Twisted Patterson-Sullivan measure and applications to growth problems

Probabilistic Methods in Negative Curvature

Rémi Coulon
March, 2021
CNRS / Université de Rennes 1

General context

Growth of groups

Let G be a group acting properly by isometries on a geodesic space X.
Goal. Measure the "size" of its orbits

Definition (Exponential growth rate)

$$
h(G, X)=\limsup _{r \rightarrow \infty} \frac{1}{r} \ln \#\{g \in G: d(g x, x) \leqslant r\} .
$$

Exercise. $h(G, X)$ does not depends on the point x.

Examples

$$
h(G, X)=\underset{r \rightarrow \infty}{\limsup } \frac{1}{r} \ln \#\{g \in G: d(g x, x) \leqslant r\} .
$$

Remark and question

Remark

If H is a subgroup of G, then

$$
0 \leqslant h(H, X) \leqslant h(G, X) .
$$

Questions:

- What are the possible values of $h(H, X)$ when H runs over the subgroups of G ?
- When do we have $h(H, X)=h(G, X)$?

Main goal of these lectures

Simplified theorem (C.-Dougall-Schapira-Tapie)

Let G be a group acting properly co-compactly by isometries on a Gromov hyperbolic space X. Let $N \triangleleft G$.

Then $h(N, X)=h(G, X)$ if and only if G / N is amenable.

Last step of a long history.

- Grigorchuk, Cohen. $G=\mathbf{F}_{r}$.
- Brooks. $G=\pi_{1}(M)$ with M hyperbolic manifold.
- Burger, Roblin, Tapie, Stadlbauer, Jaerisch, Dougall-Sharp, C.-Dal'bo-Sambusetti, etc.

The case of free groups

Kesten's criterion

Fix S symmetric generating set of $G=\mathbf{F}_{r}$.
Let μ be the uniform probability measure on S.
Spectral radius of the random walk in G / N :

$$
\kappa=\limsup _{n \rightarrow \infty} \sqrt[n]{\mu^{* n}(N)}
$$

Kesten amenability criterion

The quotient G / N is amenable if and only if $\kappa=1$.

Kesten vs. Cohen-Grigorchuk

Almost invariants vectors and amenability

Sketch of proof

Sketch of proof

The "easy" direction

Reminder

Simplified theorem (C.-Dougall-Schapira-Tapie)

Let G be a group acting properly co-compactly by isometries on a Gromov hyperbolic space X. Let $N \triangleleft G$.
Then $h(N, X)=h(G, X)$ if and only if G / N is amenable.

Previously: if G is the free group, then

$$
h(N, X)=h(G, X) \Longrightarrow G / N \text { amenable. }
$$

The "easy" direction

Theorem (Roblin)

Let G be a group acting properly by isometries on a hyperbolic space X. Let $N \triangleleft G$.

If G / N is amenable, then $h(G, X)=h(N, X)$.
Proof when X is CAT(-1). Write $\bar{X}=X \cup \partial X$ for the visual compactification of X.

Patterson-Sullivan measures

Fix a base point $o \in X$ and a subgroup $H<G$.
Poincaré series

$$
\mathcal{P}(s)=\sum_{h \in H} e^{-s d(o, h o)}
$$

Converges if $s>h(H, X)$, diverges if $s<h(H, X)$.

Definition

The action of H on X is divergent if $P_{H}(s)$ diverges at $s=h(H, X)$. It is convergent otherwise.

Examples.

- $G \curvearrowright X$ proper and co-compact \Longrightarrow divergent.

