"Order-by-disorder" in the Hilbert space and anomalous thermalization in Rokhshar-Kivelson models

Arnab Sen

Indian Association for the Cultivation of Science, Kolkata

Frustrated Metals and Insulators, ICTS, Bangalore

14 September, 2022

Saptarshi Biswas (IISER K)

Debasish Banerjee (SINP)

- Banerjee and AS, Phys. Rev. Lett. 126, 220601 (2021)
- Biswas, Banerjee and AS, SciPost Phys. 12, 148 (2022)

Mukherjee, Banerjee, Sengupta and AS, Phys. Rev. B 104, 155117 (2021) [PRB Editors' Suggestion]

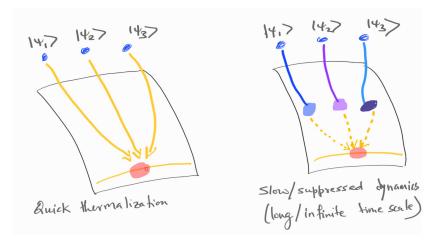
Thermalization of macroscopic systems

 Non-equilibrium states go to unique equilibrium state when left on their own (i.e. become macroscopically indistinguishable)

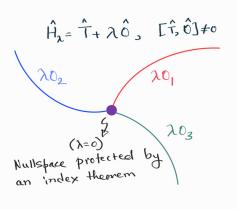
How do macroscopic quantum systems self-thermalize?

- $|\psi(t)\rangle = U(t)|\psi(0)\rangle = e^{-iHt}|\psi(0)\rangle$ Paradox: unitary evolution cannot erase quantum information
- Spreading of quantum entanglement moves information about the initial state to highly non-local operators [Nandkishore, Huse, Annu. Rev. Condens. Matter Phys. (2015)]

Eigenstate Thermalization Hypothesis: Many-body eigenstates of local Hamiltonians with a finite energy density appear "thermal" for local operators [Deutsch (1991), Srednicki (1994), Rigol, Dunjko, Olshanii(2008)]

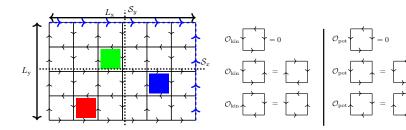


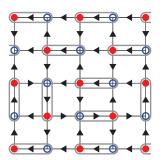
 Can thermalization be evaded is disorder-free systems?
 Answer: YES. Focus on some paradigmatic models of quantum magnetism



- An index theorem protects a macroscopic number of exact zero modes at $\lambda = 0$ (the mother point)
- Adding suitable non-commuting interactions may provide a route to anomalous thermalization in such theories

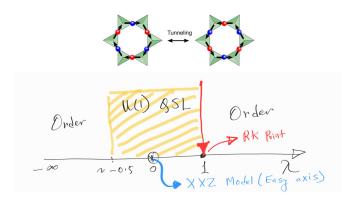
Quantum link and dimer models





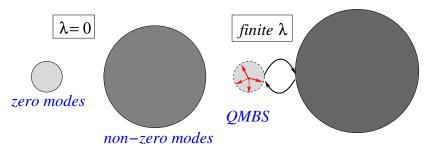
Rokshar-Kivelson models

$$\mathcal{H}_{RK} = -\sum_{\text{plaq.}} \left[|\circlearrowright\rangle\langle\circlearrowleft| + |\circlearrowleft\rangle\langle\circlearrowright| \right] + \lambda \sum_{\text{plaq.}} \left[|\circlearrowright\rangle\langle\circlearrowright| + |\circlearrowleft\rangle\langle\circlearrowleft| \right]$$



[Banerjee, Isakov, Damle, Kim, PRL (2008); Shannon, Sikora, Pollmann, Penc, Fulde, PRL (2012)]

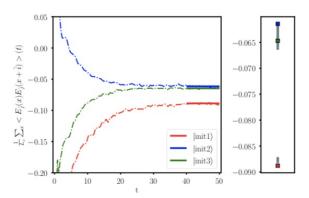
"Order-by-disorder" in the Hilbert space



- Some $[O(1)/O(V^a)/O(e^V)]$ very special linear combinations of the zero modes also diagonalize \mathcal{O}_{pot} and hence \mathcal{H}_{RK} at any λ
- Such anomalous zero modes violate the ETH (also called Quantum Many-Body Scars) terminology of QMBS introduced in Turner et al., Nat Phys (2018)

