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General context



Growth of groups

Let G be a group acting properly by isometries on a geodesic space X.

Goal. Measure the “size” of its orbits

Definition ( )

h(G,X) = Iimsuplln#{g €G : d(gx,x)<r}.

r—oo I

Exercise. h(G, X) does not depends on the point x.



h(G,X) = Iimsuplln#{g €G : d(gx,x)<r}.

r—oco I



Remark and question

Remark

If H is a subgroup of G, then

0 < h(H, X) < h(G, X).

Questions:

e What are the possible values of h(H, X) when H runs over the
subgroups of G?

e When do we have h(H, X) = h(G, X)?



Main goal of these lectures

Simplified theorem (C.-Dougall-Schapira-Tapie)
Let G be a group acting properly co-compactly by isometries on a
Gromov hyperbolic space X. Let N < G.

Then h(N, X) = h(G, X) if and only if G/N is amenable.

Last step of a long history.

e Grigorchuk, Cohen. G =F,.
e Brooks. G = (M) with M hyperbolic manifold.

e Burger, Roblin, Tapie, Stadlbauer, Jaerisch, Dougall-Sharp,
C.-Dal’bo-Sambusetti, etc.



The case of free groups



Kesten’s criterion

Fix S symmetric generating set of G = F,.
Let p be the uniform probability measure on S.

Spectral radius of the random walk in G/N:

k= limsup v/ p*"(N)

n—o0

Kesten amenability criterion

The quotient G/N is amenable if and only if Kk = 1.



Kesten vs. Cohen-Grigorchuk



Almost invariants vectors and amenability



Sketch of proof



Sketch of proof



The “easy” direction



Simplified theorem (C.-Dougall-Schapira-Tapie)
Let G be a group acting properly co-compactly by isometries on a
Gromov hyperbolic space X. Let N < G.

Then h(N, X) = h(G, X) if and only if G/N is amenable.

Previously: if G is the free group, then

h(N,X) = h(G,X) = G/N amenable.
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The “easy” direction

Theorem (Roblin)

Let G be a group acting properly by isometries on a hyperbolic space
X. Let N G.

If G/N is amenable, then h(G, X) = h(N, X).

Proof when X is CAT(-1). Write X = X U X for the visual
compactification of X.
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Patterson-Sullivan measures

Fix a base point o € X and a subgroup H < G.

Poincaré series

73(5) _ Z efsd(o,ho)

heH

Converges if s > h(H, X), diverges if s < h(H, X).

Definition

The action of H on X is if Py(s) diverges at s = h(H, X). It
is otherwise.

Examples.

e G n X proper and co-compact = divergent.
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Patterson-Sullivan measures

Patterson-Sullivan measures
For every x € X, define a measure X.

1
Vg = —— Z e~ Dirac(ho)
P(s) et

Probability measure if x = o.

Up to passing to a subsequence

b weaksx

X Ux

s—hy

Patterson-Sullivan density of H: v = (vx)xex
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Patterson-Sullivan measures

Main properties

Support) vy is supported on X (cheated a bit)

Normalization) v is a probability measure

(
(

e (Equivariance) g.vy = Vg, for every g € H and x € X.
(

Conformality)
du,

dv,

(§) = el

for every x,y € X and £ € 0X.
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Patterson-Sullivan measures
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Patterson-Sullivan measures
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Patterson-Sullivan measures

Shadows O,(y, r).
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Patterson-Sullivan measures

Shadow Lemma
Assume that H <1 G is . Let u = (1) be an h-conformal,
H-invariant density on 0X.

There exists C > 0 and r, such that for every g € G,

1 - —
= litgoll €78 < 11 (Oo(g0, 7)) < C ligoll e~

Notation. ||ux|| = ux (0X).
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Patterson-Sullivan measures
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Patterson-Sullivan measures
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Proof of the “easy” direction

Proposition
Assume that H <1 G is . Let = (1<) be an h-conformal,
H-invariant density on 0X.

The critical exponent of the series

> llhgoll e==5

geG

is at most h.
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Proof of the “easy” direction
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Proof of the “easy” direction

Here N is normal in G. Let @ = G/N. Assume that @ is amenable.
Goal. h(N,X) = h(G,X).

Averaging Patterson-Sullivan measures.

Fix a Q-invariant mean M: (>°(Q) — R.

v = (vx) Patterson-Sullivan density of N.