Patterson-Sullivan measures

Patterson-Sullivan measures

For every $x \in X$, define a measure \bar{X}.

$$
\nu_{x}^{s}=\frac{1}{P(s)} \sum_{h \in H} e^{-s d(x, h o)} \operatorname{Dirac}(h o)
$$

Probability measure if $x=0$.
Up to passing to a subsequence

$$
\left.\nu_{x}^{s} \frac{\text { weak* }}{s \rightarrow h_{H}}\right\rangle \nu_{x}
$$

Patterson-Sullivan density of $H: \quad \nu=\left(\nu_{x}\right)_{x \in X}$

Patterson-Sullivan measures

Main properties

- (Support) ν_{x} is supported on ∂X (cheated a bit)
- (Normalization) ν_{0} is a probability measure
- (Equivariance) $g_{*} \nu_{x}=\nu_{g x}$ for every $g \in H$ and $x \in X$.
- (Conformality)

$$
\frac{d \nu_{x}}{d \nu_{y}}(\xi)=e^{-h_{H} \beta_{\xi}(x, y)}
$$

for every $x, y \in X$ and $\xi \in \partial X$.

Patterson-Sullivan measures

Patterson-Sullivan measures

Patterson-Sullivan measures

Shadows $\mathcal{O}_{x}(y, r)$.

Patterson-Sullivan measures

Shadow Lemma

Assume that $H \triangleleft G$ is normal. Let $\mu=\left(\mu_{x}\right)$ be an h-conformal, H-invariant density on ∂X.

There exists $C>0$ and r, such that for every $g \in G$,

$$
\frac{1}{C}\left\|\mu_{g o}\right\| e^{-h d(o, g o)} \leqslant \mu_{o}\left(\mathcal{O}_{o}(g o, r)\right) \leqslant C\left\|\mu_{g o}\right\| e^{-h d(o, g o)}
$$

Notation. $\left\|\mu_{x}\right\|=\mu_{x}(\partial X)$.

Patterson-Sullivan measures

Patterson-Sullivan measures

Proof of the "easy" direction

Proposition

Assume that $H \triangleleft G$ is normal. Let $\mu=\left(\mu_{x}\right)$ be an h-conformal, H-invariant density on ∂X.

The critical exponent of the series

$$
\sum_{g \in G}\left\|\mu_{g o}\right\| e^{-s d(o, g o)}
$$

is at most h.

Proof of the "easy" direction

Here N is normal in G. Let $Q=G / N$. Assume that Q is amenable.
Goal. $h(N, X)=h(G, X)$.
Averaging Patterson-Sullivan measures.
Fix a Q-invariant mean $M: \ell^{\infty}(Q) \rightarrow \mathbb{R}$.
$\nu=\left(\nu_{x}\right)$ Patterson-Sullivan density of N.
Given $f \in C(\partial X)$, and $x \in X$, let

$$
\begin{aligned}
& \psi_{f, x}: \quad G / N \rightarrow \\
& \\
& u \mapsto
\end{aligned} \frac{1}{\left\|\nu_{u o}\right\|} \int f d u_{*}^{-1} \nu_{u x} .
$$

Define an h_{N}-conformal N-equivariant density $\mu=\left(\mu_{x}\right)$ by

$$
\int f d \mu_{x}=M\left(\psi_{f, x}\right), \quad \forall f \in C(\partial X)
$$

Proof of the "easy" direction

Jensen inequality (exp is convex)

$$
\left\|\mu_{g \circ}\right\|=M\left(\exp \circ \ln \left(\psi_{\mathbb{1}, g_{\circ}}\right)\right) \geqslant \exp \left(M\left(\ln \left(\psi_{\mathbb{1}, g \circ}\right)\right)\right)
$$

Said differently

$$
\left\|\mu_{g o}\right\| \geqslant e^{\chi(g)},
$$

where

$$
\begin{array}{rlcc}
\chi: \quad G & \rightarrow & \mathbb{R} \\
& g & \mapsto & M\left(\ln \left(\psi_{1, g o}\right)\right) .
\end{array}
$$

is a homomorphism.

Proof of the "easy" direction

$$
\begin{aligned}
\sum_{g \in G}\left\|\mu_{g o}\right\| e^{-s d(o, g o)} \geqslant \sum_{g \in G} e^{-s d(o, g o)} e^{\chi(g)} & \geqslant \sum_{g \in G} e^{-s d(o, g o)} \cosh \circ \chi(g) \\
& \geqslant \sum_{g \in G} e^{-s d(o, g o)}
\end{aligned}
$$

Hence $h(G, X) \leqslant h(N, X)$.

