Twisted Patterson-Sullivan measure and applications to growth problems

Probabilistic Methods in Negative Curvature

Rémi Coulon

March, 2021

CNRS / Université de Rennes 1

General context

Let G be a group acting properly by isometries on a geodesic space X. Goal. Measure the "size" of its orbits

Definition (Exponential growth rate) $h(G, X) = \limsup_{r \to \infty} \frac{1}{r} \ln \# \{ g \in G : d(gx, x) \leq r \}.$

Exercise. h(G, X) does not depends on the point x.

$$h(G,X) = \limsup_{r\to\infty} \frac{1}{r} \ln \# \{g \in G : d(gx,x) \leqslant r\}.$$

Remark

```
If H is a subgroup of G, then
```

 $0 \leq h(H, X) \leq h(G, X).$

Questions:

- What are the possible values of h(H, X) when H runs over the subgroups of G?
- When do we have h(H, X) = h(G, X)?

Simplified theorem (C.-Dougall-Schapira-Tapie)

Let G be a group acting properly co-compactly by isometries on a Gromov hyperbolic space X. Let $N \lhd G$.

Then h(N, X) = h(G, X) if and only if G/N is amenable.

Last step of a long history.

- Grigorchuk, Cohen. $G = \mathbf{F}_r$.
- Brooks. $G = \pi_1(M)$ with M hyperbolic manifold.
- Burger, Roblin, Tapie, Stadlbauer, Jaerisch, Dougall-Sharp, C.-Dal'bo-Sambusetti, etc.

The case of free groups

Fix S symmetric generating set of $G = \mathbf{F}_r$. Let μ be the uniform probability measure on S. Spectral radius of the random walk in G/N:

$$\kappa = \limsup_{n \to \infty} \sqrt[n]{\mu^{*n}(N)}$$

Kesten amenability criterion

The quotient G/N is amenable if and only if $\kappa = 1$.

Kesten vs. Cohen-Grigorchuk

Sketch of proof

Sketch of proof

The "easy" direction

Simplified theorem (C.-Dougall-Schapira-Tapie)

Let G be a group acting properly co-compactly by isometries on a Gromov hyperbolic space X. Let $N \triangleleft G$.

Then h(N, X) = h(G, X) if and only if G/N is amenable.

Previously: if G is the free group, then

 $h(N,X) = h(G,X) \Longrightarrow G/N$ amenable.

Theorem (Roblin)

Let G be a group acting properly by isometries on a hyperbolic space X. Let $N \lhd G$.

If G/N is amenable, then h(G, X) = h(N, X).

Proof when X is CAT(-1). Write $\overline{X} = X \cup \partial X$ for the visual compactification of X.

Fix a base point $o \in X$ and a subgroup H < G.

Poincaré series

$$\mathcal{P}(s) = \sum_{h \in H} e^{-sd(o,ho)}$$

Converges if s > h(H, X), diverges if s < h(H, X).

Definition

The action of H on X is divergent if $P_H(s)$ diverges at s = h(H, X). It is convergent otherwise.

Examples.

• $G \curvearrowright X$ proper and co-compact \Longrightarrow divergent.

Patterson-Sullivan measures

For every $x \in X$, define a measure \overline{X} .

$$\nu_x^s = \frac{1}{P(s)} \sum_{h \in H} e^{-sd(x,ho)} \text{Dirac}(ho)$$

Probability measure if x = o.

Up to passing to a subsequence

$$\nu_x^s \xrightarrow[s \to h_H]{\text{weak}*} \nu_x$$

Patterson-Sullivan density of H: $\nu = (\nu_x)_{x \in X}$

Main properties

- (Support) ν_x is supported on ∂X (cheated a bit)
- (Normalization) ν_0 is a probability measure
- (Equivariance) $g_*\nu_x = \nu_{g_X}$ for every $g \in H$ and $x \in X$.
- (Conformality)

$$\frac{d\nu_x}{d\nu_y}(\xi) = e^{-h_H \beta_{\xi}(x,y)}$$

for every $x, y \in X$ and $\xi \in \partial X$.

