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Thermalization, entanglement and the ETH

|ψ0⟩ → |ψ(t)⟩ = e−iHt |ψ0⟩

Volume law entanglement

Local observables thermal

smooth functions of energy

&

Quench

Details of  long range 
entanglement don’t matter

(but it matters that it is there)}
At long times

Motivation/Problem: How to simulate thermalizing dynamics to long times? 



The information lattice — organization of entanglement at various scales

|ψ⟩

Location in space

Scale of information (entanglement)



What is entanglement? And how is it related to information?

A Bℋ = ℋA ⊗ ℋB

ρ ∈ ℋ

ρ2 = ρ } ρ ≠ ρA ⊗ ρB (in any basis) ⇒ ρ has entanglement between A and B

Information of state accessible in A is contained in ρA = TrB ρ ⟨OA⟩ = TrA(ρAOA)via

ρIf entangled, then all information in the state can not be accessed locally in A and B! 

“Entanglement is nonlocal information”

“Quantum correlations are locally inexplicable” Bell ‘81

“Entanglement is […] the characteristic trait of quantum mechanics” — Schrödinger 1935



So, how much information is accessible locally?
A BB ℋd = span( |0⟩, |1⟩)

If ρ2
A = ρA then in principle we have access to   lA bits of information

If ρA ∝ 12 then in principle we have access to   0 bits of information

In between, the accessible information is the Von Neumann (Shannon) information

I(ρA) = log2 2lA − S(ρA) = lA − S(ρA)

S = − TrA(ρA log2 ρA)

Q: what is the distribution of information in a given state?



Example: information in a singlet

|ψ⟩ = 1
2

( | ↑ ↓ ⟩ − | ↓ ↑ ⟩)

l = 0

l = 1
ρA = 1

2 12 = ρB

SA = log2 2 = 1

IA = 0 = IB

There is no information in the single sites!

SA∪B = 0

IA∪B = log2 22 = 2

All information is on the two sites together

ρA = 1
2 12 = ρB

SA = log2 2 = 1 IA = 0 = IB

Information on single site says nothing 
about information on two sites

SA∪B = log2 22 = 2

IA∪B = 0

Fully mixed two site state has no information

ρ = 1
4 14

(Mutual) information on scale 

Il=1 = IA∪B − IA − IB

l = 1



Example: information in the Greenberger-Horne-Zeilinger state

|GHZ⟩ = 1
2

( |000⟩ + |111⟩)

ρ1 = ρ2 = ρ3 = 1
2 12

S1 = log2 2 = 1

I1 = I2 = I3 = 0

There is no information in the single sites!

There is some information in two sites

ρ12 = 1
2 ( |00⟩⟨00 | + |11⟩⟨11 | ))

S12 = log2 2 = 1

I12 = 2 − S12 = 1

There is information on three sites since

ρ2
12 ≠ ρ12

S123 = 0

I123 = 3 − I12 − I23 = 1 l = 0

l = 1

l = 2

More generally information on scale 3

Il=3 = I123 − I12 − I23 + I2

Il = IA∪B − IA − IB + IA∩B



The information lattice for larger singlet states
Product state of neighbouring singlets Rainbow scar state Random singlet



A random state in Hilbert space has maximum entropy at system size scale

|RMT⟩ = ∑
σ

ψσ1,…,σL
|σ⟩

P(ψσ) = δ (∑
σ

|ψσ |2 − 1)
SPage = lA − 1

2
2lA

2L−lA

l = L/2 Equivalent to infinite temperature 
thermal state according to the

eigenstate thermalisation hypothesis



Localisation on the information lattice — topological superconductor
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Localisation on the information lattice — Many-body localisation (Ising Z2)
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i σx
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i σx
i+1)

δ = ln J/ln h



Dynamics on the information lattice — ballistic growth of entanglement in 
a random unitary circuit

0∈ CUE(4 × 4)

}Δt = 1

Entanglement entropy grows ballistically
before saturating at the Page value

Random brickwork of independent 
random unitaries
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Dynamics on the information lattice — ballistic growth of entanglement in 
a random unitary circuit

∈ CUE(4 × 4)

}Δt = 1

Entanglement entropy grows ballistically
before saturating at the Page value

Random brickwork of independent 
random unitaries
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Dynamics on the information lattice — ballistic growth of entanglement in 
a random unitary circuit

∈ CUE(4 × 4)

}Δt = 1

Entanglement entropy grows ballistically
before saturating at the Page value

Random brickwork of independent 
random unitaries
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Dynamics on the information lattice — ballistic growth of entanglement in 
a random unitary circuit

∈ CUE(4 × 4)

}Δt = 1

Entanglement entropy grows ballistically
before saturating at the Page value

Random brickwork of independent 
random unitaries
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Dynamics on the information lattice — ballistic growth of entanglement in 
a random unitary circuit

∈ CUE(4 × 4)

}Δt = 1

Entanglement entropy grows ballistically
before saturating at the Page value

Random brickwork of independent 
random unitaries
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Dynamics on the information lattice — ballistic growth of entanglement in 
a random unitary circuit

∈ CUE(4 × 4)

}Δt = 1

Entanglement entropy grows ballistically
before saturating at the Page value

Random brickwork of independent 
random unitaries
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Dynamics on the information lattice — ballistic growth of entanglement in 
a random unitary circuit

∈ CUE(4 × 4)

}Δt = 1

Entanglement entropy grows ballistically
before saturating at the Page value

Random brickwork of independent 
random unitaries



Time evolution on the information lattice

But ℓ* increases with time (growth of entanglement)!