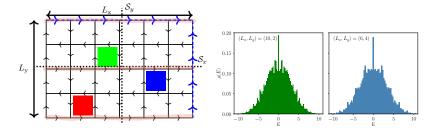
[Banerjee, AS, PRL (2021); Biswas, Banerjee, AS, SciPost Phys. (2022)]

Memory effect in unitary dynamics



- Out of **6433** initial states with average energy $\lambda N_p/2$, 18 have overlap with the anomalous zero modes for QLM with $(L_x, L_y) = (14, 2) = 56$ spins
- Gauss Law \rightarrow 4815738, $(W_x, W_y) = (0,0) \rightarrow$ 1232454, $(k_x, k_y) = (0,0) \rightarrow$ 44046

$\lambda = 0$ (The mother point)



- *H* anticommutes with $C = \prod_{\mathbf{r},\hat{\mu}} E_{\mathbf{r},\hat{\mu}} \Rightarrow C|E\rangle = |-E\rangle$
- H also commutes with space reflections about certain axes
- This point-group symmetry $S_{X,y}$ commutes with C
- $\rho(E) = \alpha \delta(E = 0) + \rho_{reg}(E)$, E = 0 states protected by an index theorem [Schecter and ladecola (PRB, 2018)]

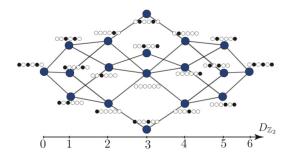
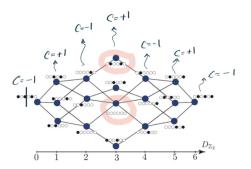


Fig. from Turner, Michailidis, Abanin, Serbyn, Papić, arXiv: 1806.10933 for PXP model

- Emergent bipartite hopping structure in Fock space with two "sublattices" ($\mathcal{C} = \pm 1$) due to $\{H, \mathcal{C}\} = 0$
- For any bipartite lattice s.t. $N_A \neq N_B$ where particle can only hop between A to B (assume zero onsite energy), # of zero modes $\geq |N_A N_B|$ [Sutherland, PRB 34, 5208 (1986)]



- Let N_{PC} be the # of states with $P=\pm$ and $C=\pm$. Given $|\psi\rangle$, superpositions $|\psi\rangle\pm P|\psi\rangle$ have $P=\pm$
- Let \mathcal{N} be # of Fock states with P=+ (but without partner at P=-). Such states necessarily have $\mathcal{C}=+$
- $N_{++} = N_{-+} + \mathcal{N}$ and $N_{+-} = N_{--}$ from which # of zero modes $|N_{++} N_{+-}| + |N_{-+} N_{--}| \ge \mathcal{N}$ $(\mathcal{N} \sim \alpha^{V/2} \text{ if total HSD} \sim \alpha^{V})$

• From ETH, a "typical" zero mode should resemble a featureless $T \to \infty$ state

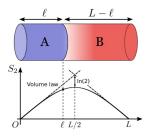
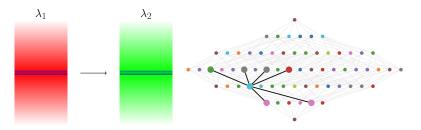


Fig. from Nakagawa, Watanabe, Fujita, Sugiura, arXiv: 1703.02993

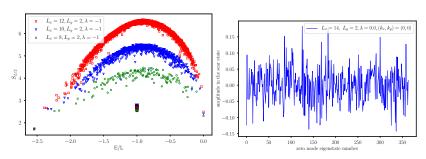
- $\rho_{\rm A}={
 m Tr}_{\rm B}|\Psi\rangle\langle\Psi|\Rightarrow {\cal S}_{L/2}=-{
 m Tr}[
 ho_{\rm A}\ln
 ho_{\rm A}]$
- Typical high-energy eigenstates follow volume law scaling for entanglement entropy unlike ground states (area law)

Anomalous Zero modes (Quantum many-body scars)