Patterson-Sullivan measures

Patterson-Sullivan measures

Shadows $\mathcal{O}_{x}(y, r)$.

Shadow Lemma

Assume that $H \triangleleft G$ is normal. Let $\mu = (\mu_x)$ be an *h*-conformal, *H*-invariant density on ∂X .

There exists C > 0 and r, such that for every $g \in G$,

$$\frac{1}{C} \|\mu_{go}\| e^{-hd(o,go)} \leqslant \mu_o \left(\mathcal{O}_o(go,r) \right) \leqslant C \|\mu_{go}\| e^{-hd(o,go)}$$

Notation. $\|\mu_x\| = \mu_x (\partial X)$.

Patterson-Sullivan measures

Patterson-Sullivan measures

Proposition

Assume that $H \triangleleft G$ is normal. Let $\mu = (\mu_x)$ be an *h*-conformal, *H*-invariant density on ∂X .

The critical exponent of the series

$$\sum_{\mathsf{g}\in G} \|\mu_{\mathsf{go}}\| \, e^{-\mathsf{sd}(o,\mathsf{go})}$$

is at most h.

Proof of the "easy" direction

Here N is normal in G. Let Q = G/N. Assume that Q is amenable.

Goal. h(N, X) = h(G, X).

Averaging Patterson-Sullivan measures.

Fix a *Q*-invariant mean $M \colon \ell^{\infty}(Q) \to \mathbb{R}$.

 $\nu = (\nu_x)$ Patterson-Sullivan density of N.

Given $f \in C(\partial X)$, and $x \in X$, let

$$\begin{array}{rccc} \psi_{f,x} \colon & G/N & \to & \mathbb{R} \\ & u & \mapsto & \frac{1}{\|\nu_{uo}\|} \int f du_*^{-1} \nu_{ux}. \end{array}$$

Define an h_N -conformal N-equivariant density $\mu = (\mu_x)$ by

$$\int f d\mu_x = M(\psi_{f,x}), \quad \forall f \in C(\partial X).$$

Jensen inequality (exp is convex)

$$\|\mu_{go}\| = M(\exp \circ \ln(\psi_{\mathbb{1},go})) \geqslant \exp\left(M(\ln(\psi_{\mathbb{1},go}))\right)$$

Said differently

$$\|\mu_{go}\| \ge e^{\chi(g)},$$

where

$$\begin{array}{rccc} \chi \colon & \mathcal{G} & \to & \mathbb{R} \\ & g & \mapsto & \mathcal{M}(\ln(\psi_{1,go})). \end{array}$$

is a homomorphism.

$$\sum_{g \in G} \|\mu_{go}\| e^{-sd(o,go)} \ge \sum_{g \in G} e^{-sd(o,go)} e^{\chi(g)} \ge \sum_{g \in G} e^{-sd(o,go)} \cosh \circ \chi(g)$$
$$\ge \sum_{g \in G} e^{-sd(o,go)}$$

Hence $h(G, X) \leq h(N, X)$.

The optimal statement

Simplified theorem (C.-Dougall-Schapira-Tapie)

Let G be a group acting properly co-compactly by isometries on a Gromov hyperbolic space X. Let $N \triangleleft G$.

Then h(N, X) = h(G, X) if and only if G/N is amenable.

Full theorem (C.-Dougall-Schapira-Tapie)

Let *G* be a group acting properly by isometries on a Gromov hyperbolic space *X*. Assume that the action of *G* on *X* is strongly positively recurrent. Let H < G.

Then h(H, X) = h(G, X) if and only if H is co-amenable in G.

Proposition-Definition

A subgroup H < G is co-amenable in G is one of the following equivalent assertions holds.

- 1. There exists a G-invariant mean $M \colon \ell^{\infty}(G/H) \to \mathbb{R}$.
- 2. The regular representation $\rho: G \to U(\mathcal{H})$ where $\mathcal{H} = \ell^2(G/H)$ almost has invariant vectors.
- 3. The Cheeger constant of the Schreier graph of G/H is zero.

Examples.

• Let $N \lhd G$.

