Numerical Relativity: Mathematical Formulation

A brief review of tensor properties

A tensor is a physical object and has an intrinsic meaning independently of coordinates or basis vectors. An example is a rank-1 tensor \mathbf{A} that has a certain length and points in a certain direction independently of the coordinate system in which we express this tensor.

We can expand any tensor in terms of either basis vectors \mathbf{e}_{a} or basis 1-forms $\tilde{\omega}^{a}$. Expanding a rank-1 tensor in terms of basis vectors, for example, yields

$$
\begin{equation*}
\mathbf{A}=A^{a} \mathbf{e}_{a} \tag{1}
\end{equation*}
$$

This expression deserves several comments. For starters, we have used the Einstein summation rule, meaning that we sum over repeated indices. The "up-stairs" index a on A^{a} refers to a contravariant component of \mathbf{A} - meaning one that is used in an expansion of \mathbf{A} in terms of basis vectors. The index a on the basis vector \mathbf{e}_{a}, on the other hand, does not refer to a component of the basis vector - instead it denotes the name of the basis vector (e.g. the basis vector pointing in the x direction). If we wanted to refer to the b-th component of the basis vector \mathbf{e}_{a}, say, we would write $\left(\mathbf{e}_{a}\right)^{b}$.

We now write the dot product between two vectors as

$$
\begin{equation*}
\mathbf{A} \cdot \mathbf{B}=\left(A^{a} \mathbf{e}_{a}\right) \cdot\left(B^{b} \mathbf{e}_{b}\right)=A^{a} B^{b} \mathbf{e}_{a} \cdot \mathbf{e}_{b} \tag{2}
\end{equation*}
$$

Defining the metric as

$$
\begin{equation*}
g_{a b} \equiv \mathbf{e}_{a} \cdot \mathbf{e}_{b} \tag{3}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\mathbf{A} \cdot \mathbf{B}=A^{a} B^{b} g_{a b} \tag{4}
\end{equation*}
$$

Expanding a rank-1 tensor in terms of 1-forms $\tilde{\omega}^{a}$ yields

$$
\begin{equation*}
\mathbf{B}=B_{a} \tilde{\omega}^{a} \tag{5}
\end{equation*}
$$

where the "down-stairs" index a refers to a covariant component. We call the basis 1 -forms $\tilde{\omega}^{a}$ dual to the basis vectors \mathbf{e}_{b} if

$$
\begin{equation*}
\tilde{\omega}^{a} \cdot \mathbf{e}_{b}=\delta^{a}{ }_{b} \tag{6}
\end{equation*}
$$

where

$$
\delta_{b}^{a}= \begin{cases}1 & \text { if } a=b \tag{7}\\ 0 & \text { otherwise }\end{cases}
$$

is the Kronecker delta. This is what we will assume throughout. We can then compute the contraction between \mathbf{B} and \mathbf{A} as

$$
\begin{equation*}
\mathbf{A} \cdot \mathbf{B}=\left(A^{a} \mathbf{e}_{a}\right) \cdot\left(B_{b} \tilde{\omega}^{b}\right)=A^{a} B_{b} \mathbf{e}_{a} \cdot \tilde{\omega}^{b}=A^{a} B_{b} \delta_{a}^{b}=A^{a} B_{a} \tag{8}
\end{equation*}
$$

Since both this expression and (4) have to hold for any tensor \mathbf{A}, we can compare the two and identify

$$
\begin{equation*}
B_{a}=g_{a b} B^{b} \tag{9}
\end{equation*}
$$

We refer to this operation as "lowering the index of B^{a} ".
We define the inverse metric $g^{a b}$ so that

$$
\begin{equation*}
g^{a c} g_{c b}=\delta_{b}^{a} \tag{10}
\end{equation*}
$$

We then "raise the index of B_{a} " using

$$
\begin{equation*}
B^{a}=g^{a b} B_{b} \tag{11}
\end{equation*}
$$

We can also show that

$$
\begin{equation*}
g^{a b}=\tilde{\omega}^{a} \cdot \tilde{\omega}^{b} \tag{12}
\end{equation*}
$$

Note that we can find the contravariant component of a rank-1 tensor \mathbf{A} by computing the dot product with the corresponding 1-form,

$$
\begin{equation*}
A^{a}=\mathbf{A} \cdot \tilde{\omega}^{a} \tag{13}
\end{equation*}
$$

