on the two sites together

$$
\begin{gathered}
S_{A \cup B}=0 \\
I_{A \cup B}=\log _{2} 2^{2}=2
\end{gathered}
$$

Information on single site says nothing

$$
\begin{aligned}
& \text { nformation on single site says noth } \\
& \text { about information on two sites }
\end{aligned}
$$

$$
\begin{gathered}
\rho_{A}=\frac{1}{2} \mathbf{1}_{2}=\rho_{B} \\
S_{A}=\log _{2} 2=1 \quad I_{A}=0=I_{B}
\end{gathered}
$$

Fully mixed two site state has no information

$$
\begin{gathered}
S_{A \cup B}=\log _{2} 2^{2}=2 \\
I_{A \cup B}=0
\end{gathered}
$$

(Mutual) information on scale $l=1$

$$
I_{l=1}=I_{A \cup B}-I_{A}-I_{B}
$$

Example: information in the Greenberger-Horne-Zeilinger state

$$
|\mathrm{GHZ}\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)
$$

There is no information in the single sites!

$$
\begin{gathered}
\rho_{1}=\rho_{2}=\rho_{3}=\frac{1}{2} \mathbf{1}_{2} \\
S_{1}=\log _{2} 2=1 \\
I_{1}=I_{2}=I_{3}=0
\end{gathered}
$$

There is some information in two sites

$$
\begin{gathered}
\left.\rho_{12}=\frac{1}{2}(|00\rangle\langle 00|+|11\rangle\langle 11|)\right) \\
S_{12}=\log _{2} 2=1 \\
I_{12}=2-S_{12}=1
\end{gathered}
$$

There is information on three sites since

$$
\begin{gathered}
\rho_{12}^{2} \neq \rho_{12} \\
S_{123}=0 \\
I_{123}=3-I_{12}-I_{23}=1
\end{gathered}
$$

More generally information on scale 3

$$
\begin{aligned}
& I_{l=3}=I_{123}-I_{12}-I_{23}+I_{2} \\
& I_{l}=I_{A \cup B}-I_{A}-I_{B}+I_{A \cap B}
\end{aligned}
$$

$$
l=2
$$

$$
l=1
$$

$$
l=0
$$

The information lattice for larger singlet states

Product state of neighbouring singlets
Rainbow scar state

Random singlet

A random state in Hilbert space has maximum entropy at system size scale

$$
\begin{aligned}
|\mathrm{RMT}\rangle & =\sum_{\sigma} \psi_{\sigma_{1}, \ldots, \sigma_{L}}|\sigma\rangle \\
P\left(\psi_{\sigma}\right) & =\delta\left(\sum_{\sigma}\left|\psi_{\sigma}\right|^{2}-1\right) \\
S_{\text {Page }} & =l_{A}-\frac{1}{2} \frac{2^{l_{A}}}{2^{L-l_{A}}}
\end{aligned}
$$

Equivalent to infinite temperature thermal state according to the eigenstate thermalisation hypothesis

Localisation on the information lattice - topological superconductor

δ Disorder strength
Δ Local topological marker
[Artiaco, Aceituno, Klein-Kvorning, JHB '24]

Localisation on the information lattice - Many-body localisation (Ising Z2)

δ Disorder strength $\delta=\overline{\ln J / \ln h}$
Δ Local topological marker

Dynamics on the information lattice - ballistic growth of entanglement in a random unitary circuit

Random brickwork of independent random unitaries

$\in \operatorname{CUE}(4 \times 4)$

Entanglement entropy grows ballistically before saturating at the Page value

Dynamics on the information lattice - ballistic growth of entanglement in a random unitary circuit

Random brickwork of independent random unitaries

$$
\in \operatorname{CUE}(4 \times 4)
$$

Entanglement entropy grows ballistically before saturating at the Page value

Dynamics on the information lattice - ballistic growth of entanglement in a random unitary circuit