N is co-amenable in $G \iff G/N$ is amenable.

• $G = \mathbf{F}(a, b)$ $H = \langle a^n b a^{-n} : n \in \mathbb{N} \rangle$

Well understood situation.

The action of G is convex co-compact if G acts properly co-compactly on a quasi-convex G-invariant subset $Y \subset X$.

Goal. Measure "how much" the action is not convex co-compact.

Let $K \subset X$ be a compact subset and let

$$G_{K} = \{g \in G : \exists x, y \in K, [x, gy] \cap GK \subset K \cup gK\}$$

Strongly positively recurrent action

The entropy at infinity of (the action of) G is

$$h_{\infty}(G,X) = \inf_{\substack{K \subset X \\ compact}} h(G_K,X)$$

Observation. $h_{\infty}(G, X) \leq h(G, X)$.

Definition (Schapira-Tapie)

The action of G on X is strongly positively recurrent if

 $h_{\infty}(G,X) < h(G,X)$

a.k.a. statistically convex co-compact (Yang)
Examples.

- $G \curvearrowright X$ proper and co-compact.
- If G is hyperbolic relative to $\{P_1, \ldots, P_m\}$ and $G \curvearrowright X$ is a cusped uniform action, then

$$h_{\infty}(G,X) = \min_{1 \leq i \leq m} h(P_i,X).$$

• Ancona type surfaces

Full theorem (C.-Dougall-Schapira-Tapie)

Let *G* be a group acting properly by isometries on a Gromov hyperbolic space *X*. Assume that the action of *G* on *X* is strongly positively recurrent. Let H < G.

Then h(H, X) = h(G, X) if and only if H is co-amenable in G.

• Negative curvature

• Strongly positively recurrent action

Definition

A group G has Kazhdan Property (T) is for every unitary representation $\rho: G \to U(\mathcal{H})$ in a Hilbert space, if ρ almost has invariant vector, then ρ has a non-zero invariant vector.

Examples.

Original problem:

Describe $\{h(H, X) : H < G\}$.

Theorem (C.-Dougall-Schapira-Tapie)

Let G be a group acting properly by isometries on a Gromov hyperbolic space X. Assume that the action of G on X is strongly positively recurrent.

If G has Property (T), then there exists $\varepsilon > 0$, such that for every subgroup H < G

- either $h(H, X) < h(G, X) \varepsilon$,
- or $[G:H] < \infty$.

The "hard" direction

Initial data.

- X CAT(-1) space. G acts properly on X by isometries.
- Let \mathcal{H} be a Hilbert space with a partial order \prec compatible with the Hilbert structure, i.e. $\langle \phi_1, \phi_2 \rangle \ge 0$, whenever $\phi_1 \succ 0$ and $\phi_2 \succ 0$. **Example.** $\mathcal{H} = L^2(Y)$, where $f_1 \prec f_2 \iff \forall y \in Y, f_1(y) \le f_2(y)$.
- Let ρ: G → U(H) be a positive unitary representation, i.e. ρ(g)φ ≻ 0 for every g ∈ G and φ ≻ 0. Example. If G acts on Y, then ρ: G → U(L²(Y)) regular representation.

Twisted Poincaré series

Twisted Poincaré series.

$$A(s) = \sum_{g \in G} e^{-sd(o,go)} \rho(g).$$

(bounded operator on \mathcal{H}).

Convergence. Strong operator topology.

Twisted Poincaré series.

$$A(s) = \sum_{g \in G} e^{-sd(o,go)} \rho(g).$$

Critical exponent. There exists $h_{\rho} \in [0, h_G]$ such that

- A(s) converges, if $s > h_{
 ho}$
- A(s) diverges, if $s < h_{
 ho}$

Lemma.

Let H < G. Let $\mathcal{H} = \ell^2(G/H)$ and $\rho \colon G \to \mathcal{U}(\mathcal{H})$ be the regular representation. Then

 $h_H \leqslant h_\rho \leqslant h_G$.

In particular, $h_H = h_G \Longrightarrow h_\rho = h_G$.

