Sublattice scars and triangle relation in an Abelian lattice gauge theory

Arnab Sen
School of Physical Sciences,

Indian Association for the Cultivation of Science, Kolkata Stability of quantum matter in and out of equilibrium at various scales, ICTS

15 January, 2024

Collaborators

Saptarshi Biswas (IISER, Kolkata \rightarrow Northwestern Univ., USA) Indrajit Sau (IACS, Kolkata)
Paolo Stornati (ICFO, Spain)
Debasish Banerjee (SINP, Kolkata)

- Sau, Banerjee, AS, to appear
- Sau, Stornati, Banerjee, AS, arXiv:2311.06773
- Biswas, Banerjee, AS, SciPost Phys. 12, 148 (2022)
- Banerjee, AS, Phys. Rev. Lett. 126, 220601 (2021)

How do macroscopic quantum systems self-thermalize?

- $|\psi(t)\rangle=U(t)|\psi(0)\rangle=e^{-i H t}|\psi(0)\rangle$

Paradox: unitary evolution cannot erase QI

Eigenstate Thermalization Hypothesis: Many-body eigenstates of local Hamiltonians with a finite energy density appear "thermal" for local operators [Deutsch (1991), Srednicki (1994), Rigol, Dunjko, Olshanii(2008)]

Experimental realization of weak ergodicity breaking

- Bernien et al., Nature 551, 579 (2017) realized programmable quantum spin model with tunable interactions ~ 51 qubits.
- Certain initial conditions took much longer to relax

Persistant oscillations in $|1010 \cdots\rangle \rightarrow|0101 \cdots\rangle \rightarrow|1010 \cdots\rangle$ while $|0000 \cdots\rangle$ rapidly thermalized

PXP model (approximate scars)

Mott insulators in strong electric fields, Sachdev, Sengupta, Girvin (2002)

- L spin-1/2 on a 1D lattice with a constrained Hilbert space, not all 2^{L} configurations allowed
$\cdots \downarrow \downarrow \cdots, \cdots \uparrow \downarrow \cdots, \cdots \downarrow \uparrow \cdots, \cdots \uparrow \uparrow \cdots$
- HSD for L sites equals $F_{L-1}+F_{L+1}$ where $F_{1}=F_{2}=1$ and $F_{n}+F_{n+1}=F_{n+2}$; HSD $=\tau^{L}$ for $L \gg 1$ where $\tau=\frac{\sqrt{5}+1}{2}$
- $H_{\mathrm{PXP}}=-w \sum_{i} P_{i-1}^{\downarrow} \sigma_{i}^{\times} P_{i+1}^{\downarrow} \cdots \downarrow \uparrow \downarrow \cdots \Leftrightarrow \cdots \downarrow \downarrow \downarrow \cdots$

Quantum many-body scars

Turner et al., Nat. Phys. 14, 745 (2018), PRB 98, 155134 (2018)

- Subspace spanned by $O(L)$ special eigenstates which account for most of the Néel state
- Approximately equally spaced eigenvalues
- These eigenstates are highly atypical (half-chain entanglement entropy $S \sim \ln L$ instead of $S \sim L$)

Zero modes in the PXP model

- $\mathcal{C}=\prod_{i=1}^{L} \sigma_{i}^{z}$ anticommutes with H
- $\mathcal{C}|E\rangle$ has negative energy wrt $|E\rangle$
- Both H and \mathcal{C} commute with a spatial inversion operator $I: i \rightarrow L-i+1$
- No. of zero modes $\geq \sqrt{\mathrm{HSD}}$

Protected by an index theorem Schecter and Iadecola (2018)
"Order-by-disorder" in the Hilbert space

- $\mathcal{T}(\mathcal{O})$ typically has continuous (discrete) spectrum
- Some $\left[O(1) / O\left(V^{a}\right) / O\left(e^{V}\right)\right]$ special zero modes of \mathcal{T} also diagonalize \mathcal{O} and hence \mathcal{H}_{λ} at any λ
- Such anomalous zero modes violate the ETH
[Banerjee, AS, PRL (2021); Biswas, Banerjee, AS, SciPost Phys. (2022), Sau, Stornati, Banerjee, AS, arXiv: 2311. 06773 (2023)]

Quantum link model

Rokshar-Kivelson models

$$
\mathcal{H}_{\mathrm{RK}}=-\sum_{\text {plaq. }}[|\circlearrowright\rangle\langle\circlearrowleft|+|\circlearrowleft\rangle\langle\circlearrowright|]+\lambda \sum_{\text {plaq. }}[|\circlearrowright\rangle\langle\circlearrowright|+|\circlearrowleft\rangle\langle\circlearrowleft|]
$$