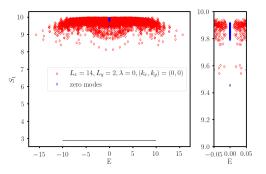
- $$\begin{split} \bullet \ \ |\psi_{\text{QMBS}}\rangle &= \sum_{\alpha} c_{\alpha} |\text{ZM}_{\alpha}\rangle, \\ \mathcal{O}_{\text{kin}}|\psi_{\text{QMBS}}\rangle &= 0, \, \mathcal{O}_{\text{pot}}|\psi_{\text{QMBS}}\rangle = \textit{N}|\psi_{\text{QMBS}}\rangle \, \left(\textit{N} \sim \textit{V}\right) \\ \mathcal{H}_{\text{RK}}(\lambda)|\psi_{\text{QMBS}}\rangle &= \lambda \textit{N}|\psi_{\text{QMBS}}\rangle \end{split}$$
- QMBS localized in the Hilbert space while typical zero modes are not

QMBS in ladders of width $L_{V} = 2$



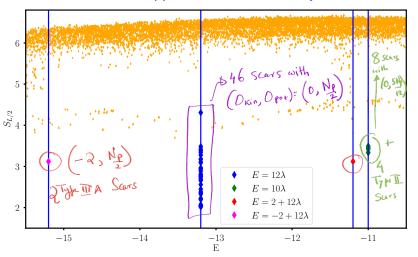
- 4 QMBS each with $(N_p/2,0)$ as eigenvalues of $(\mathcal{O}_{pot},\mathcal{O}_{kin})$ where N_p equals total # of elementary plaquettes
- QMBS resembles pseudo-random superposition of zero modes!

Localization in the Hilbert space



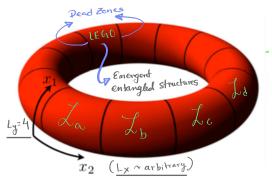
- Shannon entropy $S_1 = -\sum_{\alpha} |\psi_{\alpha}|^2 \ln |\psi_{\alpha}|^2$ where $|\Psi\rangle = \sum_{\alpha=1}^{N_T} |\psi_{\alpha}|^2$
- $S_1 \sim \ln(\mathcal{N}_T)$ for delocalized state and $S_1 \sim const$ for localized state
- The individual zero modes at $\lambda = 0$ have a much larger Shannon entropy (S_1) than the QMBS

Wider QLM ladders to approach 2D, more variety!

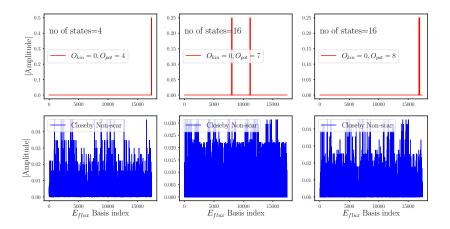


- 46 (106) scars with $\mathcal{O}_{pot} = \frac{N_p}{2}$, $\mathcal{O}_{kin} = 0$ for $L_y = 4$ and $L_x = 6(8)$
- Data for $(L_x, L_y) = (6,4)$ shown above

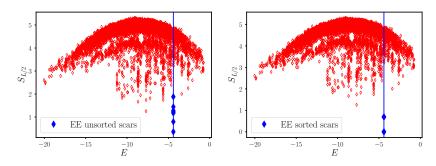
Exact "Lego Scars" in QDM in thin torus limit



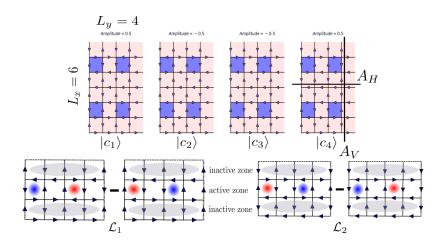
- $|\psi_L\rangle = |\mathcal{L}_i\rangle \otimes |\mathcal{L}_j\rangle \otimes \cdots \otimes |\mathcal{L}_k\rangle$ where we choose type of lego that can fit with each other at the boundaries
- Can be interpreted as states with excitations that exhibit sub-dimensional motion (reminiscent of fractonic models)
- Since legos come in multiple varieties, $\exp(L_x)$ lego scars when $L_x \gg 1$ with $L_v = 4$