Twisted Poincaré series

$$A(s) = \sum_{g \in G} e^{-sd(o,go)} \rho(g).$$

Exercise.

Let H < G. Let $\mathcal{H} = \ell^2(G/H)$ and $\rho: G \to \mathcal{U}(\mathcal{H})$ be the regular representation. Let $\phi_u \in \mathcal{H}$ be the Dirac at uH.

For every $u \in G$,

$$\langle A(s)\phi_e,\phi_u\rangle = \sum_{g\in uH} e^{-sd(o,go)}$$

A(s) "combines" the Poincaré series of all *H*-cosets.

Theorem.

Let \mathcal{H} be a Hilbert space with a partial order. Let $\rho \colon G \to \mathcal{U}(\mathcal{H})$ be a positive unitary representation. The following are equivalents

1.
$$h_{\rho} = h(G, X)$$
,

2. ρ almost has invariant vectors.

Exercise. (2) \implies (1)

Naive attempt.

Consider

$$a_x^s = rac{1}{\|A(s)\|} \sum_{g \in G} e^{-sd(o,go)} \mathrm{Dirac}(go)
ho(g)$$

Measure on $\bar{X} = X \cup \partial X$ with value in $\mathcal{B}(\mathcal{H})$.

Other point of view. Linear functional $C(\bar{X}) \rightarrow \mathcal{B}(\mathcal{H})$.

Take the limit

$$a_x^s \xrightarrow[s \to h_\rho]{} a_x$$

Warning

The space of Banach valued measure is not compact!

Let $\omega \colon \mathcal{P}(\mathbb{N}) \to \{0,1\}$ be a non-principal ultra-filter, i.e.

- 1. $\omega(A \sqcup B) = \omega(A) + \omega(B)$ for every disjoint $A, B \subset \mathbb{N}$.
- 2. $\omega(\mathbb{N}) = 1$,
- 3. $\omega(A) = 0$, finite $A \subset \mathbb{N}$.

A property P_n holds ω -almost surely (ω -as) if

$$\omega (\{n \in \mathbb{N} : P_n \text{ is true}\}) = 1.$$

Given a real sequence (u_n) we say that $\lim_{\omega} u_n = \ell$ if

$$\forall \varepsilon > 0, \quad |u_n - \ell| < \varepsilon \text{ }\omega\text{-as.}$$

Fact. Every real valued bounded sequences admits an ω -limit.

Ultra-limit of Hilbert spaces.

Let (\mathcal{H}_n) be a sequence of Hilbert spaces.

Let

$$\prod_{\omega} \mathcal{H}_n = \left\{ (\phi_n) \in \prod_{n \in \mathbb{N}} \mathcal{H}_n : \|\phi_n\| \text{ is bounded} \right\}.$$

Pseudo-norm. $\|(\phi_n)\| = \lim_{\omega} \|\phi_n\|.$

$$W = \left\{ (\phi_n) \in \prod_{\omega} \mathcal{H}_n \ : \ \|(\phi_n)\| = 0
ight\}$$
 is a vector space.

Proposition-Definition.

$$\mathcal{H}_\omega := \prod_\omega \mathcal{H}_n / W$$
 is a Hilbert space.

Notations. $\lim_{\omega} \phi_n$: image of (ϕ_n) in \mathcal{H}_{ω} .

For our purpose

- (\mathcal{H}_n) constant sequence equal to \mathcal{H} .
- \mathcal{H}_{ω} is endowed with a partial order \prec coming from the one on \mathcal{H} .
- If (B_n) is a bounded sequence of operators on \mathcal{H} one defines $B_{\omega} = \lim_{\omega} B_n$ by

$$B_{\omega}\left(\lim_{\omega}\phi_{n}\right)=\lim_{\omega}\left(B_{n}\phi_{n}\right).$$

 B_{ω} belongs to $\mathcal{B}(\mathcal{H}_{\omega})$.

In particular, ρ: G → U(H) induces a positive unitary representation
 ρ_ω: G → U(H_ω)

Exercise.

 ρ almost have invariant vectors $\iff \rho_\omega$ has a non-zero invariant vector.