The optimal statement

Main goal of these lectures

Simplified theorem (C.-Dougall-Schapira-Tapie)

Let G be a group acting properly co-compactly by isometries on a Gromov hyperbolic space X. Let $N \triangleleft G$.

Then $h(N, X)=h(G, X)$ if and only if G / N is amenable.

Full theorem (C.-Dougall-Schapira-Tapie)

Let G be a group acting properly by isometries on a Gromov hyperbolic space X. Assume that the action of G on X is strongly positively recurrent. Let $H<G$.

Then $h(H, X)=h(G, X)$ if and only if H is co-amenable in G.

Co-amenability

Proposition-Definition

A subgroup $H<G$ is co-amenable in G is one of the following equivalent assertions holds.

1. There exists a G-invariant mean $M: \ell^{\infty}(G / H) \rightarrow \mathbb{R}$.
2. The regular representation $\rho: G \rightarrow U(\mathcal{H})$ where $\mathcal{H}=\ell^{2}(G / H)$ almost has invariant vectors.
3. The Cheeger constant of the Schreier graph of G / H is zero.

Co-amenability

Examples.

- Let $N \triangleleft G$.
N is co-amenable in $G \Longleftrightarrow G / N$ is amenable.
- $G=\mathbf{F}(a, b)$

$$
H=\left\langle a^{n} b a^{-n}: n \in \mathbb{N}\right\rangle
$$

Strongly positively recurrent action

Well understood situation.

The action of G is convex co-compact if G acts properly co-compactly on a quasi-convex G-invariant subset $Y \subset X$.

Goal. Measure "how much" the action is not convex co-compact.

Strongly positively recurrent action

Let $K \subset X$ be a compact subset and let

$$
G_{K}=\{g \in G: \exists x, y \in K,[x, g y] \cap G K \subset K \cup g K\}
$$

Strongly positively recurrent action

The entropy at infinity of (the action of) G is

$$
h_{\infty}(G, X)=\inf _{\substack{K \subset X \\ \text { compact }}} h\left(G_{K}, X\right)
$$

Observation. $h_{\infty}(G, X) \leqslant h(G, X)$.

Definition (Schapira-Tapie)

The action of G on X is strongly positively recurrent if

$$
h_{\infty}(G, X)<h(G, X)
$$

a.k.a. statistically convex co-compact (Yang)

Strongly positively recurrent action

Examples.

- $G \curvearrowright X$ proper and co-compact.
- If G is hyperbolic relative to $\left\{P_{1}, \ldots, P_{m}\right\}$ and $G \curvearrowright X$ is a cusped uniform action, then

$$
h_{\infty}(G, X)=\min _{1 \leqslant i \leqslant m} h\left(P_{i}, X\right) .
$$

- Ancona type surfaces

Strongly positively recurrent action

Optimality of the main theorem

Full theorem (C.-Dougall-Schapira-Tapie)

Let G be a group acting properly by isometries on a Gromov hyperbolic space X. Assume that the action of G on X is strongly positively recurrent. Let $H<G$.

Then $h(H, X)=h(G, X)$ if and only if H is co-amenable in G.

Optimality of the main theorem

- Negative curvature
- Strongly positively recurrent action

Growth gap

Definition

A group G has Kazhdan Property (T) is for every unitary representation $\rho: G \rightarrow \mathcal{U}(\mathcal{H})$ in a Hilbert space, if ρ almost has invariant vector, then ρ has a non-zero invariant vector.

Examples.

Growth gap

Original problem:

$$
\text { Describe }\{h(H, X): H<G\} .
$$

Theorem (C.-Dougall-Schapira-Tapie)

Let G be a group acting properly by isometries on a Gromov hyperbolic space X. Assume that the action of G on X is strongly positively recurrent.

If G has Property (T), then there exists $\varepsilon>0$, such that for every subgroup $H<G$

- either $h(H, X)<h(G, X)-\varepsilon$,
- or $[G: H]<\infty$.

The "hard" direction

Twisted Poincaré series

Initial data.