[Banerjee, Isakov, Damle, Kim, PRL (2008); Shannon, Sikora, Pollmann, Penc, Fulde, PRL (2012)]
$\lambda=0$ (The mother point)

- H anticommutes with $\mathcal{C}=\prod_{\mathbf{r}, \hat{\mu}} E_{r, \hat{\mu}} \Rightarrow \mathcal{C}|E\rangle=|-E\rangle$
- H also commutes with space reflections about certain axes
- This point-group symmetry $\mathcal{S}_{x, y}$ commutes with \mathcal{C}
- $\rho(E)=\alpha \delta(E=0)+\rho_{\mathrm{reg}}(E), E=0$ states protected by an index theorem [Schecter and ladecola (PRB, 2018)]

Memory effect in unitary dynamics

- Out of $\mathbf{6 4 3 3}$ initial states with average energy $\lambda N_{p} / 2,18$ have overlap with the anomalous zero modes for QLM with $\left(L_{x}, L_{y}\right)=(14,2)=56$ spins
- Gauss Law $\rightarrow 4815738$, $\left(W_{x}, W_{y}\right)=(0,0) \rightarrow$ 1232454, $\left(k_{x}, k_{y}\right)=(0,0) \rightarrow 44046$

Anomalous Zero modes (Quantum many-body scars)

$$
\begin{array}{ll}
\lambda_{1} & \lambda_{2}
\end{array}
$$

- $\left|\psi_{\mathrm{QMBS}}\right\rangle=\sum_{\alpha} \boldsymbol{c}_{\alpha}\left|\mathrm{ZM}_{\alpha}\right\rangle$, $\mathcal{O}_{\text {kin }}\left|\psi_{\text {QMBS }}\right\rangle=0, \mathcal{O}_{\text {pot }}\left|\psi_{\text {QMBS }}\right\rangle=N\left|\psi_{\text {QMBS }}\right\rangle(N \sim V)$ $\mathcal{H}_{\text {RK }}(\lambda)\left|\psi_{\mathrm{QMBS}}\right\rangle=\lambda N\left|\psi_{\mathrm{QMBS}}\right\rangle$
- QMBS localized in the Hilbert space while typical zero modes are not

The full variety

$$
\lambda=0
$$

$$
|\lambda|>0
$$

zero modes non-zero modes

Type-I

Type-II

Type-III

III $\mathrm{A} \rightarrow \mathcal{O}_{\text {kin }}=\mathbb{Z}, \mathcal{O}_{\text {pot }}=\mathbb{Z}$
III B $\rightarrow \mathcal{O}_{\text {kin }}=\mathbb{Z}$
III $\mathrm{C} \rightarrow \mathcal{O}_{\text {kin }}=$ simple irrationals

Biswas, Banerjee, AS, SciPost Phys. 12, 148 (2022)

Sublattice scars in QLM

- $\mathcal{O}_{\text {pot }, \square}\left|\psi_{s}\right\rangle=1$, for one sublattice and $\mathcal{O}_{\text {pot }, \square}\left|\psi_{s}\right\rangle=0$ for other sublattice
Sau, Stornati, Banerjee, Sen, arXiv: 2311.06773

Short singlet sublattice scars

- Subset of sublattice scars have short singlet representation
- These arise as sols. of a tiling problem
- For $\left(L_{x}, 2\right), 4$ such scars. For $\left(L_{x}, 4\right), \mathbf{O}\left(2^{L_{x} / 2}\right)$ such scars

Sau, Stornati, Banerjee, Sen, arXiv: 2311.06773

Nonsinglet sublattice scars in QLM

Lattice	Scars in equal A-C sector		Scars in unequal A-C sector
	Singlet scars	Non-singlet scars	
$L_{x} \times 2$	2	0	0
4×4	10	0	3
6×4	19	3	1
8×4	35	17	1
10×4	67	62	1
6×6	28	1	1

Lattice	Scars with $\mathcal{O}_{\text {kin }}=+2$	Scars with $\mathcal{O}_{\text {kin }}=-2$
4×4	3	3
6×4	1	1
8×4	1	1
6×6	1	1

- Sublattice scars are composed of Fock states with one sublattice of unflippable plaquettes and another of flippable plaquettes
- Active sublattice may have $\left(\frac{N_{p}}{4}, \frac{N_{p}}{4}\right),\left(\frac{N_{p}}{4}+1, \frac{N_{p}}{4}-1\right)$, or $\left(\frac{N_{p}}{4}-1, \frac{N_{p}}{4}+1\right)$ clockwise and anticlockwise plaquettes
- Applying \mathcal{C} on Fock states with $\left(\frac{N_{p}}{4}, \frac{N_{p}}{4}\right)$
$\left[\left(\frac{N_{p}}{4} \pm 1, \frac{N_{p}}{4} \mp 1\right)\right]$ active plaquettes given eigval $+1[-1]$