Second attempt.

Recall

$$a_x^s = rac{1}{\|A(s)\|} \sum_{g \in G} e^{-sd(o,go)} \mathrm{Dirac}(go)
ho(g)$$

Fix a sequence $s_n > h_\rho$, converging to h_ρ .

Define a_x as follows.

$$\int f da_x := \lim_{\omega} \int f da_x^{s_n}$$
$$= \lim_{\omega} \frac{1}{\|A(s_n)\|} \sum_{g \in G} e^{-s_n d(o,go)} f(go) \rho(g), \quad \forall f \in C(\bar{X}).$$

Measure on \bar{X} with values in $\mathcal{B}(\mathcal{H}_{\omega})$.

Main properties

- (Support) a_x is supported on ∂X (cheated a bit)
- (Normalization) $\int \mathbb{1} da_o$ has norm 1.
- (Twisted equivariance) $g_*a_x = \rho_\omega(g)^{-1}a_{gx}$ for every $g \in G$ and $x \in X$.
- (Conformality)

$$\frac{da_x}{da_y}(\xi) = e^{-h_
ho eta_\xi(x,y)} \mathrm{Id}$$

for every $x, y \in X$ and $\xi \in \partial X$.

The "hard" direction (continued)

Twisted Poincaré series.

$$A(s) = \sum_{g \in G} e^{-sd(o,go)}
ho(g)$$
 (bounded operator on \mathcal{H}).

Critical exponent: $h_{\rho} \in [0, h_G]$

Theorem.

Let \mathcal{H} be a Hilbert space with a partial order. Let $\rho \colon G \to \mathcal{U}(\mathcal{H})$ be a positive unitary representation. The following are equivalents

- 1. $h_{\rho} = h_{G}$,
- 2. ρ almost has invariant vectors.

Reminder

Let

$$a_x^s = rac{1}{\|A(s)\|} \sum_{g \in G} e^{-sd(o,go)} \mathrm{Dirac}(go) \rho(g)$$

Fix a sequence $s_n > h_\rho$, converging to h_ρ . Fix a non-principal ultra-filter ω .

Define a_x as follows.

$$\int f da_x = \lim_{\omega} \int f da_x^{s_n}$$

Measure on \bar{X} with values in $\mathcal{B}(\mathcal{H}_{\omega})$

Twisted Patterson-Sullivan density: $a = (a_x)$.

Main properties

- (Support) a_x is supported on ∂X (cheated a bit)
- (Normalization) $\int \mathbb{1} da_o \in \mathcal{B}(\mathcal{H}_\omega)$ has norm 1.
- (Twisted equivariance) $g_*a_x = \rho_{\omega}(g)^{-1}a_{gx}$ for every $g \in G$ and $x \in X$.
- (Conformality)

$$\frac{da_x}{da_y}(\xi) = e^{-h_\rho \beta_\xi(x,y)} \mathrm{Id}$$

for every $x, y \in X$ and $\xi \in \partial X$.

Shadow Lemma

Let $\nu = (\nu_x)$ be an h_G -conformal, G-invariant density on ∂X . There exists C > 0 and r, such that for every $g \in G$, $\frac{1}{C}e^{-h_G d(o,go)} \leq \nu_o (\mathcal{O}_o(go, r)) \leq Ce^{-h_G d(o,go)}$

Shadow Lemma

Let $\nu = (\nu_x)$ be an h_G -conformal, G-invariant density on ∂X .

There exists C > 0 and r, such that for every $g \in G$,

$$rac{1}{C}e^{-h_G d(o,go)}\leqslant
u_o\left(\mathcal{O}_o(go,r)
ight)\leqslant Ce^{-h_G d(o,go)}$$

Half shadow Lemma

For every r > 0, there exists C > 0, such that for every $g \in G$,

 $\|a_o\left(\mathcal{O}_o(go,r)\right)\|\leqslant Ce^{-h_
ho d(o,go)}$

Assumption. $h_{\rho} = h_{G}$.