- X CAT(-1) space. G acts properly on X by isometries.
- Let \mathcal{H} be a Hilbert space with a partial order \prec compatible with the Hilbert structure, i.e. $\left\langle\phi_{1}, \phi_{2}\right\rangle \geqslant 0$, whenever $\phi_{1} \succ 0$ and $\phi_{2} \succ 0$. Example. $\mathcal{H}=L^{2}(Y)$, where $f_{1} \prec f_{2} \Longleftrightarrow \forall y \in Y, f_{1}(y) \leqslant f_{2}(y)$.
- Let $\rho: G \rightarrow \mathcal{U}(\mathcal{H})$ be a positive unitary representation, i.e. $\rho(g) \phi \succ 0$ for every $g \in G$ and $\phi \succ 0$.
Example. If G acts on Y, then $\rho: G \rightarrow \mathcal{U}\left(L^{2}(Y)\right)$ regular representation.

Twisted Poincaré series

Twisted Poincaré series.

$$
A(s)=\sum_{g \in G} e^{-s d(o, g o)} \rho(g)
$$

(bounded operator on \mathcal{H}).
Convergence. Strong operator topology.

Twisted Poincaré series

Twisted Poincaré series.

$$
A(s)=\sum_{g \in G} e^{-s d(o, g o)} \rho(g) .
$$

Critical exponent. There exists $h_{\rho} \in\left[0, h_{G}\right]$ such that

- $A(s)$ converges, if $s>h_{\rho}$
- $A(s)$ diverges, if $s<h_{\rho}$

Twisted Poincaré series

Lemma.

Let $H<G$. Let $\mathcal{H}=\ell^{2}(G / H)$ and $\rho: G \rightarrow \mathcal{U}(\mathcal{H})$ be the regular representation. Then

$$
h_{H} \leqslant h_{\rho} \leqslant h_{G} .
$$

In particular, $h_{H}=h_{G} \Longrightarrow h_{\rho}=h_{G}$.

Twisted Poincaré series

$$
A(s)=\sum_{g \in G} e^{-s d(o, g o)} \rho(g)
$$

Twisted Poincaré series

Exercise.

Let $H<G$. Let $\mathcal{H}=\ell^{2}(G / H)$ and $\rho: G \rightarrow \mathcal{U}(\mathcal{H})$ be the regular representation. Let $\phi_{u} \in \mathcal{H}$ be the Dirac at $u H$.

For every $u \in G$,

$$
\left\langle A(s) \phi_{e}, \phi_{u}\right\rangle=\sum_{g \in u H} e^{-s d(o, g o)}
$$

$A(s)$ "combines" the Poincaré series of all H -cosets.

Twisted Poincaré series

Theorem.

Let \mathcal{H} be a Hilbert space with a partial order. Let $\rho: G \rightarrow \mathcal{U}(\mathcal{H})$ be a positive unitary representation. The following are equivalents

1. $h_{\rho}=h(G, X)$,
2. ρ almost has invariant vectors.

Exercise. $(2) \Longrightarrow(1)$

Twisted Patterson-Sullivan measures

Naive attempt.
Consider

$$
a_{x}^{s}=\frac{1}{\|A(s)\|} \sum_{g \in G} e^{-s d(o, g o)} \operatorname{Dirac}(g o) \rho(g)
$$

Measure on $\bar{X}=X \cup \partial X$ with value in $\mathcal{B}(\mathcal{H})$.
Other point of view. Linear functional $C(\bar{X}) \rightarrow \mathcal{B}(\mathcal{H})$.
Take the limit

$$
a_{x}^{s} \xrightarrow[s \rightarrow h_{\rho}]{ } a_{x}
$$

Warning

The space of Banach valued measure is not compact!

Ultra-limit of Hilbert spaces.

Let $\omega: \mathcal{P}(\mathbb{N}) \rightarrow\{0,1\}$ be a non-principal ultra-filter, i.e.

1. $\omega(A \sqcup B)=\omega(A)+\omega(B)$ for every disjoint $A, B \subset \mathbb{N}$.
2. $\omega(\mathbb{N})=1$,
3. $\omega(A)=0$, finite $A \subset \mathbb{N}$.