One example in $(4,4)$ QLM

- Example: $\left|\psi_{s, 0}\right\rangle=\frac{1}{2 \sqrt{6}} \sum_{i=1}^{12} \operatorname{Sign}(\mathrm{i})\left(\left|F_{i}\right\rangle+\mathbb{C}_{E}\left|F_{i}\right\rangle\right)$ s.t. $\mathcal{O}_{\text {kin }}\left|\psi_{s}\right\rangle=0$ for $(4,4)$ ladder using Fock states with $\left(\frac{N_{p}}{4}+1, \frac{N_{p}}{4}-1\right)$ and $\left(\frac{N_{p}}{4}-1, \frac{N_{p}}{4}+1\right)(\mathrm{A}, \mathrm{C})$ plaquettes

Triangle relation

$\mathbb{O}\left(\left|\psi_{s,+2}\right\rangle-\mathcal{C}\left|\psi_{s,+2}\right\rangle\right) \propto\left|\psi_{s, 0}\right\rangle \rightarrow\left|\psi_{s,+2}\right\rangle-\left|\psi_{s,-2}\right\rangle \propto \mathbb{O}\left|\psi_{s, 0}\right\rangle$ where \mathbb{O} changes (does not change) sign of Fock states with $\left(\frac{N_{p}}{4}+1, \frac{N_{p}}{4}-1\right)\left(\left(\frac{N_{p}}{4}-1, \frac{N_{p}}{4}+1\right)\right)(\mathrm{A}, \mathrm{C})$ plaquettes
(Long-ranged) Parent Hamiltonian for sublattice scars

$$
\begin{align*}
& \mathcal{H}_{\mathrm{LR}}=\frac{1}{N_{p}}\left(\sum_{\text {plaq. }}[|\circlearrowright\rangle\langle\circlearrowleft|+|\circlearrowleft\rangle\langle\circlearrowright|]\right)^{2} \tag{1}\\
& +c \sum_{\text {plaq. }}(-1)^{x_{i}+y_{i}}[|\circlearrowright\rangle\langle\circlearrowright|+|\circlearrowleft\rangle\langle\circlearrowleft|]
\end{align*}
$$

where $c>0(c<0)$ gives one set of sublattice scars as groundstates
This long-ranged model has no simple mean field limit

$$
\mathbb{O}\left(\left|\psi_{s,+2}\right\rangle-\mathcal{C}\left|\psi_{s,+2}\right\rangle\right) \propto\left|\psi_{s, 0}\right\rangle \rightarrow\left|\psi_{s,+2}\right\rangle-\left|\psi_{s,-2}\right\rangle \propto \mathbb{O}\left|\psi_{s, 0}\right\rangle
$$

can be interpreted as creation of an excited state $\left(\left|\psi_{s,+2}\right\rangle-\left|\psi_{s,-2}\right\rangle\right)$ by acting \mathbb{O} on a ground state $\left(\left|\psi_{s, 0}\right\rangle\right)$ Zero energy eigenstates of $\mathcal{H}_{\mathrm{LR}}$ stay unchanged with c !

Staggered RK model

$$
\mathcal{H}_{\text {st }}=\mathcal{O}_{\text {kin }}+\lambda \mathcal{O}_{\text {pot }}=-\sum_{\square} \mathcal{O}_{\text {kin }, \square}+\lambda \sum_{\square}(-1)^{\square} \mathcal{O}_{\text {pot }, \square}
$$

Lattice	Anomalous zero modes of $\mathcal{H}_{\text {st }}$
$L_{x} \times 2$	2
4×4	8
6×4	14

Rep. states for anomalous zero modes of $(8,2)$ QLM

Disorder in QLM? Sau, Banerjee, Sen (to appear)

- $H=-\sum_{\square} \mathcal{O}_{\text {kin }, \square}+\sum_{\square} \lambda_{\square} \mathcal{O}_{\text {pot, } \square}$ where $\lambda_{\square}=\lambda\left(1+\alpha r_{\square}\right)$ with $r_{\square} \in(-1 / 2,1 / 2) . \alpha$: disorder strength
- $r=\frac{\min \left(s_{n}, s_{n-1}\right)}{\max \left(s_{n}, s_{n-1}\right)}, s_{n}=E_{n+1}-E_{n}$.
$P(r)=\frac{27}{4} \frac{r+r^{2}}{\left(1+r+r^{2}\right)^{5 / 2}} \Theta(1-r)$
- No sign of MBL+ Sublattice scars stable with disorder