Given f € C(0X), and x € X, let

vrx: G/N — R
u — 1 / fdu_ vy,

[Vuoll .

Define an hy-conformal N-equivariant density p = (ux) by

/ fduy = M(s), VFf € C(0X).
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Proof of the “easy” direction

Jensen inequality (exp is convex)
[ goll = M(expoln(ta,go)) = exp (M(In(¢1,g0)))

Said differently

lgol| > ¥(®),

where

is a homomorphism.
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Proof of the “easy” direction

Z || pgol| €54(0€°) > Z e %d(0:80) x(8) > Z e9(°:&)cosh o y(g)
geG geG geaG

>3 emsdloso)

geG

Hence h(G, X) < h(N, X).
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The optimal statement




Main goal of these lectures

Simplified theorem (C.-Dougall-Schapira-Tapie)
Let G be a group acting properly co-compactly by isometries on a
Gromov hyperbolic space X. Let N < G.

Then h(N, X) = h(G, X) if and only if G/N is amenable.

Full theorem (C.-Dougall-Schapira-Tapie)

Let G be a group acting properly by isometries on a Gromov hyperbolic
space X. Assume that the action of G on X is
. Let H < G.

Then h(H, X) = h(G, X) if and only if H is in G.
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Co-amenability

Proposition-Definition

A subgroup H < G is in G is one of the following

equivalent assertions holds.

1.
2.

There exists a G-invariant mean M: (<°(G/H) — R.

The regular representation p: G — U(H) where H = (>(G/H)
almost has invariant vectors.

The Cheeger constant of the Schreier graph of G/H is zero.
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Co-amenability

Examples.
o Let N G.

N is co-amenable in G <= G/N is amenable.

e G=F(ab) H=(a"ba™" : neN)
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ively recurrent action

Well understood situation.

The action of G is convex co-compact if G acts properly co-compactly on
a quasi-convex G-invariant subset Y C X.

Goal. Measure “how much” the action is not convex co-compact.
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Strongly positively recurrent action

Let K C X be a compact subset and let

Gk ={g€G : 3IxyeK, [x,gy]NGK C KUgK}
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Strongly positively recurrent action

The of (the action of) G is

heo(G,X) = inf  h(Gk,X)
Cfmcpéct

Observation. h..(G, X) < h(G, X).

Definition (Schapira-Tapie)
The action of G on X is if

heo(G, X) < (G, X)

a.k.a. (Yang)

31



Strongly positively recurrent action

Examples.

e G ~n X proper and co-compact.
e If G is hyperbolic relative to {Py,..., Py} and G ~ X is a cusped

uniform action, then

hoo(G, X) = min h(P;, X).

1<i<m

e Ancona type surfaces
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Strongly positively recurrent action
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Optimality of the main theorem

Full theorem (C.-Dougall-Schapira-Tapie)

Let G be a group acting properly by isometries on a
space X. Assume that the action of G on X is
. Let H< G.

Then h(H, X) = h(G, X) if and only if H is co-amenable in G.
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Optimality of the main theorem

e Negative curvature

e Strongly positively recurrent action
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Growth gap

Definition

A group G has is for every unitary representation
p: G — U(H) in a Hilbert space, if p almost has invariant vector, then
p has a non-zero invariant vector.

Examples.
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Growth gap

Original problem:

Describe {h(H,X) : H < G}.

Theorem (C.-Dougall-Schapira-Tapie)

Let G be a group acting properly by isometries on a Gromov hyperbolic
space X. Assume that the action of G on X is strongly positively
recurrent.

If G has Property (T), then there exists ¢ > 0, such that for every
subgroup H < G

o cither h(H, X) < h(G,X) — e,
e or [G: H| < oo.
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The “hard” direction




Twisted Poincaré series

Initial data.

e X CAT(-1) space. G acts properly on X by isometries.

e Let H be a Hilbert space with a partial order < compatible with the
Hilbert structure, i.e. {¢1,¢2) > 0, whenever ¢; > 0 and ¢, > 0.
Example. H = L?(Y), where i < o <= Vy € Y, fi(y) < f(y).

e Let p: G — U(H) be a positive unitary representation, i.e.
p(g)d = 0 for every g € G and ¢ > 0.
Example. If G acts on Y, then p: G — U(L?(Y)) regular
representation.
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Twisted Poincaré series

Twisted Poincaré series.