Random brickwork of independent random unitaries

$$
\in \operatorname{CUE}(4 \times 4)
$$

Entanglement entropy grows ballistically before saturating at the Page value

Dynamics on the information lattice - ballistic growth of entanglement in a random unitary circuit

Random brickwork of independent random unitaries

$$
\in \operatorname{CUE}(4 \times 4)
$$

Entanglement entropy grows ballistically before saturating at the Page value

Dynamics on the information lattice - ballistic growth of entanglement in a random unitary circuit

Random brickwork of independent random unitaries

$$
\in \operatorname{CUE}(4 \times 4)
$$

Entanglement entropy grows ballistically before saturating at the Page value

000 0000 00000 000000 0000000 00000000 OOOOOOOOO 0000000000 00000000000 OOOOOOOOOOOO OOOOOOOOOOOOO 00000000000000

Dynamics on the information lattice - ballistic growth of entanglement in a random unitary circuit

Random brickwork of independent random unitaries

$$
\in \operatorname{CUE}(4 \times 4)
$$

Entanglement entropy grows ballistically before saturating at the Page value

Dynamics on the information lattice - ballistic growth of entanglement in a random unitary circuit

Random brickwork of independent random unitaries

$$
\in \operatorname{CUE}(4 \times 4)
$$

Entanglement entropy grows ballistically before saturating at the Page value

Time evolution on the information lattice

$$
\begin{aligned}
\partial_{t} \rho_{n}^{\ell}= & -i\left[H_{n}^{\ell}, \rho_{n}^{\ell}\right] \\
& -i \operatorname{Tr}_{r}^{L}\left(\left[H_{n-12}^{\ell+r}-H_{n}^{\ell}, \rho_{n \rightarrow+12}^{\ell+r}\right]\right) \\
& -i \operatorname{Tr}_{r}^{R}\left(\left[H_{n+12}^{\ell+r}-H_{n}^{\ell}, \rho_{n+1 / 2}^{\ell+1}\right]\right)
\end{aligned}
$$

But ℓ^{*} increases with time (growth of entanglement)!
(Projected) Petz recovery map at fixed scale fails

Need to keep track of information flow

$$
\begin{aligned}
& \partial_{t} I_{n}^{\ell}=\operatorname{Tr}\left(\nabla S_{n}^{\ell} \partial_{t} \rho_{n}^{\ell}\right) \\
& \nabla \nabla_{n}^{\ell}=-\log \left(\rho_{n}^{\ell}\right)-1
\end{aligned}
$$

$$
\begin{aligned}
\partial_{t} I\left(\rho_{n}^{\ell}\right) & =-i \operatorname{Tr}\left(\left[\nabla S_{n}^{\ell}, H_{n}^{\ell}\right] \rho_{n}^{\ell}\right) \\
& -i \operatorname{Tr}\left(\left[1_{2 r} \otimes \nabla S_{n}^{\ell}, H_{n-+12}^{\ell+1}-H_{n}^{\ell}\right] \rho_{n-1 / 2}^{\ell+1}\right) \\
& -i \operatorname{Tr}\left(\left[\nabla S_{n}^{\ell} \otimes 1_{2 r}, H_{n+12}^{\ell+r}-H_{n}^{\ell}\right] \rho_{n+1+12}^{\ell+r}\right) \\
& =J_{r}^{R}\left(\rho_{n-r / 2}^{\ell+r}\right)+J_{r}^{L}\left(\rho_{n+r / 2}^{\ell+r}\right)
\end{aligned}
$$

Minimise information on a large scale, keeping information and information flow on smaller scales fixed

$$
\bar{\rho}_{n}^{\ell}=\rho_{n}^{\ell}+\chi_{n}^{\ell}
$$

$$
\begin{aligned}
& \operatorname{Tr}_{1}^{R}\left(\chi_{n}^{\ell}\right)=0 \\
& \operatorname{Tr}_{1}^{L}\left(\chi_{n}^{\ell}\right)=0 \\
& J_{r}^{R}\left(\chi_{n}^{\ell}\right)=0 \\
& J_{r}^{L}\left(\chi_{n}^{\ell}\right)=0
\end{aligned}
$$