A property P_{n} holds ω-almost surely (ω-as) if

$$
\omega\left(\left\{n \in \mathbb{N}: P_{n} \text { is true }\right\}\right)=1 .
$$

Given a real sequence $\left(u_{n}\right)$ we say that $\lim _{\omega} u_{n}=\ell$ if

$$
\forall \varepsilon>0, \quad\left|u_{n}-\ell\right|<\varepsilon \omega \text {-as. }
$$

Fact. Every real valued bounded sequences admits an ω-limit.

Ultra-limit of Hilbert spaces.

Let $\left(\mathcal{H}_{n}\right)$ be a sequence of Hilbert spaces.
Let

$$
\prod_{\omega} \mathcal{H}_{n}=\left\{\left(\phi_{n}\right) \in \prod_{n \in \mathbb{N}} \mathcal{H}_{n}:\left\|\phi_{n}\right\| \text { is bounded }\right\} .
$$

Pseudo-norm. $\left\|\left(\phi_{n}\right)\right\|=\lim _{\omega}\left\|\phi_{n}\right\|$.

$$
W=\left\{\left(\phi_{n}\right) \in \prod_{\omega} \mathcal{H}_{n}:\left\|\left(\phi_{n}\right)\right\|=0\right\} \text { is a vector space. }
$$

Proposition-Definition.
$\mathcal{H}_{\omega}:=\prod \mathcal{H}_{n} / W$ is a Hilbert space.

Notations. $\lim _{\omega} \phi_{n}$: image of $\left(\phi_{n}\right)$ in \mathcal{H}_{ω}.

Ultra-limit of Hilbert spaces.

For our purpose

- $\left(\mathcal{H}_{n}\right)$ constant sequence equal to \mathcal{H}.
- \mathcal{H}_{ω} is endowed with a partial order \prec coming from the one on \mathcal{H}.
- If $\left(B_{n}\right)$ is a bounded sequence of operators on \mathcal{H} one defines $B_{\omega}=\lim _{\omega} B_{n}$ by

$$
B_{\omega}\left(\lim _{\omega} \phi_{n}\right)=\lim _{\omega}\left(B_{n} \phi_{n}\right) .
$$

B_{ω} belongs to $\mathcal{B}\left(\mathcal{H}_{\omega}\right)$.

- In particular, $\rho: G \rightarrow \mathcal{U}(\mathcal{H})$ induces a positive unitary representation $\rho_{\omega}: G \rightarrow \mathcal{U}\left(\mathcal{H}_{\omega}\right)$

Exercise.

ρ almost have invariant vectors $\Longleftrightarrow \rho_{\omega}$ has a non-zero invariant vector.

Twisted Patterson-Sullivan measures

Second attempt.
Recall

$$
a_{x}^{s}=\frac{1}{\|A(s)\|} \sum_{g \in G} e^{-s d(o, g o)} \operatorname{Dirac}(g o) \rho(g)
$$

Fix a sequence $s_{n}>h_{\rho}$, converging to h_{ρ}.

Define a_{x} as follows.

$$
\begin{aligned}
\int f d a_{x} & :=\lim _{\omega} \int f d a_{x}^{s_{n}} \\
& =\lim _{\omega} \frac{1}{\left\|A\left(s_{n}\right)\right\|} \sum_{g \in G} e^{-s_{n} d(o, g o)} f(g o) \rho(g), \quad \forall f \in C(\bar{X}) .
\end{aligned}
$$

Measure on \bar{X} with values in $\mathcal{B}\left(\mathcal{H}_{\omega}\right)$.

Twisted Patterson-Sullivan measures

Main properties

- (Support) a_{x} is supported on ∂X (cheated a bit)
- (Normalization) $\int \mathbb{1} d a_{0}$ has norm 1.
- (Twisted equivariance) $g_{*} a_{x}=\rho_{\omega}(g)^{-1} a_{g x}$ for every $g \in G$ and $x \in X$.
- (Conformality)

$$
\frac{d a_{x}}{d a_{y}}(\xi)=e^{-h_{\rho} \beta_{\xi}(x, y)} \mathrm{Id}
$$

for every $x, y \in X$ and $\xi \in \partial X$.