Als) = 3 em*48)g).

geG

(bounded operator on ).

Convergence. Strong operator topology.
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Twisted Poincaré series

Twisted Poincaré series.
A(s) =Y esHos)p(g).
geiG
Critical exponent. There exists h, € [0, hg] such that

o A(s) converges, if s > h,

e A(s) diverges, if s < h,
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Twisted Poincaré series

Lemma.

Let H< G. Let H = ¢*(G/H) and p: G — U(H) be the regular
representation. Then
ht < h, < he.

In particular, hy = hg = h, = hg.
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Twisted Poincaré series

=) e*deelp(g).

geG

42



Twisted Poincaré series

Exercise.

Let H< G. Let H = (?(G/H) and p: G — U(H) be the regular
representation. Let ¢, € H be the Dirac at uH.

For every u € G,

< ¢e;¢u Z e—sd 0,80)

gcuH

A(s) “"combines” the Poincaré series of all H-cosets.
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Twisted Poincaré series

Theorem.

Let H be a Hilbert space with a partial order. Let p: G — U(H) be a
positive unitary representation. The following are equivalents

1. h, = h(G,X),

2. p almost has invariant vectors.

Exercise. (2) = (1)

a4



Twisted Patterson-Sullivan measures

Naive attempt.

Consid
onsider ]

a5 = Y e=*de)Dirac(go)p(g)
g€eG

IAGs)I]
Measure on X = X U 9X with value in B(H).
Other point of view. Linear functional C(X) — B(H).

Take the limit

S
aX

a
s—h, x

Warning

The space of Banach valued measure is not compact!
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Ultra-limit of Hilbert spaces.

Let w: P(N) — {0,1} be a non-principal ultra-filter, i.e.

1. w(AUB) = w(A) 4+ w(B) for every disjoint A, B C N.
2. w(N) =1,
3. w(A) =0, finite A C N.

A property P, holds w-almost surely (w-as) if

w({neN : P,is true}) = 1.
Given a real sequence (u,) we say that lim,, u, = ¢ if
Ve >0, |u,—/{| <ew-as.

Fact. Every real valued bounded sequences admits an w-limit.
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Ultra-limit of Hilbert spaces.

Let (#,) be a sequence of Hilbert spaces.

Let
H?—ln = { ®n) € H’H [[@nl is bounded}
w neN

Pseudo-norm. ||(¢,)] = limy, ||¢n].

{ én) € HH (@)l = 0} is a vector space.

Proposition-Definition.

M. = [[Ha/W is a Hilbert space.

Notations. lim, ¢, : image of (¢,) in H,,.
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Ultra-limit of Hilbert spaces.

For our purpose

(H,) constant sequence equal to H.

H., is endowed with a partial order < coming from the one on H.

If (B,) is a bounded sequence of operators on H one defines
B, =limy, B, by

B, (IiLn (;5,,) = lim (B,,gb,,) .
B, belongs to B(H.,).

In particular, p: G — U(#H) induces a positive unitary representation
pPw: G — U(HL,)

Exercise.

p almost have invariant vectors <= p,, has a non-zero invariant vector.
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Twisted Patterson-Sullivan measures

Second attempt.

Recall

2 = Ty o & e# Dinac(go)ole)
geG

Fix a sequence s, > h,, converging to h,.

Define a, as follows.

/fdax = Iim/fdai”

1 _
=lim ——— e—=9(08) f(g0)p(g), VFfe C(X
™ AT 2 (&oele) &

Measure on X with values in B(H,,).
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Twisted Patterson-Sullivan measures

Main properties
e (Support) ay is supported on 9X (cheated a bit)
e (Normalization) /1dao has norm 1.

e (Twisted equivariance) g.ax = pu(g) agx for every g € G and
x € X.

e (Conformality) .
ax

— e~ hoBe(x¥)1g
GEL

for every x,y € X and £ € 0X.
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The “hard” direction (continued)




Twisted Poincaré series.

A(s) = Z e*Sd(o’g")p(g) (bounded operator on H).
geG

Critical exponent: h, € [0, hg]

Theorem.

Let H be a Hilbert space with a partial order. Let p: G — U(H) be a
positive unitary representation. The following are equivalents

1. h, = he,

2. p almost has invariant vectors.
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Let
& = - Z e—*4(%:8°) Dirac(go)p(g)
TAGT 2=

Fix a sequence s, > h,, converging to h,.

