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General context



Growth of groups

Let G be a group acting properly by isometries on a geodesic space X .

Goal. Measure the “size” of its orbits

Definition (Exponential growth rate)

h(G ,X ) = lim sup
r→∞

1

r
ln #{g ∈ G : d (gx , x) 6 r}.

Exercise. h(G ,X ) does not depends on the point x .
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Examples

h(G ,X ) = lim sup
r→∞

1

r
ln #{g ∈ G : d (gx , x) 6 r}.
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Remark and question

Remark

If H is a subgroup of G , then

0 6 h(H,X ) 6 h(G ,X ).

Questions:

• What are the possible values of h(H,X ) when H runs over the

subgroups of G?

• When do we have h(H,X ) = h(G ,X )?
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Main goal of these lectures

Simplified theorem (C.-Dougall-Schapira-Tapie)

Let G be a group acting properly co-compactly by isometries on a

Gromov hyperbolic space X . Let N C G .

Then h(N,X ) = h(G ,X ) if and only if G/N is amenable.

Last step of a long history.

• Grigorchuk, Cohen. G = Fr .

• Brooks. G = π1(M) with M hyperbolic manifold.

• Burger, Roblin, Tapie, Stadlbauer, Jaerisch, Dougall-Sharp,

C.-Dal’bo-Sambusetti, etc.
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The case of free groups



Kesten’s criterion

Fix S symmetric generating set of G = Fr .

Let µ be the uniform probability measure on S .

Spectral radius of the random walk in G/N:

κ = lim sup
n→∞

n
√
µ∗n(N)

Kesten amenability criterion

The quotient G/N is amenable if and only if κ = 1.

5



Kesten vs. Cohen-Grigorchuk
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Almost invariants vectors and amenability
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Sketch of proof
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Sketch of proof
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The “easy” direction



Reminder

Simplified theorem (C.-Dougall-Schapira-Tapie)

Let G be a group acting properly co-compactly by isometries on a

Gromov hyperbolic space X . Let N C G .

Then h(N,X ) = h(G ,X ) if and only if G/N is amenable.

Previously: if G is the free group, then

h(N,X ) = h(G ,X ) =⇒ G/N amenable.
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The “easy” direction

Theorem (Roblin)

Let G be a group acting properly by isometries on a hyperbolic space

X . Let N C G .

If G/N is amenable, then h(G ,X ) = h(N,X ).

Proof when X is CAT(-1). Write X̄ = X ∪ ∂X for the visual

compactification of X .
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Patterson-Sullivan measures

Fix a base point o ∈ X and a subgroup H < G .

Poincaré series

P(s) =
∑
h∈H

e−sd(o,ho)

Converges if s > h(H,X ), diverges if s < h(H,X ).

Definition

The action of H on X is divergent if PH(s) diverges at s = h(H,X ). It

is convergent otherwise.

Examples.

• G y X proper and co-compact =⇒ divergent.
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Patterson-Sullivan measures

Patterson-Sullivan measures

For every x ∈ X , define a measure X̄ .

νsx =
1

P(s)

∑
h∈H

e−sd(x,ho)Dirac(ho)

Probability measure if x = o.

Up to passing to a subsequence

νsx
weak∗−−−−−−−⇀
s→hH

νx

Patterson-Sullivan density of H: ν = (νx)x∈X
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Patterson-Sullivan measures

Main properties

• (Support) νx is supported on ∂X (cheated a bit)

• (Normalization) ν0 is a probability measure

• (Equivariance) g∗νx = νgx for every g ∈ H and x ∈ X .

• (Conformality)
dνx
dνy

(ξ) = e−hHβξ(x,y)

for every x , y ∈ X and ξ ∈ ∂X .
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Patterson-Sullivan measures
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Patterson-Sullivan measures
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Patterson-Sullivan measures

Shadows Ox(y , r).
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Patterson-Sullivan measures

Shadow Lemma

Assume that H C G is normal. Let µ = (µx) be an h-conformal,

H-invariant density on ∂X .

