Plane curves

We are interested in polynomials in two variables x, y with real or complex coefficients. Let \mathbb{R} and \mathbb{C} denote the sets of real and complex numbers, respectively.

Some examples of polynomials of the kind we will study are:

$$
x^{2}+y^{2}-1, x y^{10}-\pi x^{4} y^{4}+100 x^{12}+\sqrt{2} y^{71}
$$

For non-negative integers i, j and a complex number c, a term of the form $c x^{i} y^{j}$ is called a monomial. The degree of such a monomial is defined to be $i+j$. A polynomial is thus simply a sum of monomials. The degree of a polynomial is the degree of the largest degree monomial which appears in it. The degree of the two polynomials above are 2 and 71, respectively.

Exercise: Give a few examples of polynomials and note their degrees.
We are interested in zeros or roots of polynomials. Let $f(x, y)$ be a polynomial. An element of (a, b) of \mathbb{C}^{2} is called a zero of $f(x, y)$ if $f(a, b)=0$.

For example, $(0,1)$ is a zero of the polynomial $x^{2}-1=0$ as well as of $x y^{2}+y-1$. On the other hand, $(0,1)$ is not a zero of $x^{2} y^{3}+1$.

Definition: The set of zeros of a polynomial is called a plane curve.
Note that plane curves are subsets of \mathbb{C}^{2}. If a plane curve C is the zero set of a polynomial f, we also say that C is defined by f .

We have special names for plane curves of small degrees.
Lines: A line is the zero set of a polynomial of degree 1.
Conics: Zeros of a polynomial of degree 2 form a conic.
Cubics: Cubics are zeroes of degree 3 polynomials.
Curves of degree d : A curve of degree d is the zero set of a polynomial of degree d.
Exercise: Draw the curves in \mathbb{R}^{2} defined by the following polynomials.

- $2 x+6 y-5$.
- $x^{2}+y^{2}$.
- $x^{2}+y^{2}-1$.
- $x^{2}-y^{2}$.
- $x^{2}+y^{2}+1$.
- $x^{2}-y$.
- $\frac{x^{2}}{4}+\frac{y^{2}}{9}-1$.
- $y^{2}-x^{3}$.
- $y^{2}-x^{2}(x+1)$.

Note that $(0,0)$ is contained in each of the following three curves:

Exercise: Can you identify the differences in how $(0,0)$ sits inside these curves?

Definition: Let (a, b) is a point in \mathbb{C}^{2}. Let C be a plane curve defined by a polynomial $f(x, y)$. Suppose that m is the smallest non-negative integer such that all the partial derivatives of f of order up to m vanish at (a, b). The multiplicity of C at (a, b) is defined to be $m+1$.

For example, the multiplicities of the curves defined by $x^{2}+y^{2}-1, x^{2}+y^{2}+2 x, y^{2}-x^{3}, y^{9}+x^{20}$ at $(0,0)$ are $0,1,2$ and 9 , respectively.

Exercise: Find the multiplicity of the following curves at the indicated points.

- $x+y$ at $(3,3)$.
- $x+y$ at $(10,-10)$.
- x^{23} at $(0,0)$.
- $x^{9} y^{2}$ at $(0,0)$.
- $x^{9} y^{2}$ at $(1,0)$.
- $x^{9} y^{2}$ at $(0,1)$.
- $x^{2} y^{17}+x y^{2}-5 x^{10}$ at $(0,0)$.

Exercise: Let C be a plane curve of degree d. Let p be a point on C and let m be the multiplicity of C at p. Show that $1 \leqslant \mathrm{~m} \leqslant \mathrm{~d}$. Give examples to show that both the extreme values can be attained.

Now we will study how to measure the set of polynomials of a given degree d. Note that for any $d \geqslant 0$, the set of polynomials of degree d is infinite. However, we can describe these sets with finitely many parameters.

Let $d=0$. Note that a polynomial of degree 0 is simply an element a of \mathbb{C}. So every such polynomial is a complex multiple of 1 . So we can say that 1 is enough to describe all the polynomials of degree 0 . Since only one monomial (namely, 1) is needed to describe them, we say that the dimension of the set of polynomials of degree 0 is 1 .

Let $d=1$. An arbitrary polynomial of degree 1 is of the form $a+b x+c y$ where a, b, c are complex numbers. So we say that $1, x, y$ describe the set of all the polynomials of degree 1 . The dimension of the set of polynomials of degree 1 is 3 .

Similarly, the monomials $1, x, y, x^{2}, y^{2}, x y$ can describe any degree 2 polynomial and the dimension of the set of polynomials of degree 2 is 6 .

Exercise: For any non-negative integer d, show that set of all the curves of degree d has dimension $\frac{(d+2)(d+1)}{2}$ and list the monomials which can express any polynomial of degree d.

Now we want to study the following question.
Main Question: Fix r points p_{1}, \ldots, p_{r} in \mathbb{C}^{2}. Let $d, m \geqslant 1$ be integers. Is there a curve of degree d which has multiplicity at least m at p_{i} for each $i=1, \ldots, r$?

In order to study this, let us look at some specific cases of the above question.
Question 1: Given integers $d, m \geqslant 1$, is there a curve of degree d which has multiplicity at least m at $(0,0)$?

Next, generalise to any one point p in \mathbb{C}^{2} :
Question 2: Fix a point p in \mathbb{C}^{2}. Let $d, m \geqslant 1$ be integers. Is there a curve of degree d which has multiplicity at least m at p ? Can you find some conditions on d and m so that the answer is YES?

Question 3: Suppose $r=2$. That is, we are given two points p_{1}, p_{2} in \mathbb{C}^{2}. Is there a curve of degree d which has multiplicity at least m at both p_{1} and p_{2}, in the following cases?
$d=1, m=1 ; d=1, m=2 ; d=2, m=2 ; d=3, m=2$.
Now the same question, in general, for $r=2$:
Question 4: Fix 2 points p_{1}, p_{2} in \mathbb{C}^{2}. Let $d, m \geqslant 1$ be integers. Under what conditions on d and m, is there a curve of degree d which has multiplicity at least m at p_{i} for each $i=1,2$?

Question 5: Is there a conic through any given five points of \mathbb{C}^{2} ? What about through any given six points?