Fix a non-principal ultra-filter w.

Define a, as follows.
/fdax = Iim/fdai”

Measure on X with values in B(H.)

Twisted Patterson-Sullivan density: a = (ax).
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Twisted Patterson-Sullivan measures

Main properties
e (Support) ay is supported on 9X (cheated a bit)
e (Normalization) /1dao € B(H.,) has norm 1.

e (Twisted equivariance) g.ax = p..(g) ag for every g € G and
x € X.

e (Conformality) .
ax

— e~ heBe(x¥)1g
=IGRE <

for every x,y € X and £ € 0X.
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Twisted Patterson-Sullivan measures

Shadow Lemma

Let v = (vx) be an hg-conformal, G-invariant density on 0.X.

There exists C > 0 and r, such that for every g € G,

%e—hcd(o,go) < Ve ((’)o(go, r)) < Ce—hcd(o,go)
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Twisted Patterson-Sullivan measures

Shadow Lemma

Let v = (vx) be an hg-conformal, G-invariant density on 0.X.

There exists C > 0 and r, such that for every g € G,

%e—hcd(o,go) < v, ((’)o(go, r)) < Ce—hcd(o,go)

Half shadow Lemma

For every r > 0, there exists C > 0, such that for every g € G,

120 (Oo(go, 1)) < Ce™Ped@e2)
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Heuristic of the proof

Assumption. h, = hg.

Consequence. For every g € G,
llao (Oo(go, r))|| < e ed(0:89) < g=hed(0:69) — 1, (O, (go,r)),

where v, (standard) Patterson-Sullivan measure of G.
In other words a, < v,.
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Heuristic of the proof

Introduce

e Equivariance/Conformality of v,/a, implies

D(g€) = pu(g)D(§), Vg e G, V& € 0X, vy-as.

e Ergodicity of G on (0X x 9X,v, ® v,) implies

D is constant v,-as.

Conclusion. The image of D consists of p,,-invariant vectors.
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From shadows to absolute continuity
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Radial limit set

Given K C X compact, define AK .

/\rad = U Afad

KCX
compact
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Absolute continuity

Proposition
If the action of G on X is strongly positively recurrent, then there exists

K C X compact such that /\lff1d has full measure for both v, and a,.

Consequence (using the Shadow Lemmas)
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Absolute continuity

Corollary
There exists a unique linear continuous map

D: Hw = Loo(aX,Hw)

such that for every f € C(X), for every ¢ € H,,,
(/ fdao> ¢ = /fD(ng)dl/o,

Roughly speaking,
_ da,

D
dv,
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Exploiting equivariance/conformality

Proposition
Choose ¢ € H,, and let V = D(¢)

For every g € G,
Vog=p,(g)V, wv,as.
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Exploiting equivariance/conformality
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Hopf-Tsuji-Sullivan theorem

Theorem
Let G be a group acting properly by isometries on a CAT(-1) space X.

The following statements are equivalent
1. The action of G is divergent
2. The Patterson-Sullivan measure v/, only charges the radial limit set.

3. The geodesic flow on SX/G is ergodic (for the Bowen-Margulis
measure).

4. The diagonal action of I on (90X x 90X, v, ® 1,) is ergodic.

Reminder: G ~ X strongly positively recurrent = v, only charges the
radial limit set.
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Hopf-Tsuji-Sullivan theorem
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Exploiting ergodicity

Proposition
Choose ¢ € H,,. The map W = D(¢) is essentially constant.
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Exploiting ergodicity
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Assumption: h, = hg.

1. Build a twisted Patterson-Sullivan density a = (ay).

hS

a, is absolutely continuous with respect to v, (uses strong positive
recurrence).

D:H, — L>*(0X,H,) "Radon-Nikodym" derivative.

= &

D is non-zero : the norm of /1dao is 1.

&1

Choose ¢ € H,,, such that W = D(¢) is non-zero.

6. W is essentially constant and p,,-equivariant.

Conclusion: the essential value i) of W is a non-zero invariant vector for

Pe-
... hence the initial representation p almost has invariant vectors.
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That’s all folks!



Radial limit set

Proposition
If the action of G on X is strongly positively recurrent, then there exists
K C X compact such that AX  has full measure for both v, and a,.

68



Radial limit set
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Radial limit set
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Radial limit set
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