We can verify this expression by inserting the expansion (1) for \mathbf{A}, and then using the duality relation (6).
Under a change of basis, i.e. when we transform from one coordinate system x^{a} to another, say $x^{b^{\prime}}$, basis vectors and basis 1 -forms transform according to

$$
\begin{align*}
\mathbf{e}_{b^{\prime}} & =M_{b^{\prime}}^{a} \mathbf{e}_{a} \tag{14}\\
\tilde{\omega}^{b^{\prime}} & =M_{a}^{b^{\prime}} \tilde{\omega}^{a} \tag{15}
\end{align*}
$$

where $M^{b^{\prime}}$ is the transformation matrix and $M_{b^{\prime}}^{a}$ its inverse, so that

$$
\begin{equation*}
M_{c}^{a^{\prime}} M_{b^{\prime}}^{c}=\delta_{b^{\prime}}^{a^{\prime}} \tag{16}
\end{equation*}
$$

Note that vectors and 1-forms transform in "inverse ways". This guarantees that the duality relation (6) also holds in the new coordinate system,

$$
\begin{equation*}
\tilde{\omega}^{a^{\prime}} \cdot \mathbf{e}_{b^{\prime}}=\left(M_{c}^{a^{\prime}} \tilde{\omega}^{c}\right) \cdot\left(M_{b^{\prime}}^{d} \mathbf{e}_{d}\right)=M_{c}^{a^{\prime}} M_{b^{\prime}}^{d}\left(\tilde{\omega}^{c} \cdot \mathbf{e}_{d}\right)=M_{c}^{a^{\prime}} M_{b^{\prime}}^{d} \delta_{d}^{c}=M_{c}^{a^{\prime}} M_{b^{\prime}}^{c}=\delta_{b^{\prime}}^{a^{\prime}} \tag{17}
\end{equation*}
$$

The components of a vector then transform according to

$$
\begin{equation*}
A^{b^{\prime}}=\mathbf{A} \cdot \tilde{\omega}^{b^{\prime}}=\mathbf{A} \cdot\left(M_{a}^{b^{\prime}} \tilde{\omega}^{a}\right)=M_{a}^{b^{\prime}} A^{a} \tag{18}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
B_{b^{\prime}}=M_{b^{\prime}}^{a} B_{a} \tag{19}
\end{equation*}
$$

The fact that contravariant and covariant components transform in "inverse" ways guarantees that the dot product (8) is invariant under coordinate transformations,

$$
\begin{equation*}
A^{b^{\prime}} B_{b^{\prime}}=M_{a}^{b^{\prime}} A^{a} M_{b^{\prime}}^{c} B_{c}=\delta_{a}^{c} A^{a} B_{c}=A^{a} B_{a} \tag{20}
\end{equation*}
$$

as it is supposed to be.
We can generalize all the above concepts to higher-rank tensors. A rank- n tensor can be expanded into n basis vectors or 1 -forms, and we transform the components of a rank- n tensor with n copies of the transformation matrix or its inverse.

For transformations between coordinate bases, for which the basis vectors are tangent to coordinate lines, we have

$$
\begin{equation*}
M_{a}^{b^{\prime}} \equiv \frac{\partial x^{b^{\prime}}}{\partial x^{a}}=\partial_{a} x^{b^{\prime}} \tag{21}
\end{equation*}
$$

As an illustration of the above concepts, consider the components of a displacement vector $d x^{a}$, which measures the displacement between two points expressed in a coordinate system x^{a}. To compute the components of this vector in a different coordinate system, say a primed coordinate system $x^{b^{\prime}}$, we use the chain rule to obtain

$$
\begin{equation*}
d x^{b^{\prime}}=\frac{\partial x^{b^{\prime}}}{\partial x^{a}} d x^{a}=M_{a}^{b^{\prime}} d x^{a} \tag{22}
\end{equation*}
$$

where we have used (21) in the last step. As expected, the components of $d x^{a}$ transform like the vector components in (18).

As an example of a 1-form, consider the components of the gradient $\partial f / \partial x^{a}$ of a function f, again expressed in some coordinate system x^{a}. To transform to a new coordinate system $x^{b^{\prime}}$ we again use the chain rule, but this time we obtain

$$
\begin{equation*}
\frac{\partial f}{\partial x^{b^{\prime}}}=\frac{\partial x^{a}}{\partial x^{b^{\prime}}} \frac{\partial f}{\partial x^{a}}=M_{b^{\prime}}^{a} \frac{\partial f}{\partial x^{a}} \tag{23}
\end{equation*}
$$

as in (19). We see that the "inverse" transformation of the components of a gradient are a result of the chain rule.
Finally, consider the difference $d f$ in the function values f at two (close) points. Clearly, this difference is an invariant, i.e. independent of coordinate choice. We can express this difference as the dot product between the vector displacement vector $d x^{a}$ between the two points and the 1 -form $\partial f / \partial x^{a}$,

$$
\begin{equation*}
d f=\frac{\partial f}{\partial x^{a}} d x^{a} \tag{24}
\end{equation*}
$$

As an exercise, apply the above transformation rules for the components of vectors and 1-form to show that $d f$ is indeed invariant under a coordinate transformation.