There exists C > 0 and r , such that for every g ∈ G ,

1

C
‖µgo‖ e−hd(o,go) 6 µo (Oo(go, r)) 6 C ‖µgo‖ e−hd(o,go)

Notation. ‖µx‖ = µx (∂X ).
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Patterson-Sullivan measures
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Patterson-Sullivan measures
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Proof of the “easy” direction

Proposition

Assume that H C G is normal. Let µ = (µx) be an h-conformal,

H-invariant density on ∂X .

The critical exponent of the series∑
g∈G

‖µgo‖ e−sd(o,go)

is at most h.
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Proof of the “easy” direction
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Proof of the “easy” direction

Here N is normal in G . Let Q = G/N. Assume that Q is amenable.

Goal. h(N,X ) = h(G ,X ).

Averaging Patterson-Sullivan measures.

Fix a Q-invariant mean M : `∞(Q)→ R.

ν = (νx) Patterson-Sullivan density of N.

Given f ∈ C (∂X ), and x ∈ X , let

ψf ,x : G/N → R

u 7→ 1

‖νuo‖

∫
fdu−1
∗ νux .

Define an hN -conformal N-equivariant density µ = (µx) by∫
fdµx = M(ψf ,x), ∀f ∈ C (∂X ).
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Proof of the “easy” direction

Jensen inequality (exp is convex)

‖µgo‖ = M(exp ◦ ln(ψ1,go)) > exp (M(ln(ψ1,go)))

Said differently

‖µgo‖ > eχ(g),

where

χ : G → R
g 7→ M(ln(ψ1,go)).

is a homomorphism.
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Proof of the “easy” direction

∑
g∈G

‖µgo‖ e−sd(o,go) >
∑
g∈G

e−sd(o,go)eχ(g) >
∑
g∈G

e−sd(o,go)cosh ◦ χ(g)

>
∑
g∈G

e−sd(o,go)

Hence h(G ,X ) 6 h(N,X ).
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The optimal statement



Main goal of these lectures

Simplified theorem (C.-Dougall-Schapira-Tapie)

Let G be a group acting properly co-compactly by isometries on a

Gromov hyperbolic space X . Let N C G .

Then h(N,X ) = h(G ,X ) if and only if G/N is amenable.

Full theorem (C.-Dougall-Schapira-Tapie)

Let G be a group acting properly by isometries on a Gromov hyperbolic

space X . Assume that the action of G on X is strongly positively

recurrent. Let H < G .

Then h(H,X ) = h(G ,X ) if and only if H is co-amenable in G .
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Co-amenability

Proposition-Definition

A subgroup H < G is co-amenable in G is one of the following

equivalent assertions holds.

1. There exists a G -invariant mean M : `∞(G/H)→ R.

2. The regular representation ρ : G → U(H) where H = `2(G/H)

almost has invariant vectors.

3. The Cheeger constant of the Schreier graph of G/H is zero.
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Co-amenability

Examples.

• Let N C G .

N is co-amenable in G ⇐⇒ G/N is amenable.

• G = F(a, b) H = 〈anba−n : n ∈ N〉
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Strongly positively recurrent action

Well understood situation.

The action of G is convex co-compact if G acts properly co-compactly on

a quasi-convex G -invariant subset Y ⊂ X .

Goal. Measure “how much” the action is not convex co-compact.
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Strongly positively recurrent action

Let K ⊂ X be a compact subset and let

GK = {g ∈ G : ∃x , y ∈ K , [x , gy ] ∩ GK ⊂ K ∪ gK}
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Strongly positively recurrent action

The entropy at infinity of (the action of) G is

h∞(G ,X ) = inf
K⊂X

compact

h(GK ,X )

Observation. h∞(G ,X ) 6 h(G ,X ).

Definition (Schapira-Tapie)

The action of G on X is strongly positively recurrent if

h∞(G ,X ) < h(G ,X )

a.k.a. statistically convex co-compact (Yang)

31



Strongly positively recurrent action

Examples.

• G y X proper and co-compact.

• If G is hyperbolic relative to {P1, . . . ,Pm} and G y X is a cusped

uniform action, then

h∞(G ,X ) = min
16i6m

h(Pi ,X ).