(Projected) Petz recovery map at fixed scale fails

∂tρℓ
n = − i [Hℓ

n , ρℓ
n ]

−iTrL
r ([Hℓ+r

n−r/2 − Hℓ
n , ρℓ+r

n−r/2])
−iTrR

r ([Hℓ+r
n+r/2 − Hℓ

n , ρℓ+r
n+r/2])

If no information on scale ℓ + 1 can construct ρℓ+1

ρℓ+1
n+1/2 = exp [ln(ρℓ

n ) + ln(ρℓ
n+1) + ln(ρl−1

n+1/2)]
Petz recovery map



Need to keep track of information flow

∂tIℓ
n = Tr (∇Sℓ

n ∂tρℓ
n )

∇Sℓ
n = − log(ρℓ

n )−1

∂tI(ρℓ
n ) = − i Tr ([∇Sℓ

n , Hℓ
n ] ρℓ

n )
−i Tr ([12r⊗∇Sℓ

n , Hℓ+r
n−r/2−Hℓ

n ] ρℓ+r
n−r/2)

−i Tr ([∇Sℓ
n ⊗12r, Hℓ+r

n+r/2 − Hℓ
n ] ρℓ+r

n+r/2)
= JR

r (ρℓ+r
n−r/2) + JL

r (ρℓ+r
n+r/2)



Minimise information on a large scale, keeping information and 
information flow on smaller scales fixed

ρℓ
n = ρℓ

n + χℓ
n

TrR
1(χℓ

n ) = 0

TrL
1(χℓ

n ) = 0

JR
r (χℓ

n ) = 0

JL
r (χℓ

n ) = 0
} Defines subspace from which to obtain ξ = Pχ

S(ρ + ξ)= S(ρ) + Tr (P∇ρSχ)+ 1
2 Tr (χ PℋρP χ)+𝒪(ξ3)Maximize



To get reliable information current, evolve information to larger scale and 
allow to build up before minimising



Benchmark: energy diffusion in the mixed field Ising model

σ2
E = ∑

n
(n − n)2 Er

n

⟨H⟩ − (∑
n

(n − n) Er
n

⟨H⟩ )
2

D = 1
2 ∂tσ2

E

ρinit = ( ⨂
m<n−ℓ/2

ρm,∞) ⊗ ρℓ
n,init ⊗ ( ⨂

m>n+ℓ/2
ρm,∞)

H = ∑
i

Jσz
i σz

i+1 + hTσx
i + hLσz

i

J = 1, hT = 1.4, hL = 0.9045

[Rakovszky, von Keyserlingk, and Pollmann PRB 2022]Compare

D ≈ 1.40 at t ∼ 20 using MPO methods

[Artiaco, Fleckenstein, Aceituno, Klein-Kvorning, JHB, arXiv:2310.06036]



Reasonable convergence with increasing scale lmin and lmax. Diffusion 
obtained at long time when doing a window fit starting at tw

Convergence and extrapolation
with scale

Exponent with window fit approaches unity
in the limit of infinite scale and time

[Artiaco, Fleckenstein, Aceituno, Klein-Kvorning, JHB, arXiv:2310.06036]



Ultraslow growth of number entropy in an l-bit model of MBL
[Aceituno, Artiaco, Klein-Kvorning, Herviou, JHB, arXiv:2312.13420]

Motivation: Microscopic models show ultraslow growth of number entropy (Sirker group), challenging MBL, 
though maybe explained by resonances (Gosh and Žnidarič). What do l-bits do?

SN = − ∑
n

p(n)ln p(n)

S = SN + SC



l-bits from random unitary circuits and a random l-bit Hamiltonian

ui = e−ifwiMi

wi = e−2|hi−hi+1|

Mi = ∑
p,q=±1

θpq

4 (1 + pσz) ⊗ (1 + qσz) + cσ+ ⊗ σ− + c*σ− ⊗ σ+

H = ∑
i

hiτz
i + ∑

i<j
Jijτz

i τz
j + ∑

i<j<k
Jijkτz

i τz
j τz

k + ⋯

Jij = Rije−|i−j|/ξJ

[Aceituno, Artiaco, Klein-Kvorning, Herviou, JHB, arXiv:2312.13420]



Number entropy grows like lnln t for exponentially long time

Entanglement entropy Number entropy Saturation time

[Aceituno, Artiaco, Klein-Kvorning, Herviou, JHB, arXiv:2312.13420]



Summary, conclusion, and outlook

Time evolution of local information and efficient and 
accurate method for quantum time evolution to large 

times and in large systems

Information lattice a nice way to visualise the structure 
of quantum information in many body states

l-bit model a rich model with many-body l-
bits that can lead to slow dynamics.

Need to carefully understand the 
consequences of his slow dynamics when 

comparing with microscopic models 

Refs: SciPost Physics 13, 080 (2022); arXiv:2310.06036; arXiv:2312.13420