The "hard" direction (continued)

Reminder

Twisted Poincaré series.

$$
\left.A(s)=\sum_{g \in G} e^{-s d(o, g o)} \rho(g) \quad \text { (bounded operator on } \mathcal{H}\right) .
$$

Critical exponent: $h_{\rho} \in\left[0, h_{G}\right]$

Theorem.

Let \mathcal{H} be a Hilbert space with a partial order. Let $\rho: G \rightarrow \mathcal{U}(\mathcal{H})$ be a positive unitary representation. The following are equivalents

1. $h_{\rho}=h_{G}$,
2. ρ almost has invariant vectors.

Reminder

Let

$$
a_{x}^{s}=\frac{1}{\|A(s)\|} \sum_{g \in G} e^{-s d(o, g o)} \operatorname{Dirac}(g o) \rho(g)
$$

Fix a sequence $s_{n}>h_{\rho}$, converging to h_{ρ}.
Fix a non-principal ultra-filter ω.

Define a_{x} as follows.

$$
\int f d a_{x}=\lim _{\omega} \int f d a_{x}^{s_{n}}
$$

Measure on \bar{X} with values in $\mathcal{B}\left(\mathcal{H}_{\omega}\right)$
Twisted Patterson-Sullivan density: $a=\left(a_{x}\right)$.

Twisted Patterson-Sullivan measures

Main properties

- (Support) a_{x} is supported on ∂X (cheated a bit)
- (Normalization) $\int \mathbb{1} d a_{o} \in \mathcal{B}\left(\mathcal{H}_{\omega}\right)$ has norm 1 .
- (Twisted equivariance) $g_{*} a_{x}=\rho_{\omega}(g)^{-1} a_{g x}$ for every $g \in G$ and $x \in X$.
- (Conformality)

$$
\frac{d a_{x}}{d a_{y}}(\xi)=e^{-h_{\rho} \beta_{\xi}(x, y)} \mathrm{Id}
$$

for every $x, y \in X$ and $\xi \in \partial X$.

Twisted Patterson-Sullivan measures

Shadow Lemma

Let $\nu=\left(\nu_{x}\right)$ be an h_{G}-conformal, G-invariant density on ∂X.
There exists $C>0$ and r, such that for every $g \in G$,

$$
\frac{1}{C} e^{-h_{G} d(o, g o)} \leqslant \nu_{o}\left(\mathcal{O}_{o}(g o, r)\right) \leqslant C e^{-h_{G} d(o, g o)}
$$

Twisted Patterson-Sullivan measures

Shadow Lemma

Let $\nu=\left(\nu_{x}\right)$ be an h_{G}-conformal, G-invariant density on ∂X.
There exists $C>0$ and r, such that for every $g \in G$,

$$
\frac{1}{C} e^{-h_{G} d(o, g o)} \leqslant \nu_{o}\left(\mathcal{O}_{o}(g o, r)\right) \leqslant C e^{-h_{G} d(o, g o)}
$$

Half shadow Lemma

For every $r>0$, there exists $C>0$, such that for every $g \in G$,

$$
\left\|a_{o}\left(\mathcal{O}_{o}(g o, r)\right)\right\| \leqslant C e^{-h_{\rho} d(o, g o)}
$$

Heuristic of the proof

Assumption. $h_{\rho}=h_{G}$.
Consequence. For every $g \in G$,

$$
\left\|a_{o}\left(\mathcal{O}_{o}(g o, r)\right)\right\| \prec e^{-h_{\rho} d(o, g o)} \asymp e^{-h_{G} d(o, g o)} \asymp \nu_{o}\left(\mathcal{O}_{o}(g o, r)\right),
$$

where ν_{o} (standard) Patterson-Sullivan measure of G.

In other words $a_{0} \ll \nu_{o}$.