• Ancona type surfaces
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Strongly positively recurrent action
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Optimality of the main theorem

Full theorem (C.-Dougall-Schapira-Tapie)

Let G be a group acting properly by isometries on a Gromov hyperbolic

space X . Assume that the action of G on X is strongly positively

recurrent. Let H < G .

Then h(H,X ) = h(G ,X ) if and only if H is co-amenable in G .
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Optimality of the main theorem

• Negative curvature

• Strongly positively recurrent action
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Growth gap

Definition

A group G has Kazhdan Property (T) is for every unitary representation

ρ : G → U(H) in a Hilbert space, if ρ almost has invariant vector, then

ρ has a non-zero invariant vector.

Examples.
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Growth gap

Original problem:

Describe {h(H,X ) : H < G}.

Theorem (C.-Dougall-Schapira-Tapie)

Let G be a group acting properly by isometries on a Gromov hyperbolic

space X . Assume that the action of G on X is strongly positively

recurrent.

If G has Property (T), then there exists ε > 0, such that for every

subgroup H < G

• either h(H,X ) < h(G ,X )− ε,

• or [G : H] <∞.
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The “hard” direction



Twisted Poincaré series

Initial data.

• X CAT(-1) space. G acts properly on X by isometries.

• Let H be a Hilbert space with a partial order ≺ compatible with the

Hilbert structure, i.e. 〈φ1, φ2〉 > 0, whenever φ1 � 0 and φ2 � 0.

Example. H = L2(Y ), where f1 ≺ f2 ⇐⇒ ∀y ∈ Y , f1(y) 6 f2(y).

• Let ρ : G → U(H) be a positive unitary representation, i.e.

ρ(g)φ � 0 for every g ∈ G and φ � 0.

Example. If G acts on Y , then ρ : G → U(L2(Y )) regular

representation.
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Twisted Poincaré series

Twisted Poincaré series.

A(s) =
∑
g∈G

e−sd(o,go)ρ(g).

(bounded operator on H).

Convergence. Strong operator topology.
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Twisted Poincaré series

Twisted Poincaré series.

A(s) =
∑
g∈G

e−sd(o,go)ρ(g).

Critical exponent. There exists hρ ∈ [0, hG ] such that

• A(s) converges, if s > hρ

• A(s) diverges, if s < hρ
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Twisted Poincaré series

Lemma.

Let H < G . Let H = `2(G/H) and ρ : G → U(H) be the regular

representation. Then

hH 6 hρ 6 hG .

In particular, hH = hG =⇒ hρ = hG .
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Twisted Poincaré series

A(s) =
∑
g∈G

e−sd(o,go)ρ(g).
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Twisted Poincaré series

Exercise.

Let H < G . Let H = `2(G/H) and ρ : G → U(H) be the regular

representation. Let φu ∈ H be the Dirac at uH.

For every u ∈ G ,

〈A(s)φe , φu〉 =
∑
g∈uH

e−sd(o,go)

A(s) “combines” the Poincaré series of all H-cosets.
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Twisted Poincaré series

Theorem.

Let H be a Hilbert space with a partial order. Let ρ : G → U(H) be a

positive unitary representation. The following are equivalents

1. hρ = h(G ,X ),

2. ρ almost has invariant vectors.

Exercise. (2) =⇒ (1)
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Twisted Patterson-Sullivan measures

Naive attempt.

Consider

asx =
1

‖A(s)‖
∑
g∈G

e−sd(o,go)Dirac(go)ρ(g)

Measure on X̄ = X ∪ ∂X with value in B(H).

Other point of view. Linear functional C (X̄ )→ B(H).

Take the limit

asx −−−−−−−⇀
s→hρ

ax

Warning

The space of Banach valued measure is not compact!
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Ultra-limit of Hilbert spaces.

Let ω : P(N)→ {0, 1} be a non-principal ultra-filter, i.e.

1. ω(A t B) = ω(A) + ω(B) for every disjoint A,B ⊂ N.

2. ω(N) = 1,

3. ω(A) = 0, finite A ⊂ N.