Disorder in QLM? Sau, Banerjee, Sen (to appear)

Disorder in QLM? Sau, Banerjee, Sen (to appear)

Exact "LEGO Scars" in Quantum Dimer Model in thin torus limit

- $\left|\psi_{L}\right\rangle=\left|\mathcal{L}_{i}\right\rangle \otimes\left|\mathcal{L}_{j}\right\rangle \otimes \cdots \otimes\left|\mathcal{L}_{k}\right\rangle$ where we choose type of LEGO that can fit with each other at the boundaries

Biswas, Banerjee and AS, SciPost Phys. 12, 148 (2022)

$$
\begin{aligned}
& L_{y}=4 \\
& \text { andels, } \\
& \text { - }\left|\psi_{L}\right\rangle=\left|\mathcal{L}_{1}\right\rangle \otimes\left|\mathcal{L}_{2}\right\rangle \text { gives this state for } L_{x}=6 \\
& \text { - }\left(\left|\mathcal{L}_{1}\right\rangle \otimes\left|\mathcal{L}_{2}\right\rangle\right) \otimes\left(\left|\mathcal{L}_{1}\right\rangle \otimes\left|\mathcal{L}_{2}\right\rangle\right) \otimes \cdots\left(\left|\mathcal{L}_{1}\right\rangle \otimes\left|\mathcal{L}_{2}\right\rangle\right) \text { for } L_{x}=6 n
\end{aligned}
$$

- The sign structure inside the LEGO crucial in giving rise to the inactive zones
- $\mathcal{O}_{\text {kin }}\left(\begin{array}{|l|l|l|l|}\hline \mathrm{C} & \mathrm{U} & \mathrm{A} & \mathrm{U} \\ \hline \mathrm{A} & \mathrm{U} & \mathrm{C} & \mathrm{U} \\ \hline\end{array}\right)=$
 $=0$
- $\mathcal{O}_{\text {kin }}\left(\begin{array}{|l|l|l|l}A & C & A & C\end{array}\right)$ would have taken the excitations through the inactive zones if these did not cancel due to the sign structure

$$
\left|\psi_{L 1}\right\rangle=\left|\mathcal{L}_{3}\right\rangle \otimes\left|\mathcal{L}_{4}\right\rangle, \quad\left|\psi_{L 2}\right\rangle=\left|\mathcal{L}_{5}\right\rangle \otimes\left|\mathcal{L}_{5}\right\rangle
$$

$$
\left|\psi_{L 3}\right\rangle=\left|\mathcal{L}_{6}\right\rangle
$$

LEGO game for large L_{x}

Since LEGOs come in multiple varieties, $\exp \left(L_{X}\right)$ lego scars when $L_{x} \gg 1$ with $L_{y}=4$

- Order-by-disorder but in the Hilbert space
- Sublattice scars and lego scars suggest emergent fractons
- Triangle relation connects scars with $\mathcal{O}_{\text {kin }, \square}= \pm 2$ and $\mathcal{O}_{\text {kin, } \square}=0$ for QLM

Thank you!

Fig. from Turner, Michailidis, Abanin, Serbyn, Papić, arXiv: 1806.10933 for PXP model

- Emergent bipartite hopping structure in Fock space with two "sublattices" ($\mathcal{C}= \pm 1$) due to $\{H, \mathcal{C}\}=0$
- For any bipartite lattice s.t. $N_{A} \neq N_{B}$ where particle can only hop between A to B (assume zero onsite energy), \# of zero modes $\geq\left|N_{A}-N_{B}\right|$ [Sutherland, PRB 34, 5208 (1986)]

- Let $N_{P C}$ be the $\#$ of states with $P= \pm$ and $\mathcal{C}= \pm$. Given $|\psi\rangle$, superpositions $|\psi\rangle \pm P|\psi\rangle$ have $P= \pm$
- Let \mathcal{N} be $\#$ of Fock states with $P=+$ (but without partner at $P=-$). Such states necessarily have $\mathcal{C}=+$
- $N_{++}=N_{-+}+\mathcal{N}$ and $N_{+-}=N_{--}$from which \# of zero modes $\left|N_{++}-N_{+-}\right|+\left|N_{-+}-N_{--}\right| \geq \mathcal{N}$ $\left(\mathcal{N} \sim \alpha^{V / 2}\right.$ if total HSD $\left.\sim \alpha^{V}\right)$