Defines subspace from which to obtain $\xi=\mathbf{P} \chi$
$\longrightarrow \quad$ Maximize $\quad S(\rho+\xi)=S(\rho)+\operatorname{Tr}\left(\mathrm{P} \nabla_{\rho} S \chi\right)+\frac{1}{2} \operatorname{Tr}\left(\chi \mathrm{P} \mathscr{H}_{\rho} \mathrm{P} \chi\right)+\mathcal{O}\left(\xi^{3}\right)$

To get reliable information current, evolve information to larger scale and allow to build up before minimising

Benchmark: energy diffusion in the mixed field Ising model

$$
\begin{aligned}
& H=\sum_{i} J \sigma_{i}^{z} \sigma_{i+1}^{z}+h_{T} \sigma_{i}^{x}+h_{L} \sigma_{i}^{z} \\
& J=1, h_{T}=1.4, h_{L}=0.9045 \\
& \rho_{\text {init }}=\left(\bigotimes_{m<n-\ell / 2} \rho_{m, \infty}\right) \otimes \rho_{n, \text { init }}^{\ell} \otimes\left(\bigotimes_{m>n+\ell / 2} \rho_{m, \infty}\right) \\
& \sigma_{E}^{2}=\sum_{n}(n-\bar{n})^{2} \frac{E_{n}^{r}}{\langle H\rangle}-\left(\sum_{n}(n-\bar{n}) \frac{E_{n}^{r}}{\langle H\rangle}\right)^{2} \\
& D=\frac{1}{2} \partial_{t} \sigma_{E}^{2}
\end{aligned}
$$

Compare [Rakovszky, von Keyserlingk, and Pollmann PRB 2022]

$$
D \approx 1.40 \quad \text { at } t \sim 20 \quad \text { using MPO methods }
$$

Reasonable convergence with increasing scale $I_{\text {min }}$ and $I_{\text {max }}$. Diffusion obtained at long time when doing a window fit starting at t_{w}

Ultraslow growth of number entropy in an I-bit model of MBL

[Aceituno, Artiaco, Klein-Kvorning, Herviou, JHB, arXiv:2312.13420]

Motivation: Microscopic models show ultraslow growth of number entropy (Sirker group), challenging MBL, though maybe explained by resonances (Gosh and Žnidarič). What do l-bits do?

$$
\begin{aligned}
S & =S_{N}+S_{C} \\
S_{N} & =-\sum_{n} p(n) \ln p(n)
\end{aligned}
$$

I-bits from random unitary circuits and a random I-bit Hamiltonian

$$
\begin{aligned}
u_{i} & =e^{-\mathrm{i} f w_{i} M_{i}} \\
w_{i} & =e^{-2\left|h_{i}-h_{i+1}\right|} \\
M_{i} & =\sum_{p, q= \pm 1} \frac{\theta_{p q}}{4}\left(1+p \sigma^{z}\right) \otimes\left(1+q \sigma^{z}\right)+c \sigma^{+} \otimes \sigma^{-}+c^{*} \sigma^{-} \otimes \sigma^{+}
\end{aligned}
$$

$$
\begin{gathered}
H=\sum_{i} h_{i} \tau_{i}^{z}+\sum_{i<j} J_{i j} \tau_{i}^{z} \tau_{j}^{z}+\sum_{i<j<k} J_{i j k} \tau_{i}^{z} \tau_{j}^{z} \tau_{k}^{z}+\cdots \\
J_{i j}=R_{i j} e^{-|i-j| / \xi_{J}}
\end{gathered}
$$

Number entropy grows like Inln t for exponentially long time

Entanglement entropy

Number entropy

Saturation time

Summary, conclusion, and outlook

l-bit model a rich model with many-body lbits that can lead to slow dynamics.
accurate method for quantum time evolution to large times and in large systems

Need to carefully understand the consequences of his slow dynamics when comparing with microscopic models