A property Pn holds ω-almost surely (ω-as) if

ω ({n ∈ N : Pn is true}) = 1.

Given a real sequence (un) we say that limω un = ` if

∀ε > 0, |un − `| < ε ω-as.

Fact. Every real valued bounded sequences admits an ω-limit.
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Ultra-limit of Hilbert spaces.

Let (Hn) be a sequence of Hilbert spaces.

Let ∏
ω

Hn =

{
(φn) ∈

∏
n∈N
Hn : ‖φn‖ is bounded

}
.

Pseudo-norm. ‖(φn)‖ = limω ‖φn‖.

W =

{
(φn) ∈

∏
ω

Hn : ‖(φn)‖ = 0

}
is a vector space.

Proposition-Definition.

Hω :=
∏
ω

Hn/W is a Hilbert space.

Notations. limω φn : image of (φn) in Hω.
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Ultra-limit of Hilbert spaces.

For our purpose

• (Hn) constant sequence equal to H.

• Hω is endowed with a partial order ≺ coming from the one on H.

• If (Bn) is a bounded sequence of operators on H one defines

Bω = limω Bn by

Bω
(

lim
ω
φn

)
= lim

ω

(
Bnφn

)
.

Bω belongs to B(Hω).

• In particular, ρ : G → U(H) induces a positive unitary representation

ρω : G → U(Hω)

Exercise.

ρ almost have invariant vectors ⇐⇒ ρω has a non-zero invariant vector.
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Twisted Patterson-Sullivan measures

Second attempt.

Recall

asx =
1

‖A(s)‖
∑
g∈G

e−sd(o,go)Dirac(go)ρ(g)

Fix a sequence sn > hρ, converging to hρ.

Define ax as follows.∫
fdax := lim

ω

∫
fdasnx

= lim
ω

1

‖A(sn)‖
∑
g∈G

e−snd(o,go)f (go)ρ(g), ∀f ∈ C (X̄ ).

Measure on X̄ with values in B(Hω).
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Twisted Patterson-Sullivan measures

Main properties

• (Support) ax is supported on ∂X (cheated a bit)

• (Normalization)

∫
1dao has norm 1.

• (Twisted equivariance) g∗ax = ρω(g)−1agx for every g ∈ G and

x ∈ X .

• (Conformality)
dax
day

(ξ) = e−hρβξ(x,y)Id

for every x , y ∈ X and ξ ∈ ∂X .
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The “hard” direction (continued)



Reminder

Twisted Poincaré series.

A(s) =
∑
g∈G

e−sd(o,go)ρ(g) (bounded operator on H).

Critical exponent: hρ ∈ [0, hG ]

Theorem.

Let H be a Hilbert space with a partial order. Let ρ : G → U(H) be a

positive unitary representation. The following are equivalents

1. hρ = hG ,

2. ρ almost has invariant vectors.
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Reminder

Let

asx =
1

‖A(s)‖
∑
g∈G

e−sd(o,go)Dirac(go)ρ(g)

Fix a sequence sn > hρ, converging to hρ.

Fix a non-principal ultra-filter ω.

Define ax as follows. ∫
fdax = lim

ω

∫
fdasnx

Measure on X̄ with values in B(Hω)

Twisted Patterson-Sullivan density: a = (ax).
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Twisted Patterson-Sullivan measures

Main properties

• (Support) ax is supported on ∂X (cheated a bit)

• (Normalization)

∫
1dao ∈ B(Hω) has norm 1.

• (Twisted equivariance) g∗ax = ρω(g)−1agx for every g ∈ G and

x ∈ X .

• (Conformality)
dax
day

(ξ) = e−hρβξ(x,y)Id

for every x , y ∈ X and ξ ∈ ∂X .
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Twisted Patterson-Sullivan measures

Shadow Lemma

Let ν = (νx) be an hG -conformal, G -invariant density on ∂X .