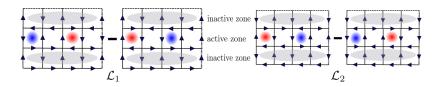
- QDM on ladder with dimension $(L_x, L_y) = (8, 4)$
- Scars with lowest EE (using a minimization algorithm introduced by Reuvers (2018)) shown in the basis of Fock states after using an EE minimization procedure



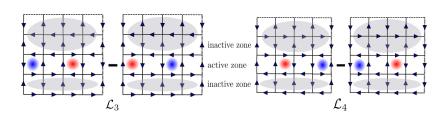
- Data for QDM in the $(W_x, W_y) = (1, 0)$ winding number sector with $\lambda = -1.1$ for $(L_x, L_y) = (8, 4)$
- The blue dots represent 8 quantum scars that have a well-defined $(\mathcal{O}_{kin}, \mathcal{O}_{pot}) = (0, 4)$

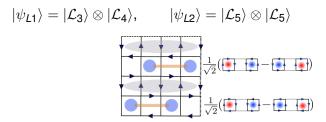


- $|\psi_L\rangle = |\mathcal{L}_1\rangle \otimes |\mathcal{L}_2\rangle$ gives this state for $L_x = 6$
- $(|\mathcal{L}_1\rangle \otimes |\mathcal{L}_2\rangle) \otimes (|\mathcal{L}_1\rangle \otimes |\mathcal{L}_2\rangle) \otimes \cdots (|\mathcal{L}_1\rangle \otimes |\mathcal{L}_2\rangle)$ for $L_x = 6n$ inactive zones

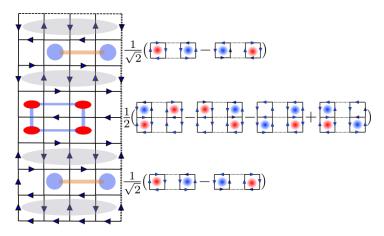


- The sign structure inside the legos crucial in giving rise to the inactive zones
- $\begin{array}{c|c} \bullet & \mathcal{O}_{kin} \left(\boxed{\texttt{C} \, \, \textbf{U} \, \, \textbf{A} \, \, \textbf{U} \, \, \textbf{A} \, \, \textbf{U} \, \, \textbf{C} \, \, \textbf{U}} \right) = \\ & \left(\boxed{\texttt{A} \, \, \textbf{C} \, \, \textbf{A} \, \, \textbf{C} \, + \, \, \textbf{C} \, \, \textbf{U} \, \, \textbf{C} \, \, \textbf{U} \, \, \, \textbf{C} \, \, \textbf{U} \, \, \textbf{C} \, \, \textbf{U} \, \, \, \textbf{A} \, \, \textbf{C} \, \, \textbf{A} \, \, \textbf{C}} \right) \\ & = 0 \end{array}$





$$|\psi_{L3}\rangle = |\mathcal{L}_6\rangle$$



The full variety

$$\lambda = 0 \qquad |\lambda| > 0$$
 zero modes
$$|\lambda| > 0$$

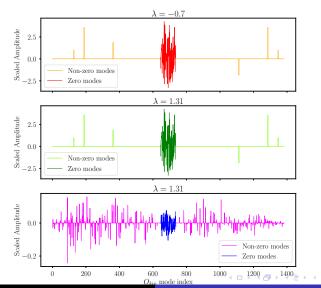
$$|\mu| > 2$$

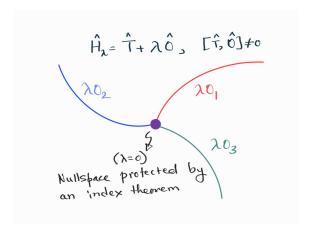
$$|\Psi| > 2 + f(\lambda) |\Psi| > 2$$

$$|\Psi| > 2 + f(\lambda)$$

Type II scars for QLM on $(L_x, L_y) = (6, 4)$

- $|Scar\rangle = |\psi_z\rangle + f(\lambda)|\psi_{nz}\rangle$ with $H(\lambda)|Scar\rangle = (5N_p/12)\lambda$
- ullet $\langle \mathcal{O}_{pot}
 angle = 5 \emph{N}_{p}/12$ and $\langle \mathcal{O}_{kin}
 angle = 0$





- Several well-known LGTs and condensed matter systems harbor such points
- Non-Abelian LGTs and fermionic models with such index theorem points being explored