Heuristic of the proof

Introduce

$$
D=\frac{d a_{o}}{d \nu_{o}}: \partial X \rightarrow \mathcal{B}\left(\mathcal{H}_{\omega}\right)
$$

- Equivariance/Conformality of ν_{o} / a_{o} implies

$$
D(g \xi)=\rho_{\omega}(g) D(\xi), \quad \forall g \in G, \forall \xi \in \partial X, \nu_{o} \text {-as. }
$$

- Ergodicity of G on $\left(\partial X \times \partial X, \nu_{o} \otimes \nu_{o}\right)$ implies D is constant ν_{o}-as.

Conclusion. The image of D consists of ρ_{ω}-invariant vectors.

From shadows to absolute continuity

Radial limit set

Given $K \subset X$ compact, define $\Lambda_{\text {rad }}^{K}$.

$$
\Lambda_{\mathrm{rad}}=\bigcup_{\substack{K \subset \subset \\ \text { compact }}} \Lambda_{\mathrm{rad}}^{K}
$$

Absolute continuity

Proposition

If the action of G on X is strongly positively recurrent, then there exists $K \subset X$ compact such that $\Lambda_{\text {rad }}^{K}$ has full measure for both ν_{o} and a_{0}.

Consequence (using the Shadow Lemmas)

Absolute continuity

Corollary

There exists a unique linear continuous map

$$
D: \mathcal{H}_{\omega} \rightarrow L^{\infty}\left(\partial X, \mathcal{H}_{\omega}\right)
$$

such that for every $f \in C(\bar{X})$, for every $\phi \in \mathcal{H}_{\omega}$,

$$
\left(\int f d a_{o}\right) \phi=\int f D(\phi) d \nu_{o}
$$

Roughly speaking,

$$
D=\frac{d a_{o}}{d \nu_{o}}
$$

Exploiting equivariance/conformality

Proposition

Choose $\phi \in \mathcal{H}_{\omega}$ and let $\psi=D(\phi)$
For every $g \in G$,

$$
\psi \circ g=\rho_{\omega}(g) \Psi, \quad \nu_{o} \text {-a.s. }
$$

Exploiting equivariance/conformality

Hopf-Tsuji-Sullivan theorem

Theorem

Let G be a group acting properly by isometries on a CAT(-1) space X. The following statements are equivalent

1. The action of G is divergent
2. The Patterson-Sullivan measure ν_{o} only charges the radial limit set.
3. The geodesic flow on $S X / G$ is ergodic (for the Bowen-Margulis measure).
4. The diagonal action of Γ on $\left(\partial X \times \partial X, \nu_{o} \otimes \nu_{o}\right)$ is ergodic.

Reminder: $G \curvearrowright X$ strongly positively recurrent $\Longrightarrow \nu_{o}$ only charges the radial limit set.

Hopf-Tsuji-Sullivan theorem

Exploiting ergodicity

Proposition

Choose $\phi \in \mathcal{H}_{\omega}$. The map $\psi=D(\phi)$ is essentially constant.

Exploiting ergodicity

Summary.

Assumption: $h_{\rho}=h_{G}$.

1. Build a twisted Patterson-Sullivan density $a=\left(a_{x}\right)$.
2. a_{0} is absolutely continuous with respect to ν_{o} (uses strong positive recurrence).
3. $D: \mathcal{H}_{\omega} \rightarrow L^{\infty}\left(\partial X, \mathcal{H}_{\omega}\right)$ "Radon-Nikodym" derivative.
4. D is non-zero: the norm of $\int \mathbb{1} d a_{0}$ is 1 .
5. Choose $\phi \in \mathcal{H}_{\omega}$, such that $\psi=D(\phi)$ is non-zero.
6. Ψ is essentially constant and ρ_{ω}-equivariant.

Conclusion: the essential value ψ of ψ is a non-zero invariant vector for ρ_{ω}.
... hence the initial representation ρ almost has invariant vectors.

That's all folks!

Radial limit set

Proposition

If the action of G on X is strongly positively recurrent, then there exists $K \subset X$ compact such that $\Lambda_{\text {rad }}^{K}$ has full measure for both ν_{o} and a_{0}.

Radial limit set

Radial limit set

Radial limit set

