Divisibility

Sachchidanand

April 19, 2023

Suppose that we want to check whether the number 327841989 is divisible by $2,3,5,7,11, \ldots$ We can use elementary methods to check the divisibility. What about, if asked is this number is divisible by 41,43 or 79 . Do we have a divisibility test for these numbers or do we have to divide and check?

We recall the divisibility test for the number 7. A positive integer n is divisible by 7 if and only if the difference between twice the unit digit of n and the remaining digits of n, excluding the unit digit, is divisible by 7 . For example, consider the number $n=9874$. Applying the divisibility test for 7, we have:

$$
987-2 \times 4=979
$$

Now the above number is divisible by 7 if and only if 9874 is divisible by 7 (why?). So we use the test again

$$
97-18=69
$$

which is not divisible by 7 and hence 979 is not divisible by 7 and therefore, 9784 will also be not divisible by 7 . Formally, if we write a number $N=$ $10 a+b$, where b is the unit digit of N, then we have

$$
(10 a+b)-3(a-2 b)=7(a+b)=0 \bmod 7
$$

Therefore,

$$
\begin{array}{r}
7 \mid(10+b) \text { if and only if } 7 \mid 3(a-2 b) \\
\text { if and only if } 7 \mid(a-2 b) .
\end{array}
$$

Note that we can also write

$$
(10+b)-3(a-9 b)=7(a+4 b)=0 \bmod 7 .
$$

So $7 \mid(10 a+b)$ if and only if $7 \mid(a-9 b)$. Thus, this could also be divisibility test for 7 .

First Activity: Take some numbers and try to see if the number is divisible by $11,13,17$ and 19 . Try to find a similar divisibility test for these numbers. Also, try to see if the same divisibility test (as for 7) works for the numbers 17,37 and 47 .

Finally, we will try to find a general pattern for the divisibility test for any prime number.