Consequence. For every $g \in G$,

$$\|a_o\left(\mathcal{O}_o(go,r)\right)\| \prec e^{-h_\rho d(o,go)} \asymp e^{-h_G d(o,go)} \asymp \nu_o\left(\mathcal{O}_o(go,r)\right),$$

where ν_o (standard) Patterson-Sullivan measure of G.

In other words $a_o \ll \nu_o$.

Introduce

$$D = rac{d a_o}{d
u_o} \colon \partial X o \mathcal{B}(\mathcal{H}_\omega)$$

• Equivariance/Conformality of ν_o/a_o implies

$$D(g\xi) =
ho_{\omega}(g)D(\xi), \quad \forall g \in G, \ \forall \xi \in \partial X, \
u_o$$
-as.

• Ergodicity of G on $(\partial X \times \partial X, \nu_o \otimes \nu_o)$ implies

D is constant ν_o -as.

Conclusion. The image of *D* consists of ρ_{ω} -invariant vectors.

Given $K \subset X$ compact, define Λ_{rad}^K .

$$\Lambda_{\mathrm{rad}} = \bigcup_{\substack{K \subset X \\ \mathsf{compact}}} \Lambda_{\mathrm{rad}}^{K}$$

Proposition

If the action of G on X is strongly positively recurrent, then there exists $K \subset X$ compact such that Λ_{rad}^{K} has full measure for both ν_{o} and a_{o} .

Consequence (using the Shadow Lemmas)

Corollary

There exists a unique linear continuous map

$$D\colon \mathcal{H}_{\omega} \to L^{\infty}(\partial X, \mathcal{H}_{\omega})$$

such that for every $f \in C(\bar{X})$, for every $\phi \in \mathcal{H}_{\omega}$,

$$\left(\int f da_o\right)\phi = \int f D(\phi) d\nu_o,$$

Roughly speaking,

$$D = \frac{da_o}{d\nu_o}$$

Exploiting equivariance/conformality

Proposition

Choose $\phi \in \mathcal{H}_\omega$ and let $\Psi = D(\phi)$ For every $g \in G$,

 $\Psi \circ g =
ho_\omega(g) \Psi, \quad
u_o ext{-a.s.}$

Exploiting equivariance/conformality

Theorem

Let G be a group acting properly by isometries on a CAT(-1) space X. The following statements are equivalent

- 1. The action of G is divergent
- 2. The Patterson-Sullivan measure ν_o only charges the radial limit set.
- 3. The geodesic flow on *SX*/*G* is ergodic (for the Bowen-Margulis measure).
- 4. The diagonal action of Γ on $(\partial X \times \partial X, \nu_o \otimes \nu_o)$ is ergodic.

Reminder: $G \curvearrowright X$ strongly positively recurrent $\Longrightarrow \nu_o$ only charges the radial limit set.

Hopf-Tsuji-Sullivan theorem
Exploiting ergodicity

Proposition

Choose $\phi \in \mathcal{H}_{\omega}$. The map $\Psi = D(\phi)$ is essentially constant.

Exploiting ergodicity

Summary.

Assumption: $h_{\rho} = h_{G}$.

- 1. Build a twisted Patterson-Sullivan density $a = (a_x)$.
- 2. a_o is absolutely continuous with respect to ν_o (uses strong positive recurrence).
- 3. $D \colon \mathcal{H}_{\omega} \to L^{\infty}(\partial X, \mathcal{H}_{\omega})$ "Radon-Nikodym" derivative.
- 4. *D* is non-zero : the norm of $\int \mathbb{1} da_0$ is 1.
- 5. Choose $\phi \in \mathcal{H}_{\omega}$, such that $\Psi = D(\phi)$ is non-zero.
- 6. Ψ is essentially constant and ρ_{ω} -equivariant.

Conclusion: the essential value ψ of Ψ is a non-zero invariant vector for ρ_{ω} .

 \ldots hence the initial representation ρ almost has invariant vectors.

That's all folks!

Proposition

If the action of G on X is strongly positively recurrent, then there exists $K \subset X$ compact such that Λ_{rad}^{K} has full measure for both ν_{o} and a_{o} .