There exists C > 0 and r , such that for every g ∈ G ,

1

C
e−hGd(o,go) 6 νo (Oo(go, r)) 6 Ce−hGd(o,go)

Half shadow Lemma

For every r > 0, there exists C > 0, such that for every g ∈ G ,

‖ao (Oo(go, r))‖ 6 Ce−hρd(o,go)
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Twisted Patterson-Sullivan measures

Shadow Lemma

Let ν = (νx) be an hG -conformal, G -invariant density on ∂X .

There exists C > 0 and r , such that for every g ∈ G ,

1

C
e−hGd(o,go) 6 νo (Oo(go, r)) 6 Ce−hGd(o,go)

Half shadow Lemma

For every r > 0, there exists C > 0, such that for every g ∈ G ,

‖ao (Oo(go, r))‖ 6 Ce−hρd(o,go)

54



Heuristic of the proof

Assumption. hρ = hG .

Consequence. For every g ∈ G ,

‖ao (Oo(go, r))‖ ≺ e−hρd(o,go) � e−hGd(o,go) � νo (Oo(go, r)) ,

where νo (standard) Patterson-Sullivan measure of G .

In other words ao � νo .
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Heuristic of the proof

Introduce

D =
dao
dνo

: ∂X → B(Hω)

• Equivariance/Conformality of νo/ao implies

D(gξ) = ρω(g)D(ξ), ∀g ∈ G , ∀ξ ∈ ∂X , νo-as.

• Ergodicity of G on (∂X × ∂X , νo ⊗ νo) implies

D is constant νo-as.

Conclusion. The image of D consists of ρω-invariant vectors.
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From shadows to absolute continuity
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Radial limit set

Given K ⊂ X compact, define ΛK
rad.

Λrad =
⋃

K⊂X
compact

ΛK
rad
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Absolute continuity

Proposition

If the action of G on X is strongly positively recurrent, then there exists

K ⊂ X compact such that ΛK
rad has full measure for both νo and ao .

Consequence (using the Shadow Lemmas)
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Absolute continuity

Corollary

There exists a unique linear continuous map

D : Hω → L∞(∂X ,Hω)

such that for every f ∈ C (X̄ ), for every φ ∈ Hω,(∫
fdao

)
φ =

∫
f D(φ)dνo ,

Roughly speaking,

D =
dao
dνo
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Exploiting equivariance/conformality

Proposition

Choose φ ∈ Hω and let Ψ = D(φ)

For every g ∈ G ,

Ψ ◦ g = ρω(g)Ψ, νo-a.s.
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Exploiting equivariance/conformality
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Hopf-Tsuji-Sullivan theorem

Theorem

Let G be a group acting properly by isometries on a CAT(-1) space X .

The following statements are equivalent

1. The action of G is divergent

2. The Patterson-Sullivan measure νo only charges the radial limit set.

3. The geodesic flow on SX/G is ergodic (for the Bowen-Margulis

measure).

4. The diagonal action of Γ on (∂X × ∂X , νo ⊗ νo) is ergodic.

Reminder: G y X strongly positively recurrent =⇒ νo only charges the

radial limit set.
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Hopf-Tsuji-Sullivan theorem
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Exploiting ergodicity

Proposition

Choose φ ∈ Hω. The map Ψ = D(φ) is essentially constant.
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Exploiting ergodicity
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Summary.

Assumption: hρ = hG .

1. Build a twisted Patterson-Sullivan density a = (ax).

2. ao is absolutely continuous with respect to νo (uses strong positive

recurrence).

3. D : Hω → L∞(∂X ,Hω) “Radon-Nikodym” derivative.

4. D is non-zero : the norm of

∫
1da0 is 1.

5. Choose φ ∈ Hω, such that Ψ = D(φ) is non-zero.

6. Ψ is essentially constant and ρω-equivariant.

Conclusion: the essential value ψ of Ψ is a non-zero invariant vector for

ρω.

. . . hence the initial representation ρ almost has invariant vectors.
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That’s all folks!
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Radial limit set

Proposition

If the action of G on X is strongly positively recurrent, then there exists

K ⊂ X compact such that ΛK
rad has full measure for both νo and ao .
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Radial limit set

69



Radial limit set
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Radial limit set
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